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MODELS

N. Limnios

Laboratoire de Mathématiques Appliquées,
Université de Technologie de Compiègne,
France (nikolaos.limnios@utc.fr)

Abstract: The purpose of this article is to present the semi-Markov processes focusing
on applications, especially in reliability and dependability. The under consideration
semi-Markov processes are both of continuous and discrete time with countable or
finite state space. The basic definitions of Markov renewal and semi-Markov processes
are presented, as well as the Markov renewal theorem and the necessary theory of
statistical estimation. In the sequel, we describe a general reliability model and give
the corresponding estimations. Finally, we briefly present the semi-Markov chain and
hidden semi-Markov models. Some bibliographical directions for further relevant topics,
which are not included in this article, are given.

Keywords and phrases: Semi-Markov Process, Markov Renewal Process, Semi-
Markov chain, Hidden Semi-Markov Model, Semi-Markov Kernel, Markov Renewal
Equation, Empirical Estimator, Reliability, Availability, Mean Time To Failure.

1 MARKOV RENEWAL AND SEMI–MARKOV PROCESSES

Semi-Markov processes were introduced independently by W.L. Smith and P. Lévy in
the same Mathematical meeting in 1954. Semi-Markov processes constitute a gener-
alization of Markov and renewal processes. Jump Markov processes, Markov chains,
renewal processes - ordinary, alternating, delayed, and stopped - are particular cases
of semi-Markov processes. As Feller [13] pointed out, the basic theory of semi-Markov
processes was introduced by Pyke [41, 42]. Further significant results are obtained by
Pyke and Schaufele [43, 44], Çinlar [9, 10], Koroliuk [25, 26, 27], and many others.
Also, see [11, 14]. Currently, semi-Markov processes have achieved significant impor-
tance in probabilistic and statistical modeling. Our main references for this article are
[29, 6, 37].

Consider an infinite countable set, say E, and an E-valued pure jump stochastic
process Z = (Zt)t∈IR+ . Let 0 = S0 ≤ S1 ≤ ... ≤ Sn ≤ Sn+1 ≤ ... be the jump times
of Z, and J0, J1, J2, . . . the successive visited states of Z. Note that S0 may also take
positive values. Let IN be the set of nonnegative integers.

Definition 1. The stochastic process (Jn, Sn)n∈IN is said to be a Markov renewal pro-
cess (MRP), with state space E, if it satisfies a.s., the following equality
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IP(Jn+1 = j, Sn+1 − Sn ≤ t | J0, . . . , Jn;S1, . . . , Sn) = IP(Jn+1 = j, Sn+1 − Sn ≤ t | Jn)

for all j ∈ E, all t ∈ IR+ and all n ∈ IN. In this case, Z is called a semi-Markov process
(SMP).

We assume that the above probability is independent of n and Sn, and in this case the
MRP is called time homogeneous. The MRP (Jn, Sn)n∈IN is determined by the transition
kernel Qij(t) := IP(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i), called the semi-Markov kernel,
and the initial distribution α, with α(i) = IP(J0 = i), i ∈ E. The process (Jn) is a
Markov chain with state space E and transition probabilities P (i, j) := Qij(∞) :=
limt→∞Qij(t), called the embedded Markov chain (EMC) of Z. It is worth noticing
that here Qii(t) ≡ 0, for all i ∈ E, but in general we can consider semi-Markov kernels
by dropping this hypothesis.

The semi-Markov process Z is connected to (Jn, Sn) by

Zt = Jn, if Sn ≤ t < Sn+1, t ≥ 0 and Jn = ZSn , n ≥ 0.

A Markov process with state space E = IN and generating matrix A = (aij)i,j∈E is
a special semi-Markov process with semi-Markov kernel

Qij(t) =
aij
ai

(1− e−ait), i 6= j, ai 6= 0,

where ai := −aii, i ∈ E, and Qij(t) = 0, if i = j or ai = 0.
Also, define Xn := Sn − Sn−1, n ≥ 1, the inter–jump times, and the process

(N(t))t∈IR+ , which counts the number of jumps of Z in the time interval (0, t], by
N(t) := sup {n ≥ 0 : Sn ≤ t}. Also, define Ni(t) to be the number of visits of Z to
state i ∈ E in the time interval (0, t]. To be specific,

Ni(t) :=

N(t)∑

n=1

1{Jn=i} =

∞∑

n=1

1{Jn=i,Sn≤t}, and also N∗i (t) = 1{J0=i,S0≤t} +Ni(t).

If we consider the (eventually delayed) renewal process (S in)n≥0 of successive times of
visits to state i, then Ni(t) is the counting process of renewals. Denote by µii the mean
recurrence time of (Sin), i.e., µii = IE[Si2 − Si1].

Let us denote by Q(t) = (Qij(t), i, j ∈ E), t ≥ 0, the semi–Markov kernel of Z.
Then we can write:

Qij(t) := IP(Jn+1 = j,Xn+1 ≤ t | Jn = i) = P (i, j)Fij(t), t ≥ 0, i, j ∈ E, (1)

where P (i, j) := IP(Jn+1 = j | Jn = i) is the transition kernel of the EMC (Jn), and
Fij(t) := IP(Xn+1 ≤ t | Jn = i, Jn+1 = j) is the conditional distribution function of
the sojourn time in the state i given that the next visited state is j, (j 6= i). Let us
also, define the distribution function Hi(t) :=

∑
j∈E Qij(t) and its mean value mi,

which is the mean sojourn time of Z in state i. In general, Qij is a subdistribution, i.e.,
Qij(∞) ≤ 1, hence Hi is a distribution function, Hi(∞) = 1, and Qij(0−) = Hi(0−) =
0.

A special case of semi-Markov processes is the one where Fij(·) does not depend on
j, i.e., Fij(t) ≡ Fi(t) ≡ Hi(t), and

Qij(t) = P (i, j)Fi(t). (2)
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Any general semi-Markov process can be transformed into one of the form (2), (see,
e.g., [29]).

Let φ(i, t), i ∈ E, t ≥ 0, be a real-valued measurable function and define the
convolution of φ by Q as follows

Q ∗ φ(i, t) :=
∑

k∈E

∫ t

0

Qik(ds)φ(k, t − s). (3)

Now, consider the n-fold convolution of Q by itself. For any i, j ∈ E,

Q
(n)
ij (t) =





∑
k∈E

∫ t
0
Qik(ds)Q

(n−1)
kj (t− s) n ≥ 2

Qij(t) n = 1
δij1{t≥0} n = 0.

It is easy to prove (e.g., by induction) the following fundamental equality

Q
(n)
ij (t) = IPi(Jn = j, Sn ≤ t). (4)

Here, as usual, IPi(·) means IP(· | J0 = i), and IEi is the corresponding expectation.
Let us define the Markov renewal function ψij(t), i, j ∈ E, t ≥ 0, by

ψij(t) := IEi[N
∗
j (t)] = IEi

∞∑

n=0

1{Jn=j,Sn≤t}

=

∞∑

n=0

IPi(Jn = j, Sn ≤ t) =

∞∑

n=0

Q
(n)
ij (t). (5)

Another important function is the semi-Markov transition function

Pij(t) := IP(Zt = j | Z0 = i), i, j ∈ E, t ≥ 0,

which is the conditional marginal law of the process. We will study this function in the
next section.

Definition 2. The semi-Markov process Z is said to be regular if

IPi(N(t) <∞) = 1,

for any t ≥ 0 and any i ∈ E.

For regular semi-Markov processes we have Sn < Sn+1, for any n ∈ IN, and Sn →∞.
In the sequel, we are concerned with regular semi-Markov processes. The following
theorem gives two criteria for regularity.

Theorem 1. A semi-Markov process is regular if one of the following conditions is
satisfied:

(1) ([41]) for every sequence (j0, j1, ...) ∈ E∞ and every C > 0, at least one of the
series ∑

k≥0

[1− Fjkjk+1
(C)],

∑

k≥0

∫ C

0

tFjkjk+1
(dt),

diverges;
(2) ([46]) there exist constants, say α > 0 and β > 0, such that Hi(α) < 1− β, for

all i ∈ E.
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Let us now discuss the nature of different states of an MRP. An MRP is irreducible,
if, and only if, its EMC (Jn) is irreducible. A state i is recurrent (transient) in the MRP,
if, and only if, it is recurrent (transient) in the EMC. For an irreducible finite MRP,
a state i is positive recurrent in the MRP, if, and only if, it is recurrent in the EMC
and if for all j ∈ E, mj < ∞. If the EMC of an MRP is irreducible and recurrent,
then all the states are positive-recurrent, if, and only if, m := νm :=

∑
i νimi < ∞,

and null-recurrent, if, and only if, m = ∞ (where ν is the stationary probability of
EMC (Jn)). A state i is said to be periodic with period a > 0 if Gii(·) (the distribution
function of the random variable Si2 − Si1) is discrete concentrated on {ka : k ∈ IN}.
Such a distribution is said to be also periodic. In the opposite case it is called aperiodic.
Note that the term period has a completely different meaning from the corresponding
one of the classic Markov chain theory.

2 MARKOV RENEWAL THEORY

As the renewal equation in the case of the renewal process theory on the half-real line,
the Markov renewal equation is a basic tool in the theory of semi-Markov processes.

Let us write the Markov renewal function (5) in matrix form

ψ(t) = (I(t)−Q(t))(−1) =
∞∑

n=0

Q(n)(t). (6)

This can also be written as

ψ(t) = I(t) +Q ∗ ψ(t), (7)

where I(t) = I (the identity matrix), if t ≥ 0 and I(t) = 0, if t < 0.
Equation (7) is a special case of what is called a Markov Renewal Equation (MRE).

A general MRE is as follows

Θ(t) = L(t) +Q ∗Θ(t), (8)

where Θ(t) = (Θij(t))i,j∈E , L(t) = (Lij(t))i,j∈E are matrix-valued measurable func-
tions, with Θij(t) = Lij(t) = 0 for t < 0. The function L(t) is a given matrix-valued
function and Θ(t) is an unknown matrix-valued function. We may also consider a vec-
tor version of Equation (8), i.e., consider corresponding columns of the matrices Θ and
L.

Let B be the space of all locally bounded, on IR+, matrix functions Θ(t), i.e.,
‖Θ(t)‖ = supi,j |Θi,j(t)| is bounded on sets [0, ξ], for every ξ ∈ IR+. Also, denote by

H i(t) := 1−Hi(t).

Theorem 2. (Markov Renewal Theorem [47]) Let the following conditions be fulfilled:
(1) The EMC (Jn) is ergodic, i.e., irreducible and positive recurrent, with stationary

probability ν = (νi, i ∈ E).
(2) The mean sojourn time in every state is finite, i.e., for every i ∈ E,

mi :=

∫ ∞

0

Hi(t)dt <∞, and m :=
∑

i∈E
νimi > 0.
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(3) The distribution functions Hi(t), i ∈ E, are non periodic.
(4) The functions Lij(t), t ≥ 0, are direct Riemann integrable, i.e., they satisfy the

following two conditions, for any i, j ∈ E:

∑

n≥0

sup
n≤t≤n+1

|Lij(t)| <∞,

and
lim
∆↓0

{
∆
∑

n≥0

[
sup

n∆≤t≤(n+1)∆

Lij(t)− inf
n∆≤t≤(n+1)∆

Lij(t)
]}

= 0.

Then Equation (8) has a unique solution Θ = ψ ∗ L(t) belonging to B, and

lim
t→∞

Θij(t) =
1

m

∑

`∈E
ν`

∫ ∞

0

L`j(t)dt. (9)

The following result is an important application of the above theorem.

Proposition 1. The transition function P (t) = (Pij(t)) satisfies the following MRE

P (t) = I(t)−H(t) +Q ∗ P (t),

which, under Conditions (1)-(3) of Theorem 2, has the unique solution

P (t) = ψ ∗ (I(t) −H(t)), (10)

and, for any i, j ∈ E,

lim
t→∞

Pji(t) = νimi/m =: πi. (11)

Here H(t) = diag(Hi(t)) is a diagonal matrix.

It is worth noticing that, in general, the stationary distribution π of the semi-Markov
process Z is not equal to the stationary distribution ν of the embedded Markov chain
(Jn). Nevertheless, we have π = ν when, for example, mi is independent of i ∈ E.

3 STATISTICAL INFERENCE

Statistical inference for semi-Markov processes is provided in several papers. Moore
and Pyke [33] studied empirical estimators for finite semi-Markov kernels; Lagakos,
Sommer and Zelen [28] gave maximum likelihood estimators for nonergodic finite semi-
Markov kernels; Akritas and Roussas [2] gave parametric local asymptotic normality
results for semi-Markov processes; Gill [15] studied Kaplan-Meier type estimators by
point process theory; Greenwood and Wefelmeyer [17] studied efficiency of empirical
estimators for linear functionals in the case of a general state space; Ouhbi and Limnios
[36] studied nonparametric estimators of semi-Markov kernels, non-linear functionals
of semi-Markov kernels, including Markov renewal matrices and reliability functions
[37], and rate of occurrence of failure functions [38]. Also see the book [1]. We will give
here some elements of the nonparametric estimation of semi-Markov kernels.
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Let us consider an observation of an irreducible semi-Markov process Z, with finite
state space E, up to a fixed time T , i.e., (Zs, 0 ≤ s ≤ T ) ≡ (J0, J1, ..., JN(T );X1, ...
..., XN(T )−1, T − SN(T )), if N(T ) > 0 and (Zs, 0 ≤ s ≤ T ) ≡ (J0) if N(T ) = 0.

The empirical estimator Q̂ij(t, T ) of Qij(t) is defined by

Q̂ij(t, T ) =
1

Ni(T )

N(T )∑

k=1

1{Jk−1=i,Jk=j,Xk≤t}. (12)

Then we have the following result from Moore and Pyke [33], see also [36]. We

donote by
a.s.−→ and

d−→ the almost sure convergence and convergence in distribution
respectively. Denote by N(a, b) the normal random variable with mean a and variance
b.

Theorem 3. For any fixed i, j ∈ E, as T →∞, we have:

(a) (Strong consistency) maxi,j supt∈(0,T )

∣∣∣Q̂ij(t, T )−Qij(t)
∣∣∣ a.s.−→ 0,

(b) (Asymptotic normality) T 1/2
(
Q̂ij(t, T )−Qij(t)

)
d−→ N(0, σ2

ij(t)),

where σ2
ij(t) := µiiQij(t)[1−Qij(t)].

We define estimators of the Markov renewal function and of transition probabilities
by plug in procedure, i.e., replacing semi-Markov kernel Qij(t) in Equations (6) and

(10) by the empirical estimator kernel Q̂ij(t, T ).
The following two results concerning the Markov renewal function estimator,

ψ̂ij(t, T ), and the transition probability function estimator, P̂ij(t, T ), of Z were proved
by Ouhbi and Limnios [36].

Theorem 4. ([36]). The estimator ψ̂ij(t, T ) of the Markov renewal function ψij(t) sat-
isfies the following two properties:

(a) (Strong consistency) it is uniformly strongly consistent, i.e., as T →∞,

max
i,j

sup
t∈(0,T )

∣∣∣ψ̂ij(t, T )− ψij(t)
∣∣∣ a.s.→ 0.

(b) (Asymptotic normality) For any fixed t > 0, it converges in distribution, as
T →∞, to a normal random variable, i.e.,

T 1/2(ψ̂ij(t, T )− ψij(t)) d→ N(0, σ2
ij(t)),

where σ2
ij(t) =

∑
r∈E

∑
k∈E µrr{(ψir ∗ ψkj)2 ∗Qrk − (ψir ∗ ψkj ∗Qrk)2}(t).

Theorem 5. ([36]). The estimator P̂ij(t, T ) of the transition function Pij(t), satisfies
the following two properties:

(a) (Strong consistency) for any fixed L > 0, we have, as T →∞

max
i,j

sup
t∈[0,L]

∣∣∣P̂ij(t, T )− Pij(t)
∣∣∣ a.s.→ 0;

(b) (Asymptotic normality) For any fixed t > 0, we have, as T →∞,

T 1/2(P̂ij(t, T )− Pij(t)) d→ N(0, σ2
ij(t)),
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where

σ2
ij(t) =

∑

r∈E

∑

k∈E
µrr[(1−Hi) ∗Birkj − ψij1{r=j}]2 ∗Qrk(t)

−{[(1−Hi) ∗Birkj − ψij1{r=j}] ∗Qrk(t)}2,

and

Birkj(t) =

∞∑

n=1

n∑

`=1

Q
(`−1)
ir ∗Q(n−`)

kj (t).

4 RELIABILITY OF SEMI-MARKOV SYSTEMS

For a stochastic system with state space E described by a semi-Markov process (Zt),
let us consider a partition U , D of E, i.e., E = U ∪D, with U ∩D = Ø, U 6= Ø, and
D 6= Ø. The set U contains the up states and D contains the down states of the system.
The reliability is defined by R(t) := IP(Zs ∈ U, ∀s ∈ [0, t]). If we define the conditional
reliability by Ri(t) := IP(Zs ∈ U, ∀s ∈ [0, t] | Z0 = i), then for any initial distribution
law vector α, we have R(t) :=

∑
i∈U αiRi(t). For the finite state space case, without

loss of generality, let us enumerate first the up states and next the down states, i.e.,
for E = {1, 2, ..., d}, we have U = {1, ..., r} and D = {r + 1, ..., d}.

The conditional reliability Ri(t) fulfills the following MRE

Ri(t) = δijH i(t) +
∑

j∈U

∫ t

0

Qij(ds)Rj(t− s), (13)

which has the following solution

Ri(t) =
∑

j∈U
(ψij ∗ δijH i)(t), (14)

where δij = 1, if i = j and = 0 otherwise.
Integrating (13) over [0,∞), we get

(MTTF1, ...,MTTFr)
′ = (I − P11)−1(m1, ...,mr)

′, (15)

where MTTFj is the mean time to failure starting from the state j ∈ E, and C ′ denotes
the transpose of the vector or the matrix C.

The above reliability indicators and some additional ones are formulated in matrix
form and are given in the following table.
Notation. In Table 1, we have H1(t) = (H i(t); i ∈ U)′, H2(t) = (H i(t); i ∈ D)′,
H10(t) = (H10(t); i ∈ U ; 0, ..., 0)′, m1 = (mi; i ∈ U)′, m2 = (mi; i ∈ D)′, 1r = (1, ..., 1)′

r-ones. All of the above vectors are column vectors. Furthermore, index 1 means re-
striction of the corresponding vector or matrix on U and index 2 means restriction of
the corresponding vector or matrix on D, i.e., Q11(t), means restriction of the matrix
Q(t) on U × U and α1 restriction of the row vector α on U . By A(−1)(t) we mean the
inverse of the matrix A in the convolution sense (see [29]). For example, if

A(t) =

(
a(t) b(t)
c(t) d(t)

)
, then A(−1)(t) = (a ∗ d(t) − b ∗ c(t))(−1) ∗

(
d(t) −b(t)
−c(t) a(t)

)
.
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Table 1. Closed form solution for reliability and related measurements

Reliability R(t) = α1(I−Q11)(−1) ∗H1(t)

Availability A(t) = α(I −Q)(−1) ∗H10(t)

Maintainability M(t) = 1− α2(I−Q22)(−1) ∗H2(t)

Mean Time To Failure MTTF = α1(I−P11)−1m1

Mean Time To Repair MTTR = α2(I−P22)−1m2

Mean Up Time MUT = ν1m1
ν2P211r

Mean Down Time MDT = ν2m2
ν1P121d−r

Reliability estimation. From estimator (12), the following plug in estimator of reliability
is proposed

R̂(t, T ) = α̂1(I− Q̂11)(−1) ∗ Ĥ1(t, T ).

The following properties are fulfilled by the above reliability estimator.

Theorem 6. ([37]). For any fixed t > 0 and for any L ∈ (0,∞), we have
(a) (Strong consistency)

sup
0≤t≤L

| R̂(t, T )−R(t) |a.s.→ 0, as T →∞,

(b) (Asymptotic normality)

T 1/2(R̂(t, T )− R(t))
d−→ N(0, σ2

R(t)), as T →∞,

where

σ2
R(t) =

∑

i∈U

∑

j∈E
µii{(Bij1{j∈U} −

∑

r∈U
α(r)ψri)

2 ∗Qij(t)

−[(Bij1{j∈U} −
∑

r∈U
α(r)ψri) ∗Qij(t)]2}

and
Bij(t) =

∑

n∈E

∑

k∈U
α(i)ψni ∗ ψjk ∗ (I −Hk(t))).

For further results on estimation, see [36, 37, 38, 30, 31].

5 SEMI-MARKOV CHAINS AND HIDDEN MODELS

In this section, we present semi-Markov chains (SMC), which are semi-Markov processes
in discrete-time, and hidden semi-Markov models (HSMM).

Let us consider the Markov renewal process (Jn, Sn)n∈IN in discrete time k ∈ IN,
with state space the countable set E. The semi-Markov kernel q is defined by

qij(k) := IP(Jn+1 = j, Sn+1 − Sn = k | Jn = i), i, j ∈ E, k, n ∈ IN. (16)
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Define also qij(K) =
∑

k∈K qij(k), where K ⊂ IN. So, as in the continuous time case,
a SMC is determined by its semi-Markov kernel q and its initial distribution law α.

The process (Jn) is the embedded Markov chain of the MRP (Jn, Sn) with transition
kernel P = (P (i, j)). The semi-Markov kernel q is written as

qij(k) = P (i, j)fij(k),

where fij(k) := IP(Sn+1−Sn = k | Jn = i, Jn+1 = j), is the conditional distribution of
the sojourn time in the state i given that the next visited state is j, (j 6= i).

Define the counting process of jumps N(k) := max{n ≥ 0 : Sn ≤ k}. The semi-
Markov chain is defined as follows

Zk = JN(k), k ∈ IN. (17)

When qij(k) = pij(pii)
k−1, k = 1, 2, ..., for all i, j ∈ E, i 6= j, then the SMC Z is

a Markov chain with transition matrix p = (pij). In this case, the transition matrix of
the EMC is P (i, j) = pij/(1 − pii), if pii < 1 and i 6= j, and P (i, j) = 0, if i = j or
pii = 1, and the conditional transition function is fij(k) = (1− pii)(pii)k−1.

The Markov renewal function ψ is defined by

ψij(k) :=

k∑

n=0

q
(n)
ij (k). (18)

The general Markov renewal equation in the discrete case is as follows

Θ(k) = L(k) + q ∗Θ(k),

where Θ(k), k ∈ IN, is an unknown sequence of real matrices (of finite or of infinite
dimension), L(k), k ∈ IN, is a known sequence of real matrices, and q(k), k ∈ IN, a semi-

Markov kernel. The convolution in discrete time is (q∗Θ)ij(k) =
∑

`∈E
∑k

s=0 qi`(s)Θ`j(k−
s). The general solution of the above MRE is given by

Θ(k) = ψ ∗ L(k).

For example, the transition probabilities of the SMC Z, Pij(k) satisfy the following
MRE in matrix form,

P (k) = I −H(k) + q ∗ P (k),

where its unique solution is

P (k) = ψ ∗ (I −H)(k).

The reliability indicators are given by the same formulae as in the continuous-time
case, in Table 1, only replacing Q by q and the step function I = I(t), by the Dirac
matrix measure Iδ at the origin (see [6]). Estimation results for discrete-time semi-
Markov chains can be found in [6].

A hidden semi-Markov model (HSMM) is defined by a bivariate process (Zk, Yk),
where Zk is an E-valued semi-Markov chain (unobserved) and Yk is an A-valued process
(observed) depending on Zk. We suppose here that E and A are countable sets. This
dependence structure in the HSMM is given by the following relation
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IP(Zk+1 = j, Yk+1 = l | Zs, Ys; s ∈ {0, 1, ..., k}) = IP(Zk+1 = j | Zk, Uk)

×IP(Yk+1 = l | Zk+1 = j),

where Uk = k − SN(k). This is a SM-M0 type HSMM. A more general type is the
SM-Mm HSMM, which satisfies the following relation

IP(Zk+1 = j, Yk+1 = l | Zs, Ys; s ∈ {0, 1, ..., k}) = IP(Zk+1 = j | Zk, Uk)

×IP(Yk+1 = l | Zk+1 = j, Yk, ..., Yk−m+1).

The main goal here is to estimate the semi-Markov kernel and, of course, the con-
ditional distributions of Y , by observing only Y over [0,M ], i.e., (Y M

0 = yM0 ) ≡ (Y0 =
y0, Y1 = y1, ..., YM = yM ), where (y0, y1, ..., yM ) ∈ AM+1. The quantities to be esti-
mated here are θ = (q, Γ ), where q is the semi-Markov kernel, and Γ the conditional
distribution of Y , i.e., Γ (i, l) = IP(Yk = l | Zk = i) for any k ∈ IN, i ∈ E, l ∈ A.

The likelihood function for the complete data set is

LM (θ;ZM0 , YM0 ) = α(Z0)

N(M)∏

n=1

q(Jn−1, Jn, Xn)H(JN(M), UM )
M∏

k=0

Γ (Zk, Yk).

Here, for convenience, we used the notation q(i, j, k) instead of qij(k) for all functions.
The maximum likelihood estimators can be obtained by an algorithm for incomplete

data such as EM or stochastic EM. In fact, instead of maximizing the likelihood of
the observed data, i.e., L0

M (θ;Y M0 ) =
∑

ZM0 ∈EM+1 LM (θ;ZM0 , YM0 ), one maximizes the

conditional expectation over θ,

IEθ(m)

[
logLM (θ;ZM0 , Y M0 ) | Y M0

]

in order to obtain θ(m+1), and so on. Under appropriate general conditions the sequence
θ(m),m ≥ 0, converges to the true value of the parameter θ.

For a given system whose the temporary behavior is described by a SMC, say Z,
and the values of some indicators, i.e., noise, temperature, pressure, etc., are observed,
say Y , we would like to estimate the state of the system in a given present time or into
the future by observing Y only. This is a typical hidden semi-Markov problem.

6 CONCLUDING REMARKS

Several topics concerning SMP have been omitted. For example, results on time-
nonhomogeneous SMP can be found in [22, 23, 24]; SM decision processes [40, 46];
calculation and numerical aspects [7, 23, 29]; limit theorems and convergence of SMP
in series scheme [5, 18, 19, 25, 26, 27, 32, 34]; stochastic approximations [26, 27];
(stochastic) additive functionals [29, 26, 27]; diffusion type SMP [20]; entropy of SMP
[16], etc., and also some important applications, as reliability and maintenance theory
[6, 12, 21, 29, 37, 38, 35, 39]; queuing theory [3, 4]; insurance and finance [23, 45, 27];
words occurrences [8]; estimation in discrete time [6, 48]; phase-type distributions
[4, 29, 39], etc. Several chapters in [22, 23] concern the above aspects. For a detailed
presentation of semi-Markov chains and hidden semi-Markov models see [6].
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