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Characterizing the membrane properties of capsules flowing in a square-section microfluidic
channel: Effects of the membrane constitutive law

X.-Q. Hu, B. Sévénié, A.-V. Salsac,* E. Leclerc, and D. Barthès-Biesel
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A microfluidic method is presented to measure the elastic membrane properties of a population of microcapsules
with diameter of order 60 µm. The technique consists of flowing a suspension of capsules enclosed by
a polymerized ovalbumin membrane through a square-section microfluidic channel with cross dimension
comparable with the capsule mean diameter. The deformed profile and the velocity of a given capsule are
recorded. A full mechanical model of the motion and deformation of an initially spherical capsule flowing inside
a square-section channel is designed for different flow strengths, confinement ratios, and membrane constitutive
laws. The experimental deformed profiles are analyzed with the numerical model. This allows us to find the ratio
between the viscous and elastic forces and thus the shear elastic modulus of the membrane. We show that the
ovalbumin membrane tends to have a strain-softening behavior under the conditions studied here.
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I. INTRODUCTION

Capsules, which are liquid droplets enclosed by a thin
elastic membrane, are widely found in nature (red blood cells,
eggs) and in cosmetic, food, or pharmaceutical industry [1].
The deformable membrane that separates the internal and
external liquids prevents the diffusion and degradation of the
internal substance and controls its release. The motion and
deformation of flowing capsules depend on the mechanical
properties of the membrane. The characterization of these
properties is thus essential for the design of artificial capsules,
but it is a challenging task when the capsules have a small
size of order a few tens of micrometers. Artificial capsules are
usually obtained through interfacial polymerization of a liquid
droplet and are thus spherical. In the following, we consider
only initially spherical artificial capsules with radius a.

A method that is widely used for relatively large millimeter-
size capsules is to compress them between two rigid parallel
plates and measure simultaneously the plate separation and
compression force. Using an appropriate mechanical model of
the setup, the membrane constitutive law can be deduced [2].
Subjecting capsules to simple shear flow [3] or to centrifugal
flow fields [4] are two other possible ways to measure the
membrane properties. However, it is difficult to reach large
mechanical stresses in such devices.

For micrometer-size capsules, poking the membrane with
an atomic force microscope [5] or sucking part of it in
a micropipette [6,7] are classical techniques to measure
the membrane mechanical properties. Both require skillful
micromanipulations and are not suitable for screening large
populations of microcapsules quickly. Recently a new method
has been proposed to measure the membrane properties
of a capsule population. It consists of flowing a capsule
suspension into a cylindrical glass capillary tube with radius
comparable to that of the capsules [8,9]. Hydrodynamic forces
and boundary confinement lead to a large deformation of the
capsules, which can take either a parachute or a slug shape.
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The membrane mechanical properties are then determined by
analyzing the experimental results with a numerical model
of the setup. This method, applied to 62 µm mean diameter
capsules with a cross-linked ovalbumin membrane, allows
one to correlate the membrane mechanical properties to the
cross-linking degree and to the physicochemical conditions of
the capsule fabrication [9]. It is, however, not easy to connect
the syringe pump to the 50 µm diameter capillary tube, where
the measurement is performed. A double tube was designed,
but it leads to fairly large pressure drops.

The rapidly growing microfluidic technologies allow one
to design simpler devices, in which the capillary tubes are
easily connected to the feeding system. Owing to fabrication
constraints, the tubes usually have a square or rectangular
cross section. We thus investigate the feasibility of using a
microfluidic channel with a square cross section to measure the
membrane properties of a population of capsules suspended
in a viscous fluid. The channel has a side length 2! of the
same order of magnitude as the capsule mean diameter 2a. We
will see that the initially spherical capsule can be subjected
to significant deformations depending on the flow velocity
and size ratio a/! between the capsule and the channel. This
means that it will be possible to discriminate which type of
constitutive law the membrane follows.

The analysis of the experiments requires a specific numeri-
cal model of the flow of a capsule in a square pore. Kuriakose
and Dimitrakopoulos [10] recently designed such a model,
based on the use of spectral elements, for capsules composed
of a strain-hardening membrane described by a Skalak et al.
law [11]. However, the capsules had to be pre-inflated and
thus prestressed in order to prevent buckling instabilities.
If the prestress has a negligible influence when the capsule
is highly deformed, it changes the results significantly at
small and moderate deformation [12]. We use instead the
three-dimensional fluid-structure interaction scheme initially
proposed for capsules freely suspended in unbounded flows
[13] and recently adapted for capsules flowing in circular
and square-section channels [14]. This numerical technique
consists of coupling the boundary integral method for the
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fluid flows with a finite element method for the membrane
deformation. The advantages of this model are twofold: the
capsules do not need to be prestressed, and large confinement
ratios can be considered. In Hu et al. [14], we have studied
in detail the case of capsules with a strain-softening neo-
Hookean membrane. We now extend the results to the case
of capsules with a strain-hardening law in order to analyze the
experimental results with either law.

We first present the experimental method used to measure
the deformation of artificial capsules flowing in a square-
section capillary tube. We then explain briefly the mechanical
model that represents the experiments, and we give global
results on the capsule deformation and kinematics as functions
of the suspending flow strength and confinement. Finally we
show how the method can be used to estimate the shear elastic
modulus of the membrane of a capsule population and discuss
the limits of the method.

II. MATERIALS AND METHODS

A. Capsule fabrication

Microcapsules are prepared using an interfacial cross-
linking method [15]. Briefly, a 10% (w/v) ovalbumin (Sigma)
solution is prepared using a phosphate buffer with pH = 5.
The solution is emulsified in cyclohexane (SDF) containing
2% (w/v) sorbitan trioleate (Sigma) at a stirring speed of
1550 rpm. A 2.5% (w/v) solution of terephthaloyl chloride
(Acros) in chloroform:cyclohexane (1:4 v/v) is then added
to the emulsion, and the cross-linking reaction is allowed
to develop for 5 min. The reaction is stopped by diluting
the reaction medium with cyclohexane. The microcapsules
are separated from the organic phase by centrifugation and
washed successively with cyclohexane, with water containing
2% (w/v) polysorbate (Sigma) and finally washed three times
with pure water in which the samples are kept. The resulting
capsules have a mean diameter of 62 ± 14 µm.

B. Microfluidic system fabrication

Straight 5-mm-long square-section channels are fabricated
by molding liquid polydimethylsiloxane onto a silicon master
and baking and peeling it off [16,17]. The channels are then
closed bonding them onto a glass lamella by air plasma
(Plasma cleaner, Harrick). The width of the channel is
estimated to be W = 57.5 ± 1.5 µm using a line graduated
rule to estimate the pixel to µm conversion factor. The depth of
the channel, measured on the silicon mold, is h = 52 ± 1 µm.
As the channel cross section is not perfectly square, we define
the length 2! as the side of the ideal square cross section
channel having the same cross-area:

! =
√

Wh

2
= 27.4 ± 0.5 µm. (1)

C. Capsule suspension preparation

A volume of 40 µl of ovalbumin microcapsule sediment is
suspended in 1.8 ml of glycerin (100%, VWR BDH Prolabo),
which leads to a 2.2% (w/v) capsule suspension. After mixing
by successive pumping in and out of a syringe, the suspension

is left to rest for 10 min at a room temperature of 23 ◦C to
allow the inner water to be replaced by the outer glycerin
by osmotic exchange. This process does not seem to damage
the capsules, which recover a spherical shape within minutes.
As a consequence, we consider that there is no osmotic
difference between the internal and external liquids and that
the membrane is thus not prestressed. The viscosity µ of the
suspending fluid strongly depends on temperature and water
content [18]. Former measurements of the suspension [9]
provided a viscosity of µ = 0.7 Pa s at 23 ◦C. We assume this
value to be the viscosity of the fluid carrier and thus neglect
the influence of the small amount of capsules present in the
suspension.

D. Experimental setup

We fill a 1 ml glass syringe (Fortuna Optima) with the
suspension and take care that no air bubble remains in either the
syringe or the silicon connection tube to minimize throughput
variations. The suspension is injected into the microfluidic
system by means of a syringe pump (KDS100, KD Scientific)
at different flow rates. The deformation and velocity of a
capsule is observed with a ×40 magnification transmission
microscope (Leica DM IL LED), which is connected to a
high-resolution high-speed camera (FASTCAM SA3 Photron)
through a ×1 C-mount (Leica). The microscope is focused on
the channel center plane. The capsule profile is observed along
the channel axis and width W . The images are recorded at 1000
frames per second, with an exposure time of 0.2 ms and an
observation field 1024 × 256 pixels. The calibration scale is
0.425 µm/pixel. The observation field is far enough from the
entrance (about 3 mm, i.e., 100!) to consider that the capsule
has reached a steady state. From two successive images, we
measure the capsule velocity vo, which varies between 1 and
10 mm/s, depending on the size of the capsule and the flow
rate.

E. Capsule profile extraction and experimental measurements

Figure 1(a) shows an experimental image of a capsule
flowing in a 2! square channel. Because automatic image
extraction is difficult with this low contrast level, we use
ImageJ to detect manually the capsule contour. The channel
and membrane contours are determined at the center of the
dark line. We then calculate the surface S of the profile, its total
length L, and its axial length La as shown in Fig. 1(b). The
parachute depth is given by Lp = L − La . The experimental
error on the lengths 2!, L, La is of order 1 µm. The wall
corrugations, which appear in Fig. 1(a), are also of order

FIG. 1. Capsule profile extraction from an experimental image:
(a) initial image; (b) contour extracted with ImageJ; (c) approximate
capsule volume based on the contour area and channel depth.
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1 µm. They lead to small oscillations of the capsule profile,
which are of the same order as the measurement error.

The initial capsule radius a cannot be inferred directly from
the experimental images, which are only projections of the
deformed profile. We thus estimate an approximate capsule
volume as the volume of a cylinder with section S and height
2! [Fig. 1(c)]. This allows us to calculate an approximate
capsule radius aapp given by

aapp =
(

3!S
2π

)1/3

. (2)

The relationship between aapp and the exact radius a is given
by the numerical model of the capsule flow problem.

III. MODEL OF THE FLOW OF A CAPSULE IN A PORE

In order to analyze the experiments, a mechanical model of
the set-up is needed. The flow of a capsule in circular [12,19] or
square [10,14] cross-sectional channels has been studied. We
briefly outline the numerical model and provide new results
for the flow of capsules in square-section channels for a wide
range of size ratios and flow strengths, for strain-hardening or
strain-softening capsule membranes. Details on the problem
equations and their solution by means of the coupled boundary
integral and finite element methods can be found in Hu et al.
[14].

A. Problem statement

An initially spherical capsule (radius a) flows along the
z axis of a microfluidic channel with a square cross section
(side 2!) in the perpendicular xy plane. The interior and
exterior of the capsule are incompressible Newtonian fluids
with the same density ρ and viscosity µ. The thin membrane of
the capsule is an impermeable hyperelastic isotropic material
with surface shear modulus Gs and area dilatation modulus
Ks . Apart from the capsule membrane mechanical properties,
the two other main parameters of the problem are the size ratio
a/! between the capsule initial radius and the channel cross
dimension, and the capillary number

Ca = µV/Gs, (3)

which measures the ratio between viscous and elastic forces,
where V is the mean external undisturbed flow velocity along
the z axis of the channel.

We denote v(β), σ (β), and p(β) the velocity, stress, and
pressure fields in the suspending (β = 1) and internal (β = 2)
liquids. The flow Reynolds number is assumed to be very
small, so that the internal and external liquid motions satisfy
the Stokes equations:

∇p(β) = µ∇2v(β), ∇ · v(β) = 0, β = 1,2. (4)

They are solved in a domain bounded by the cross sections
S1 at the tube entrance and S2 at the exit, both located far
from the capsule center of mass (Fig. 2). The other domain
boundaries are the channel wall W and the capsule surface C.
The unit normal vector n to all the boundaries points towards
the suspending liquid. The problem boundary conditions are:

FIG. 2. Prismatic channel with axis Oz. The cross section is
square with side 2!.

(1) No flow disturbance on S1 and S2 as they are far from
the capsule:

v(1)(x,t) → v∞(x), x ∈ S1 ∪ S2, (5)

where v∞ is the flow velocity in a square channel in the absence
of capsule.

(2) Uniform pressure on S1 and S2:

p(1)(x,t) = 0 x ∈ S1, (6)

p(1)(x,t) = %P (t) +%P ∞ x ∈ S2, (7)

where %P ∞ is the undisturbed pressure drop between S1 and
S2 in the absence of capsule and %P is the additional pressure
drop due to the capsule.

(3) No slip on the channel wall W :

v(1)(x,t) = 0, x ∈ W. (8)

(4) No slip on the capsule-deformed surface C:

v(1)(x,t) = v(2)(x,t) = ∂

∂t
x(X,t), x ∈ C, (9)

where X denotes the initial position of a membrane material
point located at position x at time t .

(5) The load per unit area q on the membrane is due to the
viscous traction jump:

(σ (1) − σ (2)) · n = q, x ∈ C. (10)

B. Membrane laws

As the membrane thickness is negligibly small compared
to the capsule dimensions, the membrane can be treated as a
hyperelastic surface devoid of bending stiffness. The in-plane
deformation is then measured by the principal extension ratios
λ1 and λ2. Owing to the combined effects of hydrodynamic
forces, boundary confinement, and membrane deformability,
the capsule can be highly deformed as shown in Fig. 1.
Consequently the choice of the membrane constitutive law
is important. We consider two simple laws with constant
material coefficients. One such law (NH) is the widely used
neo-Hookean law, which models the membrane as an infinitely
thin sheet of a three-dimensional isotropic and incompressible
material. The principal Cauchy in-plane tensions (forces per
unit arc length of deformed surface curves) can be expressed
as [20]

τ1 = Gs

λ1λ2

[
λ2

1 − 1
(λ1λ2)2

]
(likewise for τ2). (11)

The membrane dilatation modulus Ks is then given by Ks =
3Gs .
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Another law was originally proposed by Skalak et al. [11]
to describe the membrane deformations of red blood cells. The
principal tensions are

τ1 = Gs

λ1λ2

[
λ2

1

(
λ2

1 − 1
)
+ C

(
λ2

1λ
2
2

)(
λ2

1λ
2
2 − 1

)]

(likewise for τ2), (12)

where the dimensionless parameter C mainly measures the
resistance to area dilatation. The membrane dilatation modulus
is given by Ks = (1 + 2C)Gs . This law has strain-hardening
properties that increase with C for C ! 0 [20]. When C =
1, the Skalak et al. law (SK) and the NH law lead to the
same small deformation behavior with the same values of
Gs and Ks . Contrary to the SK law, the NH law is strain-
softening under large deformation [20]. We thus study the
effect of the membrane strain-hardening or -softening property
on the capsule deformation by considering the flow of capsules
enclosed by either an NH membrane or an SK membrane.

To close the problem, we must relate the load on the
membrane given by Eq. (10) to the elastic Cauchy tension
tensor τ . In absence of inertia, the membrane equilibrium
leads to

∇s · τ + q = 0. (13)

C. Numerical procedure

The problem is solved coupling a boundary integral method
to solve for the fluid flow and a finite element method to solve
for the membrane mechanics [13,14]. The advantage of the
procedure is that only the boundaries of the flow domain S1,
S2, W , C are discretized.

The capsule mesh is generated by first inscribing an
icosahedron (regular polyhedron with 20 triangular faces) in
the sphere and subdividing the elements sequentially until the
required number of elements is reached [13,14]. The capsule
mesh is composed of 1280 P2 elements and 2562 nodes. The
mesh of the external boundaries (S2 and W ) is generated using
P1 elements with Modulef (INRIA Rocquencourt, France)
[14] and is refined in the central portion of the channel,
where the capsule is located. The boundary mesh has 1905
nodes and 3768 elements. All the results are obtained with a
nondimensional time step %tV /! = 5 × 10−5.

The equations are solved in a reference frame moving
with the capsule center of mass. Thus for each time step,
we compute the velocity vo of the capsule center of mass and
move back the whole capsule by vo%t/!, so that the capsule
remains centered in the tube domain.

The model inputs are the capillary number Ca, the size ratio
a/! and the membrane law. The model outputs are the capsule
centroid velocity υo and the steady deformed capsule shape.
From the latter, it is possible to compute the evolution of the
total length L, of the parachute depth Lp and of the apparent
capsule radius aapp with size ratio a/! and Ca. The model also
yields the elastic tension distribution in the membrane. If a
failure criterion is known for the membrane, it is then possible
to infer whether there is a risk of breakup.

Since the bending modulus of the membrane has been
neglected, the capsule wall buckles locally in the regions
where the elastic tensions are compressive [14]. In order

to study the postbuckling behavior of the capsule, bending
moments and transverse shear forces should be added to
Eq. (13) and a constitutive equation should be postulated to
relate bending moments and local deformations. It follows that
the bending behavior of a capsule is a complicated problem
of shell mechanics that is not completely resolved yet. The
simplified membrane model that we use here is appropriate to
model capsules with a very low bending resistance. It detects
zones where tensions are compressive and where the capsule
wall may buckle. The use of triangular finite elements allows
for some profile oscillations in compression areas without
creating any numerical instability. Such numerical “folds”
have a wavelength that depends on the grid point spacing.
Hence they do not model the physical postbuckling behavior
of the capsule [14].

D. Effect of membrane law on capsule deformation

We consider the flow of capsules with an NH or an SK
membrane in a microfluidic pore for different size ratios a/!
at various flow strengths Ca. It is assumed that the steady-state
configuration is reached, when the area of the capsule varies
by less than 5 × 10−4 (4πa2) over a nondimensional time
V t/! = 1. All the following results pertain to this equilibrium
state. At steady state, the membrane and thus the internal fluid
are motionless. This means that assuming the same value of
viscosity for the internal and external liquids does not limit
the validity of the results; the viscosity ratio influences only
the time the capsule needs to reach a steady state (this time
increases as the internal viscosity increases). Furthermore, as
the pressure inside the capsule is uniform, the curvature at the
capsule upstream tip must be larger than at the rear to account
for the viscous pressure drop in the lubrication film around
the capsule. This explains why parachute or slug shapes are
obtained.

We first show the deformed profiles of a large capsule
(a/! = 1.1) in Fig. 3(a) for increasing flow strengths Ca =
0.01, 0.05, 0.07. The axial profile in the zy plane is what is
observed experimentally. At low flow strength (Ca = 0.01), the
profiles of the NH and SK capsules are almost superimposed,
since the two membrane laws are equivalent at small deforma-
tions. For Ca = 0.05, a parachute shape is found for the NH
capsule, while the SK capsule still has a slug shape. This indi-
cates that the flow strength level Cac, for which the parachute
shape appears, depends on the membrane constitutive law. The
cross-profiles in the xy plane show that the capsule shape is not
axisymmetric as the membrane tends to fill the corners of the
channel.

Figure 3(b) shows the capsule profile at a high flow strength
Ca = 0.1 for various size ratios. The parachute shape appears
for all the capsules. The NH capsule is more deformed than
the SK one, even though the difference is quite small for
small capsules (a/! " 0.9). For a/! = 1.10, we can get a
steady-state solution for the SK membrane only. Indeed, a
strain-softening NH capsule undergoes continuous elongation,
when a maximum flow strength Camax is exceeded. This
phenomenon was already observed in a cylindrical tube where
the situation is axisymmetric [9]. It is due to the fact that a
strain-softening membrane has a deformation, which increases
faster than linearly with the imposed load [1]. The values of
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FIG. 3. Comparison of steady profiles (solid line: SK law, dashed line: NH law): (a) effect of Ca for constant a/! = 1.1; (b) effect of a/!

for constant Ca = 0.1.

Camax for a square-section tube are shown in Fig. 4, where
they are compared with the values obtained for a cylindrical
tube with radius !. We note that Camax is slightly larger for a
square than for a circular pore because, for the same flow rate,
the viscous shear on the capsule is less in a square pore than in
a circular one due to the presence of corners. This continuous
elongation phenomenon does not occur with an SK membrane,
as it is strain-hardening [1].

The overall capsule deformation is quantified by the
maximum length L/! and the parachute depth Lp/!, as shown
in Fig. 5. The parachute forms at the capsule rear, when the
capillary number exceeds the critical value Cac. The value of
Cac is less for an NH capsule than for an SK one. Below Cac,
the capsule elongation is small and there is little influence
of the membrane law. When Ca > Cac, both L/! and Lp/!
increase much faster with Ca for an NH capsule than for an
SK one. This is due again to the strain-softening property of
the NH membrane, which allows larger deformation for the
same stress level than a strain-hardening SK membrane. The
overall effect of the size ratio is to increase the deformation
for a given flow strength. Finally, we note that the capsule
velocity decreases, when the confinement increases or when
the deformation decreases.

FIG. 4. Maximum values of Ca, for which a steady profile is
obtained for a capsule enclosed by an NH membrane. The comparison
between a square or circular pore with radius ! shows the effect of
the corners.

E. Size, deformation, and velocity charts for a capsule with NH
or SK law

The results of the numerical model are gathered in charts,
where the main output parameters, i.e., total length L/!,
parachute depth Lp/!, approximate radius aapp/!, and centroid
velocity υo/V , are plotted as functions of Ca and a/! for
capsules with an NH membrane (Fig. 6) or with an SK
membrane with C = 1 (Fig. 7). For the NH capsules, the range
of Ca is limited by the continuous elongation phenomenon.
For the SK capsules, the range of Ca is a priori unlimited.
However, we give results for Ca up to 0.5, because the variation
of the different geometrical quantities is almost linear with Ca
when Ca ! 0.2, while the velocity is almost constant. For very
large capsules (a/! ! 1.2) and high flow strength (Ca ! 0.5)
the deformation at the rear and the concomitant curvature of the
tip become too large to be modeled correctly by a membrane
law where bending rigidity is neglected. This is why we do not
give results for Ca > 0.3 when a/! = 1.2.

Note that aapp/! does not vary much with Ca, except for
very low values of Ca. This point will be important for the
determination of the actual size ratio of a capsule from the
measurement of aapp/!. The relative difference between aapp
and a is of order 17% for small capsules and decreases to less
than 10% for the largest capsules. Finally, we have refrained
from giving results for small capsules with a/! < 0.85 because
they require high values of Ca to be significantly deformed.
Experimentally, such high values of Ca imply high values of
the flow velocity V , for which it is difficult to obtain capsules
images with good enough contrast and sharpness.

F. Inverse analysis of the experimental results

We have developed a new MatLab program, inspired from
the algorithm of Chu et al. [9], to automatically perform the
inverse analysis of capsule profiles in square channels. The
numerical data shown in Figs. 6 and 7 are linearly interpolated
on a regular grid. A membrane law is first assumed and the
algorithm then determines the size ratio a/! and the capillary
number Ca, for which the experimental and numerical values
of L/! and Lp/! fit best.

Tolerances have been defined to account for the uncer-
tainty on experimental measurements. Depending on the flow
conditions, the membrane can appear more or less fuzzy.
Considering an error of 2% on ! and L, we assume a tolerance
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FIG. 5. Effect of Ca, a/! and membrane law on the capsule total length L/!, parachute depth Lp/!, and center of mass velocity υo/V .

of 4% on L/!. The parachute depth is more difficult to measure
with precision. For Lp/! < 0.05 we consider that there is no
parachute and that we are close to the critical value Cac.
For 0.05 < Lp/! < 0.1, we take a tolerance of 50%. For
0.1 < Lp/! < 0.2, we take a tolerance of 25% and for higher
values the tolerance is 15%.

The size ratio is first calculated from aapp/!, Ca and the
corresponding database. For the first iteration, Ca is initialized
with the mean value of the total range (which depends
on the membrane constitutive law). The size ratio is then
used to calculate two ranges of possible capillary numbers

from the experimental values of L/! and Lp/! with their
tolerances. If these two ranges intersect, we calculate and use
the intersection mean value to process the next iteration of
the algorithm until the mean value of Ca remains constant
within 10−3 over two successive iterations. For each value of
Ca in the intersection interval, we calculate the mean fluid
velocity V from the capsule velocity vo and the velocity ratio
vo/V of the database. Finally, we calculate the shear moduli
that correspond to each Ca in the intersection interval by
means of Eq. (3). This procedure is executed for 5 values
of aapp/! (aapp/!, aapp/!± 1%, and aapp/!± 2%) to take

FIG. 6. Plots of the capsule total length L/!, parachute depth Lp/!, approximate radius aapp/!, and velocity of mass center υo/V obtained
with the NH law.
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FIG. 7. Plots of the capsule total length L/!, parachute depth Lp/!, approximate radius aapp/!, and velocity of mass center υo/V obtained
with the SK law (C = 1).

into account a relative uncertainty of about 2%. Then, we
calculate the mean value of the shear modulus and the standard
deviation.

IV. RESULTS AND DISCUSSION

A. Capsule deformation in a square-section channel

Typical profiles of capsules mildly to highly deformed in a
square-section channel are shown in Fig. 8. Capsules (a) and
(c) have almost the same apparent size, which corresponds
to an actual size ratio of order a/! = 0.9 (Fig. 6 or 7).
However capsule (c) has a higher velocity than capsule (a).
As a consequence capsule (c) is more deformed than capsule
(a) and has a deeper parachute. The same phenomenon is
observed for capsules (e) and (g), which have the same
apparent size corresponding to an actual size ratio of order
a/! = 1.05 ∼ 1.1. Being the fastest one, capsule (g) is the
most deformed with the deepest parachute.

B. Determination of membrane properties

As an example, we first apply the inverse analysis algorithm
with either the NH or the SK law, to a typical capsule which
is smaller than the pore [profile (d) of Fig. 8]. We find

a/! = 0.9 in both cases, Ca = 0.08 for the NH law capsule
and Ca = 0.17 for the SK law one. We then compute exactly
the equilibrium-deformed profiles corresponding to these two
cases and compare them with the experimental profiles in
Fig. 9(a). We note that the deformed profile of a small capsule
can be well fitted with either the NH or the SK law. However,
the capillary number for the SK capsule is about twice that
for the NH capsule, due to the strain-hardening property of
the SK membrane, which requires higher loads to reach the
same deformation as the NH one. The process is repeated for
a capsule that is larger than the pore [profile (f) of Fig. 8].
We find two slightly different values of the initial radius
a/! = 1.1 for the NH law and a/! = 1.09 for the SK law. The
values of Ca are both small and of the same order, as should
be expected, since for small deformation the two laws are
equivalent. Computing the deformed profiles corresponding
to the couples of values of a/! and Ca with either the NH or
the SK law, we can again fit them well to the experimental
ones as shown in Fig. 9(b).

We then proceed to analyze a population of 18 capsules
of different initial sizes, flowing through the square-section
capillary tube at different flow rates. We use the inverse
analysis algorithm to deduce, for each capsule, the mean value
of the shear elastic modulus of the membrane Gs . We define
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FIG. 8. Experimental images and corresponding extracted deformed profiles. The top row images are the original experimental images,
while the bottom row figures are the corresponding extracted profiles. (a–b) aapp/! = 1.08,vo = 3.0 mm/s; (c–d) aapp/! = 1.05,vo = 7.3
mm/s; (e–f) aapp/! = 1.2,vo = 1.4 mm/s; (g–h) aapp/! = 1.16,vo = 3.4 mm/s.

the mean capsule elongation *

* = P/2πa (14)

where P is the perimeter of the deformed capsule profile.
It is then convenient to plot the values of Gs in terms of
* rather than the size ratio. As shown in Fig. 10, when we
assume a NH law for the membrane, we find a constant value
of the shear modulus Gs = 0.036 ± 0.006 N/m for a mean
elongation ranging from 1 to 1.25 (which corresponds to a
fairly large deformation!).

If we assume an SK law for the membrane, the value
of Gs for small deformation (* " 1.03) is of the same
order as the one obtained for the NH law. However, as the
profile deformation increases, the corresponding values of
Gs decrease by a factor three. This is a consequence of the
strain-hardening property of the SK law. The fact that we
cannot find a constant value for the shear modulus of the SK
law for all deformation levels indicates that the membrane
of ovalbumin capsules is not strain-hardening, but rather
strain-softening as modeled by the NH law.

FIG. 9. Superposition of experimental and numerical capsule pro-
files in square-section microfluidic channel. The numerical profiles
are obtained with the NH law or with the SK (C = 1.0) law. (a) NH law
(Ca = 0.08, a/! = 0.90) and SK law (Ca = 0.17, a/! = 0.90); (b) NH
law (Ca = 0.03, a/! = 1.10), and SK law (Ca = 0.05, a/! = 1.09).

V. DISCUSSION

The objective of this work was to determine plausible elastic
properties for the membrane of capsules. We have chosen
two simple constitutive laws with the same small deformation
behavior, but with either strain-softening or strain-hardening
properties under large strain. The use of the neo-Hookean law
as the strain-softening one means that we have arbitrarily fixed
the area dilation to shear modulus ratio to Ks/Gs = 3. For the
strain-hardening law, we could have used values of C smaller
than unity, which would have lowered the strain-hardening
feature of the law (without eliminating it) and might have led
to values of Gs less dependent on the deformation. However,
using C < 1 would have made the comparison with NH law
less meaningful as the small deformation parameters would
have been different.

We note that there is some dispersion of the results in Fig 10.
The dispersion is larger for the NH law than for the SK one.
This is due to the fact that, when we use the NH law, the

FIG. 10. Membrane shear modulus Gs as a function of capsule
mean deformation *. Dashed line: average value of Gs determined
with the NH law.
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capillary number is small and the geometrical parameters L
and Lp vary nonlinearly with Ca. When we use the SK law,
the values of Ca are larger and the variation of L and Lp with
Ca is almost linear.

Another question is linked to the fact that the channel
we used is not perfectly square (as is usually the case with
PDMS channels). Of course, we could have run the model
with the exact dimensions of the channel, but we decided
instead to provide general charts for the flow in square
channels and use them to analyze our results. As a check, we
compare the surface shear modulus value presently determined
(Gs = 0.036 ± 0.006 N/m) with the one obtained by Chu
et al. [9] (Gs = 0.042 ± 0.016 N/m). The ovalbumin capsules
were prepared under the same conditions but they were flowed
in a 50 µm glass capillary tube. The two mean values of Gs

fall in the same range within experimental errors.
The reason why the ovalbumin membrane seems to be

strain-softening is probably due to the conformation of the
albumin molecule at the interface. For a small reticula-
tion time of 5 min, the density of covalent links between
the protein molecules is low and the protein chains are
loosely linked. This may explain why the membrane is
easily deformable, as described by an NH law. It has not
been possible to obtain deformations larger than 25%, so
that we do not know for what deformation the membrane
breaks.

VI. CONCLUSION

We show here that it is possible to infer plausible me-
chanical properties of an artificial capsule membrane from
experiments, where the capsule has to deform to flow inside
a small square-section pore with cross dimensions of the
same order as those of the capsule. The method is based on
the coupling of experimental observations with a rigorous

mechanical model of the system. It also implies a strong
hypothesis on the value of the area dilation to shear modulus
ratio, which is assumed to be Ks/Gs = 3. The method works
well if the deformation of the capsule is large enough. Indeed,
for a small deformation, it is not possible to distinguish
between different laws and there is some dispersion in the
results. Thus, it is best to use a pore, such that the size ratio
of the capsules is of order unity. Small capsules (a/! " 0.8)
have to be flowed quickly to be deformed with concomitant
difficulties of observation leading to profile fuzziness. In order
to reach large deformation, while keeping the capsule velocity
moderate, a high-viscosity suspending liquid is necessary. But
the price to pay is that the high-viscous-pressure drop inside the
microchannel may lead to the destruction of the connections.
The advantage of using a square-section channel rather than a
cylindrical one is linked to the easy fabrication of microfluidic
tubes of any size and to the easy connection with the propulsion
device. Furthermore, this system can be built in a microfluidic
fabrication device to monitor the properties of the capsules
in situ [21]. We note that it is even possible to infer the large
deformation behavior of the membrane, at least decide whether
it is strain-softening or -hardening.
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and F. Edwards-Lévy, Int. J. Colloid Interface Sci. 355, 81
(2011).

[10] S. Kuriakose and P. Dimitrakopoulos, Phys. Rev. E 84, 011906
(2011).

[11] R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, Biophys. J. 13,
245 (1973).

[12] Y. Lefebvre and D. Barthès-Biesel, J. Fluid Mech. 589, 157
(2007).

[13] J. Walter, A.-V. Salsac, D. Barthès-Biesel, and P. Le Tallec, Int.
J. Numerical Methods Eng. 83, 829 (2010).

[14] X.-Q. Hu, A.-V. Salsac, and D. Barthès-Biesel, J. Fluid Mech.
705, 176 (2012).
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