Département de Génie Informatique

OMAS v7 - Platform Features

Jean-Paul Barthes

BP 349 COMPIEGNE
Tel +33 3 44 23 44 66
Fax +33 3 44 23 44 77

Email: barthesQutc.fr

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

Warning

This document presents the main features of the OMAS platform.

Keywords

Multi-agent platform, cognitive agents, OMAS

Jean-Paul A. Barthes@©UTC, 2009 N244/Page 2

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

Revisions

Version Date Author Remarks
1.0 July 09 Barthes First Issue

Jean-Paul A. Barthes©UTC, 2009 N244/Page 3

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

OMAS documents

Related documents
e UTC/GI/DI/N185L - OMAS v7 - Defining Skills
¢ UTC/GI/DI/N187 - OMAS 5.0/ JADE 3.1 - A Comparison
e UTC/GI/DI/N195L - OMAS v7 - Goals
e UTC/GI/DI/N208L - OMAS v7 - Primer (Mac OSX)
¢ UTC/GI/DI/N210L - OMAS v7 - Net
e UTC/GI/DI/N211L - OMAS v5 - Primer (Windows XP)
e UTC/GI/DI/N212L - OMAS v7 - Coterie Structure
e UTC/GI/DI/N213L - OMAS v7 - Postman
e UTC/GI/DI/N215L - OMAS v7 - Tutorial (Windows XP)
e UTC/GI/DI/N216L - OMAS v7 - Internals
e UTC/GI/DI/N217L - OMAS v7 - Personal Assistant
e UTC/GI/DI/N226L - OMAS v7 - API and Low Level Functions
¢ UTC/GI/DI/N227L - OMAS v7 - Tests
e UTC/GI/DI/N229L - OMAS v7 - Programming Tutorial
e UTC/GI/DI/N230L - OMAS v7 - PA Interface
e UTC/GI/DI/N231L - OMAS v7 - Postier (in French)
e UTC/GI/DI/N232L - OMAS v7 - Postman Connection
e UTC/GI/DI/N233L - OMAS v7 - ACL
e UTC/GI/DI/N234L - OMAS v7 - Multilinguism
e UTC/GI/DI/N235L - OMAS v7 - Window Macros
e UTC/GI/DI/N23SL - OMAS-PACPUS (in French)
e UTC/GI/DI/N240L - OMAS v7 - Foreign PA
e UTC/GI/DI/N244L - OMAS v7 - Platform Features

Readers unfamiliar with OMAS should read first N244 (Platform Features), N208 (primer Mac OSX)
or N211 (primer Windows XP)or N215 (Tutorial Windows XP), then N212 (Coterie Structure), then
N195 (Goals), and N185 (Defining Skills).

Programming information is contained in N185 (Defining Skills) and N226L (API and Low Level
Functions).

Jean-Paul A. Barthes©UTC, 2009 N244/Page 4

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

Readers who want to implement Personal Assistants should read N217 (Personal Assistant) and N240
(Foreign PA) for a tutorial.

Readers interested in inter-platform communication should read N213 (Postman) and N232 (Postman
Connection), and N238 (OMAS-PACPUS) for an example.

N187 presents a brief comparison with JADE.

Jean-Paul A. Barthes©UTC, 2009 N244/Page 5

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

Contents
1 Introduction 7
2 Main Design Decisions 7
2.1 The Nature of Agents e 7
2.2 P2P Organization and Coteries L 8
2.3 Non Mobility e 8
2.4 SKillso e 8
2.5 Goals . .. 8
2.6 Personal Assistants Lo 8
2.7 Ontologies and Knowledge Bases L o 8
2.8 IDE . . . e 8
3 OMAS ACL Language 8
3.1 Message Structureo 9
3.2 Types of Messages (Performatives) 10
3.3 Addressing Modes 10
3.3.1 Point-to-Point 10
3.3.2 Multicast e e e e e 11
3.3.3 Broadcast e e 11
3.3.4 Conditional 11
3.4 Protocols e 11
3.4.1 Simple-Protocol e 11
3.4.2 Contract Net e 11
3.5 Message Processing Mechanism 11
3.6 Sending MeSsages Lo e 11
4 OMAS Content Language 13
5 OMAS Agent Skills 13
6 OMAS Agent Goals 13
7 OMAS Ontologies 14
8 OMAS Agent Types 14
8.1 Service Agents L e 14
8.2 Transfer Agents (Postmen) 15
8.3 Personal Assistant Agents 15
9 OMAS IDE 15

Jean-Paul A. Barthes©UTC, 2009 N244/Page 6

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

1 Introduction

The OMAS (Open Multi-Agent System) platform has been developed over many years to let application
designers build applications involving cognitive agents easily. It offers several models of agents and a
middleware taking care of the traditional agent machinery like sending messages and applying skills. The
goal was to develop a tool in which an application could be programmed by adding a minimum of code
in a plugin style.

The set of OMAS documents give details on the various parts of the platform. Tutorial documents
are also available for Windows and Mac environments.

2 Main Design Decisions

We took the following decisions:

e agents are totally independent and interact in a P2P fashion (there is no central record of agents
nor of their skills, namely there are no white or yellow pages);

e agents have a long life;

e agents are multi-threaded and can do several tasks at the same time;
e agents can join or quit the platform at any time;

e agents cannot travel from machine to machine;

e agents are organized in coteries; a coterie is located on a single physical LAN loop;
e remote coteries may be connected trough a transfer agent (postman);
e agents have skills;

e agents have goals that are different from skills;

e agents communicate with the user through a personal assistant agent;
e agents have ontologies;

e agents can reason;

e there is an IDE for exercising agents.

The options are discussed in the following paragraphs.

2.1 The Nature of Agents

Our agents are complex agents (their complexity is of the order of an OS). Once they are created they
stay alive until somebody or something kills them. Our vision is to allocate one machine for an agent or
a small group of agents.

Jean-Paul A. Barthes©UTC, 2009 N244/Page 7

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

2.2 P2P Organization and Coteries

We wanted our agents to be completely free of joining and leaving the group of agents at any time without
having to register anywhere. Therefore, inside a coterie (a group of agents leaving on the same LAN loop)
low-level communication is done by broadcasting, using the UDP protocol, meaning that all agents can
receive all messages. However, the middleware will filter messages, delivering only those targeted to an
agent. A coterie is specified by its port of communication, which is the only piece of data an agent must
know to join the coterie.

2.3 Non Mobility

OMAS agents are complex agents and cannot travel from a machine to another, although this could
be implemented easily. The rationale for this decision was that OMAS agents are supposed to have a
dedicated machine. Thus, it is not very meaningful for them to leave it.

2.4 Skills

Agents have a set of skills allowing them to perform tasks. If an agent receives a message but has not the
corresponding skill, it simply ignores it.

2.5 Goals

Agents may have goals of different kinds: one-shot, or cyclic. Goals are different from skills, and are used
for triggering a specific behavior when some conditions are verified.

2.6 Personal Assistants

Since communication with humans is an important features, OMAS provides Personal Assistant agents,
that act as digital butlers. They can be programmed in the user’s native language, and may use staff
agents.

2.7 Ontologies and Knowledge Bases

Agents use ontologies for expressing tasks and domain knowledge. An ontology can be used to develop a
knowledge base. Agents use the MOSS language for expressing the ontology and knowledge bases. The
MOSS query mechanism can be used for reasoning.

2.8 IDE

An interactive developing environment is available for debugging purposes, allowing to examine the content
of agents and to display their behavior.

3 OMAS ACL Language

The Agent Communication Language (ACL) specifies the structure of messages and the performatives
that can be used to communicate (type of messages). In addition messages can be routed as point-to-point,
multicast, broadcast, conditional, or ContractNet.

Jean-Paul A. Barthes©UTC, 2009 N244/Page 8

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

3.1 Message Structure

The structure of messages and performatives are described in the following mémo.
N233 OMAS v7 ACL, UTC/GI, dec 2008

Table 1 lists the various parameters that can be found in a message, comparing them with the parameters
that are defined for a FIPA message. Some of the missing parameters on the OMAS side (e.g. language,
encoding, ontology) are in practice included in the content/action/args parameters.

Table 1: FIPA and OMAS list of parameters

FIPA Parameter OMAS Parameter Category

- name Message description

- date Message description
performative type Type of communicative act
receiver to Participant in communication
sender from Participant in communication
reply-to reply-to Participant in communication
content content, action, args Content of message

language - Description of content
encoding - Description of content
ontology - Description of content

- error-contents Description of content
protocol protocol Control of conversation
conversation-id task-id Control of conversation
reply-with - Control of conversation
in-reply-to task-id Control of conversation
reply-by time-limit Control of conversation

- acknowledgement Control of conversation

- repeat-count Control of conversation

- but-for Control of conversation

- strategy Control of conversation

- sender-ip System Information

- sender-site System Information

- thru System Information

- task-timeout System Information

- timeout System Information

- id Message identifier

Because an agent usually does not answer if not interested, a lack of answer on a point to point
request is ambiguous. l.e. the agent may not want to answer, or it may have left, or it may be down.
Consequently, an acknowledgment parameter was added to force an agent that received a message to
acknowledge it (similar to registered mail).

More specific parameters have been added, like sender-site, sender-IP, thru, to avoid looping when
several coteries are interconnected. Indeed, any message is distributed to all coteries by means of transfer
agents, which might lead to sending messages in a loop if one is not careful. However, the user does not
have to deal with such parameters.

Jean-Paul A. Barthes@©UTC, 2009 N244/Page 9

UTC/GI/DI/CNRS UMR HEUDIASYC

OMAS v7 - Platform Features(July 2009)

3.2 Types of Messages (Performatives)

The OMAS performative are somewhat different from the FIPA/KQML performative and are listed in

Table 2.

Table 2: FIPA and OMAS list of parameters

FIPA performatives

OMAS performatives

Accept Proposal

Agree

Cancel

Call for Proposal
Confirm
Disconfirm
Failure

Inform

Inform If
Inform Ref

Not Understood
Propagate
Propose

Proxy

Query If

Query Ref
Refuse

Reject Proposal
Request
Request When

Request Whenever

Subscribe

Abort
Acknowledge
Grant

Answer

Bid with Answer
Cancel
Cancel-Grant
Call for Bids

Error
Inform

Internal

Request

Request

Sys-Inform

OMAS exchange of messages is more flexible than those specified by FIPA, since an OMAS agent does
not have to answer if it does not want to.

3.3 Addressing Modes

OMAS messages have four addressing modes: point-to-point, multicast, broadcast and conditional.

3.3.1 Point-to-Point

As usual, the message is sent from a specific agent to another specific agent.

Jean-Paul A. Barthes@©UTC,

2009

N244/Page 10

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

3.3.2 Multicast

A message is sent to a list of agents.

3.3.3 Broadcast
A message is sent to all agents of the connected coteries (address is ALL or ALL-AND-ME).

3.3.4 Conditional

Conditional messages contain a condition expressed as a MOSS query. Agents for which the query returns
a non null answer will receive the message. The query acts as a semi-predicate. E.g.

(:_cond ("agent" ("eyes" ("eyes" ("color" :is "blue")))))

will deliver messages to all agents with known blue eyes.

3.4 Protocols

OMAS has only two types of protocols: simple and contract-net.

3.4.1 Simple-Protocol

The simple protocol sends the message in any addressing mode. If the mode is multi-cast or broadcast,
it can select 3 strategies: take-first-answer, collect-answers, collect-first-n-answers.

The take-first-answer strategy will return as soon as an answer is received, The collect-answers strategy
will collect answers until a timeout is reached, the collect-first-n-answers strategy will return as soon as n
answers have been received or wait for a timeout if not enough answers are received.

A message may specify a time limit to the destination agent. A message has a timeout (defaulting to
1 hour).

3.4.2 Contract Net

When Contract Net is specified the Contract Net protocol is executed, sending first a Call-For-Bids,
waiting for answers, and granting the task to some agent(s).

3.5 Message Processing Mechanism

Messages are processed differently according to their nature. When an agent is created, it has Two
processes: scan and mbox (Fig.1).

Messages other than request are processed immediately by the scan process. Request messages are
put into the agenda and processed by the mbox process.

A request message will lead to the creation of a new thread for processing the message and a thread
for a time-limit as shown Fig.2. The figure also shows that if the task process spawns subtasks, the scan
process will redirect answers to the proper thread. This is done by the middleware.

3.6 Sending Messages

Most messages will be sent using the send-subtask macro. Other types of messages are usually sent by
the system as a consequence of doing some action. For example the answer message to a specific request
will be built and sent by the middleware when a skill terminates.

Jean-Paul A. Barthes©UTC, 2009 N244/Page 11

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

INPUT message

mbox process

Figure 1: Initial Agent Processes: scan receives messages, mbox waits on agenda

@

ﬁ Answer-Box ‘
%:

INPUT message

ANSWER message

mbox process

Figure 2: a request message creates a new task process and a time-limit timer

Jean-Paul A. Barthes@©UTC, 2009 N244/Page 12

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

4 OMAS Content Language

The OMAS content language is not currently strictly specified. Thus, it is up to the application developer
to use the language most appropriate for the application.

In practice, the action parameter specifies a task to be undertaken and the args parameter contains
information related to such a task (usually formatted as an association list). Some exchanges between a
Personal Assistant and the staff agent transfer pieces of natural language.

5 OMAS Agent Skills

A detailed description is done in the following document:
N185 OMAS v7 Defining Skills, UTC/GI, July 2008

Skills correspond to tasks that an agent can do. A skill is programmed as a function, the name of
which is contained in the action parameter of the message. There are two types of skills: an atomic skill
and a complex skill. Atomic skills are entirely executed by the agent without help. Complex skills spawn
subtasks to be executed by other agents.

A skill may use following functions:

Table 3: OMAS skill functions

Function Meaning

static-fcn called when the skill is activated

dynamic-fcn called when an answer is sent by a spawned subtask
timeout-handler called when a timeout fires

preconditions called before executing the skill to check preconditions
select-best-answer-fcn called on broadcast or multicast to select answer
acknowledge-fcn called when received message asks for acknowledgment

At least the static function must be provided when the skill is atomic, and the dynamic function when
the skill is complex. Other functions are optional and depend on the protocol and adopted strategy. The
other functions have a default behavior.

When a message is received by an agent OMAS calls the proper function automatically in the proper
thread, according to the specified skill. Thus, the application designer is saved the trouble of waiting for
messages (events), filtering them and distributing them to the proper thread.

Skills are defined by using the defskill macro.

6 OMAS Agent Goals

Goals are optional but may be used to make the agent pro-active. Details about goals can be found in
the following document:

N195 OMAS v7 Goals, UTC/GI, July 2008

Parameters used to define a goal are shown Table 4. Although there are two types of goals (rigid and
flexible) only the rigid goals are currently implemented. The flexible goal mechanism, corresponding to
the propagation of an energy of activation, is not yet available. Goals may be one-shot or cyclic.

Jean-Paul A. Barthes@©UTC, 2009 N244/Page 13

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

Table 4: OMAS skill functions

Function Meaning

mode activation mode (:rigid or :flexible)

type type of goal (:permanent :cyclic :1-shot)

period period for cyclic goals (default is 20s)
expiration-date date at which the goal dies

expiration-delay time to wait until we kill the goal

importance on a 1-100 scale (not yet available)

urgency on a 1-100 scale (not yet available)
activation-date date at which the goal should fire (default is now)
activation-delay time to wait before activating the goal
activation-level on a 1-100 scale (default 50) (not yet available))

activation-threshold on a 1-100 scale (default 50) (not yet available)
activation-change-fcn optional function called at each cycle (not yet available)

status waiting, active, dead,...
goal-enable-fcn function checking the goal enabling conditions
script-fcn a function returning a list of messages

An activation function decides whether the goal will fire or not. The goal consists in executing a list
of messages sent to the agent as internal messages.
Goals are defined by using the defgoal macro.

7 OMAS Ontologies

Agents have an ontology that can be extended to suit the application purposes and used for instantiating
a knowledge base. The ontology must be formalized using the MOSS language. The ontology can be
multilingual if necessary. Details are given in the MOSS documentation and an extensive example can be
found in:

N240 OMAS v7 Creating Foreign PA - Tutorial, UTC/GI, May 2009

8 OMAS Agent Types

OMAS offers three types of agents: Service Agent, Transfer Agent (Postman), or Personal Assistant.

8.1 Service Agents

Service Agents are regular agents that provide a set of services. They can be thought as Web Services
with the difference that they may not answer even if they can do the job. Their structure is shown Fig.3.
The various parts of the structure of an agent are:

e net interface, handling message and log;
e skills, containing the skills corresponding to tasks the agent can do;

e world, containing a model of the world, namely a description of other agents obtained through the
processing of messages;

Jean-Paul A. Barthes@©UTC, 2009 N244/Page 14

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

tasks, a model of the current tasks being active in the system (currently unused);

ontology, containing the ontology and knowledge base;

self, containing a self description, a description of skills and the agent memory;

control, containing all the necessary internal structures for running the agent.

Generic service agent

Personal assistant

net . user user
ontology[| skills model
control
inter- TF inter-
face taSkS WOI‘ld S¢ face

Network

Figure 3: The structure of a Service Agent / Personal Assistant (with grey additions)

8.2 Transfer Agents (Postmen)

Transfer Agent (Postmen) are used as gateways between two remote coteries or for interfacing the platform
with web services or for interfacing with other multi-agent platforms. They normally use a TCP protocol.
An example for developing a postman between remote coteries is given in:

N232 OMAS v7 Postman Connection, UTC/GI, March 2009

8.3 Personal Assistant Agents

Personal Assistant agents are complex agents that can interface the user through a dialog in natural
language in any language. They use ontologies and a complex dialog mechanism. How to build a Personal
Assistant is described in:

N240 OMAS v7 Creating a Foreign PA, UTC/GI, May 2009

9 OMAS IDE

The OMAS IDE shown Fig.4 allows exercising the agent environment and is detailed in:

N215 OMAS v7 Tutorial, UTC/GI, June 2008

Jean-Paul A. Barthes@©UTC, 2009 N244/Page 15

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v7 - Platform Features(July 2009)

"

@ MCL-5.2 File Edit Lisp Tools Windows

1 mar.09:26 4) @

000 OMAS-MOSS v7.10 - Control Panel 000 OMAS 7.10 - Message Diagrams |
§
POCH-CONTROL SIMLLATOR &
9 ANS -8 R R 161->1<00IN-USER) :0BTAIN-sEssion: et aamiL
SA_SIMULATC
CANCEL 11 :61|23ALL idinIL
CELS
Usaet (detais " (ontology | (trace " (inspeet
<TRSKS
4 CANCEL 13 61| 5ALL idiNIL
Usaesl (" details " (ontology | (trace | (inspect
<TRKS CANCEL 15
—— CANCEL 23 61| aALL idinIL
8 (“aetais) (_ontoloay (trace) inspeet P
<TRSKS
"61 got confirnation from RODH-CONTROL:
i1 o 2 151 B IFREE
©eyer Group G1 got confirmation from teacher!
etz 51 o
<+ Broup 61 can now record sessi ’ I {staticexit agent nil))) "8 O O Global Schedule
SUCOESS 161 01 101 1011612 31 8 SFREE}
= Group 51 requests o new sess on (defun agent-scan-process—al Gl st sz 83
m Takes an input massage and decides |
IF foisisis assistant agent, then spectal sotions |31 J1-8810
Su) CEIF-NOT MIL he mess3ge to the user unprocessed
arguments. tor (resuits groug
from teachers... e to be disptoned ceupied) (2 11812 6 tfree)) Ji-1812 ||
I 1 e St foceupiad) (52 JI-1415 4 ifree)))
) CIF 0 gee (typel meszage) ot lise 0T af fore ovtred By ineracsing costs ¢
28) {:1F oot e fmoento=t C(EZ ©O DI J1-1416 57 4 1fres) (E1 €1 Gf JI-BEID SIS toccupied)
500 ¢HF-NOT o 1 El vith oo e Sl {E2 £1 G1 .1-B318 51 5 foccupied) (E1 C1 G JI-1A12 52 6 ffree}) J1-1416
BT M oL e e 12 T o bids (omEny (58S St g 13 ot gantlant s speasr G BIL In rails
H ort (napean ' (lonbda
» 4 faaent Enapear ¢ lombda Gy
o inforn fagene-z2 Hoppens” (subseq o 8 2) w P
i —cub sk 7 m 9 9 Cadtsflimake—of far stanchar (cur)
,ugen Procesecuntask-onsuer, cancel-grant fagant-sa (e
ved offers from all taachers: G imoaat ourse (cadr
2 FREE) {(EI :C1 I01 1J2-B818 IS G FREE} (a3t inzae - nta-cqanza srove group-nons
21812 153 @ (FREE) <MORE>...) (omnteatopiay opent) o emar ik J2-0810
1,81 reserving to rooH-CONTRL: L) Gionsuer A et cost (oaddn wi) uns
5 S e B e | Gt) e “ |
-, 61 as mq sachar E1 11 offer oK 3 o internal mesogs not =
E1 it 152 B FREE) i o T the d gy I dz-1812
.. Ing for . somtiraation fron bath ROON-CONTROL and tescher ia B tosogenda ¢ oy S e (a2 Cattars o rar—gat-cost 237%)
g3, e 1 ot confirnation fran FOdIEcONTROL: m ic used by §
SUCCESS 1 2-1012 152 0 4 Sich nessages are. frang d2-1416
{agent—sean-sys- inforn age
E1 01 I61 121812 152 0 GFREE) Cotharn 2a
©+g3 rou S sot confirnation fran teasher: G " agent A paceivad 4 PG
fuceess 612 52 =3 (e agent>. ¢ bypat -
AR e T B e T8 6 tFREE) . 1en t-agent—scan-process-nesd | -
v 35 ~ {defun get-cheap-possibly-frec-roon tresuit) HN C1 EE C2
CL-USERT Tl [E1C0 RIS 2 GIT Gaving *70din ar-the= TITCL TONAE-TIOES 718 OIS Bl RIS

|24 4

Figure 4: OMAS Interactive Development Environment

Jean-Paul A. Barthes@©UTC, 2009 N244/Page 16

