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Abstract In this paper, the fault detection is based on the electrica

Two approaches are presented in this paper to estimate R ?rl]:fsteﬂ?m'gﬂqug:g;“m?/\sﬁlr'oﬁ?erdegggt’ ;Qﬁltgim?nhg\l/t:ra
state of an induction motor and detect faults: a geomeﬁ‘ﬂ: P y

approach, assuming only that the perturbations belongs't%n'f'cant effect on the electrical behavior of the motor. Both

known bounded sets with no hypothesis on their distributichisP’0aches take into account model approximations anc
inside these sets. and a stochastic approach by KalfjASurement errors to estimate the motor state. To obtain

filtering. Recursive and explicit algorithms are presented gt detection with a high sensitivity, these uncertainties

lustated by real data o an nducton motor hat s b oS MINTIZEC, Mereeuer, e workng condtions ave
designed to have some more and less important faults. 9 ; Y- : !
a broken bar cannot be detected if the motor torque is null

Nevertheless, the proposed approaches offer practica
1 Introduction advantages:.no ;upplementary instrumentation is required an
the state estimation can also be used for the torque control ¢
Estimation techniques are more and more used in fauk motor.
detection and diagnosis of induction motors [Wesait]. To illustrate the behavior of these schemes, realistic
Most state estimation problems are solved via a stochastisctrical faults of the motor, instead of the usual elementary
approach. Measurement noise, disturbances and model efeliss (additive omultiplicative faults), are considered in this
are assumed to be a realization of a random process. Theger. One of the weakest parts of the induction motor is the
estimation techniques require the knowledge of stochasfiator insulation. Modern static converters produce high
characteristics of the different disturbances and a Kalmglactrical strains which may cause insulation failure like turn-
filter is often used to solve such a problem [Atkgro, to-turn short-circuit. ThelLaboratoire d'Automatique et
Deva]. However, in some situations, it can be more naturabtimformatiquelndustrielle de Poitiers (LAII) has specifically
consider a geometric approach, assuming only that Hesigned an induction motor to simulate electrical failure: the
perturbations belong to known bounded sets with Bmtor winding can be more or less unbalanced by shortenin
hypothesis on their distributions inside these sets. Thisgtially one phase.
bounded-error approach describes the set of all the states thathe paper is organized as follows. Models of the motor
are consistent with the model, the data and the error bourde. specified in Section 2. Algorithms are presented in
All elements of this feasible set are then candidate soluti®wction 3 and illustrated in Section 4 to detect faults of the
for the estimation problem. The set thus obtained miayluction motor.
become extremely complicated. In order to be computed in
real time, this feasible set is recursively characterized by the
smallestellipsoid that encloses it [Schw]. Usually, the size @ Models

an ellipsoid, characterizing the state estimation uncertainty, E@te estimation is based on a discrete-time varving linear
measured by its volume, which is proportional to the squ§r ying

of the product of the semi-axe lengths and corresponds torﬂ%j]il (_)Ifrfgem'gggfgggun%o;grs'ig52?)ig’;?'rflgaieetfgqoéﬂr\%efr;g?c
determinant criterion. However, this criterion presents sofﬁ% ' 9 =



non-saturation of the magnetic circuit and a negligible skin 1 2

effect. If the mechanical speed is assumed to be quasi- A =!*TeAck +2-(TeAc,k)

stationary with respect to the dynamics of the electric 1 (5)

variables, the model becomes linear but not stationary withg, =T (1 + =T A.x )B.

four order differential equations. 2 '

~ Yamamura has shown that the repartition of the leakagen A, = A (w(t,)) and, =kT, «ON ).

inductance between the stator and the rotor can be arbitrary -- . . o

chosen, provided that the leakage factor is kept [Yamal]. TheTO take into account dlscret|z_at|on errors, model errors,

model of the induction motor is simplified if one chooses!@Put errors and measurement noise, a process noise vector

null rotor leakage inductance. Then, the continuous tiffed @n observation noise vectoy are added respectively to

model, expressed in the mechanical reference frame, is e State equation and the observation equation of (1) and th
&)= A (@)x(t) + B,u(t) discrete-time state model is

¢ Xk+1 = AXc + Byl +vy

y(t) =Cx(t) 6
O N=Cxw ©
with where X =X(ty) and Y« =Y(ty) (ON ). The
_Rs*+R pw R pw components of the known input vectar are the average of
Lts Lsle L the stator voltages betwebn and’k+1 . In this paper, we
B _Rs+R pw R, . .
pw assume that the different components of the noises are
A = Cts Lrs  Cily @ independent.
R 0 R 0 1 e
; 2.1 Kalman filtering
0 R, 0 _R Kalman filtering assumes that process noise and measuremel
L~ noise are independent, white and zero-mean random variable
and with known covariance. The initial stafe is assumed to be
11000 T 1000 random with known mean and covariance. Nd¥seand
c ~ T0100 ° 0100 - (3) noiseVk are also assumed to be independentXof

Moreover, if the noise i$aussian, the Kalman filter is an
The state vectof is composed of the two-phase componengptimal state estimator with respect to the variance of the

of the stator currentés(: i ) and the rotor flux%sa % ): estimation error.
b In practice, the state noise and the observation noise ar
X= isa lsg Psa ‘PrﬁJr . (4) due to model approximations and measurement noise

) u(t) (t) Therefore, due to _the Ce_ntral_lim_it th_eorem, one might expect
The input vector and the output vecto¥\!) are hat the observation noise distribution is roughly Gaussian.
composed respectively of the two-phase stator voltages Rtate precisely, an analysis with experimental data reveals
the two-phase stator currents. The paramdRgrg;, R and that the noise is bounded and neaBgussian between its
L, are respectively the stator resistance, the global leakagends that are nearly equal to three times its standar
inductance referred to the stator, the rotor resistance anddingation [Loro]. Note that with an exact scalaaussian
rotor inductance. These parameters were previously estimaigide, the probability that a noise value belongs to the interval
by an extended Kalman filter from experimental data simill¥39:30] whereV s its standard deviation, is equal to

to those of Figure 4.a. U/ Even if the model error is essentially deterministic, to

The discrete-time model is deduced from the continuoys, kaiman filtering, one assumes that it is also stochastic
model by a second ordeserie expansion of the tranS|t|oq,¥lith known standard deviation
the '

matrix. By using a second order serie expansion and
mechanical reference frame, a sampling periotl mfscan be
used. The usual first order serie expansidtuldr
approximation) requires a very short sampling period to giwth this approach the only information available is that the
a stable and accurate model. These approximations by ssttiee noisék , the observation noi?% and the initial state
expansion are more precise with low frequency signals. Thxys, elona to known compact sets. To reduce complexity. the
the mechanical and synchronous reference frames are besli) 9 pact sets. P pN Y
suited for the definition of accurate discrete-time models. TH&erent componentéi (=4t # ) of % and %
mechanical reference frame is directly deduced from the ro(tpv: L¢y of ™ are assumed to be independent. The noise
position measurement. . ; . . .
Let T, be the sampling period. The second order seB@u_”%a( \'j’e”,‘g tlme—lpvzirllant, we cgnma;/(vwewthat
expansion of the transition matrix gives ki = ME&WI Vi with l’k’i |‘ and Wi T MWW )%

2.2 Set membership filtering

with ]"’k,j Fl . So the equations in (6) can be written as



4 , , Yy = Yij ™ Yrk 14
X = AXFBUT ViV, }/k,i |S 1 (=1L 4) ol -l KL (4

i=1 (7 and
Yiej = Cixe +w i W [s205=12) Of) =07 +0% ) (15)
with 0; being the standard deviation of the observation noise anc
V; = max(v; )[61_i L .0, ]T (i=1L 4), (8) O9kik-1j the standard deviation of the predicted observation
Yy = lmax(Wl)yk,l ma(wz)ysz’ 9) (i =12 ). The difficulty is then to choos® . According to

the previous results, we have taken3 . This value leads

1 theoretically to a rate of false alarm of abb8fte with exact
C, = _[1 00 O] Gaussian hypothesis. This solution allows real time fault

and

max(w, ) (10) detection. This approach can be completed by a carefu
1 ' analysis of the errors as ihdro].
C,=——p100]
max(w, )

3.2 Set-membership filtering
Note that the set of all the statés that satisfy one of theThe aim of the set-membership filter with ellipsoidal

measurement equations of (7), which can be rewritten ggroximation is to find recursively the smallest ellipsoid that

|yk,j —Ci X |S 1 is a strip. If the componen¥s,i orW; encloses the feasible set. A recursive algorithm, well adaptec

. , to,Pe implemented in real time, can be deviated. More
are not independent, then the algorithms to be presented Flécisely, bounded error algorithm gives a recursive

apply but the approximation obtained will be mor llipsoidal approximation of the uncertainty s&ds/k  and

pessimistic. 0 _ . "
Any bounded ellipsoidE of R" with a non-empty k¥ which enclose respectively all values ofandX«+1
interior can be defined by that are compatible with all available information up to,
E(c,P) :{xDR” I(x-c)T P‘l(x—c)g]_}' (11) namely the model equations, the error bounds, the initial

condition and the measuremenits for . The

where ¢ is its center whileP is a symmetric positive L . .
. . e . . . mallest ellipsoid is computed by minimizing the determinant
definite matrix that specifies its size and orientation. The o o .
) . P) s tr(P) or trace criterion. The initial state space ve&oris assumed
considered measure of the size®¢:P) is for the

trace criterion and€(P) for the determinant criterion. A0 bélong to an ellipsofo 0.

strip The predicted séfk+1/k and the corrected $8+1/k+1
= nyly-d' x|< are recursively provided b
Sf,d")=kOR"/ [y-d x|_1j~ (12) i y; . y -
= +B.u + .
is an unbounded ellipsoid that is useful to take into account” ¥*1/k A+ Btk g

information provided by a scalar measurement. Indeeko 1= Zonr il SHern.COl St 2Ca) (16)
+ +1~ + + ) +1,2»

observation equations of (7) can be rewritten as
% LSy .C) (151.2) withY =1 —11]

These equations are too complicated to be used in rea
time. LetFwk be an ellipsoidal approximation S/ k.

3 Algorithms

Qi i i Pk i
3.1 Kalman filtering + is approximated byk+ that is the smallest

: S . ) ~ ellipsoid containing
For linear system, Kalman filtering gives the linear minimum

~ 4
variance estimate of the state vector. The first step of thecs1 =ABuc tBiUc+ ViU (17)
Kalman algorithm is the state prediction and the second step 1=
is the state correction, which takes into account the n@Wich is a weighted sum of ellipsoids. So we have
measurements. This approach being classical, the equatigds = =arg min tr(Py ;)
are not remembered here (Jazw). kertlk Bl © MK (18)

The fault detection consists in computing/ahalanobis
distance comparing a measurem¥ni to its predicted value or
Yirk-1j = Ci%sk-1 whereXW k-1 is the prediction of .  E_,, =arg min det(P.y ) (19)
More precisely a fault is detected if the following condition is o !
satisfied with == HF) Figure 1 illustrates the prediction step for
|Ay'<«i |>n0k:i , (13) the studied applicationEkﬂ/kﬂ is the smallest ellipsoid

with containing



e = Ek+l/k| SWi12:C1 N SWrs12:C2)

that is the intersection of the predicted ellipsoid and the The setl ., is not empty if the error bounds and the
measurement strips. So we have

Eii1ke1 = @rg min
k

or

+1

tr Py i)

Ek+1/k+1 =arg min det(Pk+1/k) .
=] )

Figure 2 illustrates the correction step.
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ellipsoid center is ordinarily used as a particular estimator of
the state. The algorithms are detailedSedd].

model are correct. If the intersection is empty, a fault or an
incoherence due to a model error, underestimated bounds or
faulty sensor is detected. So the bounded technique allow:
detecting incoherences, but due to the different
approximations, we are not guaranteed to detect small faults
If an incoherence is detected, no correction is done and the
algorithm is then applied with a new ellipsoid that is large
enough to contain the exact state.

4 Experimental resuts

To illustrate the algorithms three examples have been
considered: first a motor without fault (Figures 3-a, b and c),
then a motor that is a little unbalanced (Figures 4-a, b and ¢
and then a motor with an important unbalanced fault (Figures
5-a, b and c). The sampling period is equaP-fons .
Voltage inputs, current measurements and speed are plotte
on Figures a. The differenc@%k1 and«2 computed by

the Kalman filtering can be compared on Figures b with three
times their standard deviation, this comparison allowing to
detect a fault. Similarly®k1 and®k2 and their bounds

computed by the set-membership filtering with the trace
criterion are plotted on Figures c. An incoherence is detectec
if &Yk1 or Y2 is greater than its bound. With the

determinant criterion similar results were obtained, so the
different curves are not drawn here.

As expected, it can be seen in Figure 3.b, that difference
&Yi (0=L2) computed by the Kalman filter may

occasionally exceed the detection level, even without default.
Therefore, to avoid false alarms a sliding window testing
several successive data must be considered. On the contrar
Figure 3.c shows that, with the same experiment, the bounde
approach offers a suitable margin between the errors and the
bounds.

With a small stator unbalance, the rate of the large
differences increases significantly with the Kalman filter
(Figure 4.b) and at times the bounded approach detect:
incorrect bounds (Figure 4.c). Both algorithms are more
sensible during speed transients.

With a large unbalance, the Kalman filter continuously
detects the fault (Figure 5.b), while the bounded approach
detects it only during speed transients (Figure 5.c). These
experimental results show the importance of an adequatt

To find the smallest ellipsoids, optimization problems (1Apise characterization, the influence of the operating
18, 21 and 22) are solved over parameterized families [Dudnditions and illustrate the feasibility of the algorithms.
and yield to an explicit solution of the predicted ellipsoid

Bk with the trace criterion, and also an explicit solution

with the determinant criterion if the different components of
the state noise are recursively introduced. An explicit solution

of Ek+]!k+1

is obtaned if each strip®Ykej:“j)

() =44 is introduced successively. To obtain a real time

algorithm an explicit solution, avoiding optimization
problems, is retained at the cost of a suboptimal solution. The
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5 Conclusions

The results reported here indicate that both the boundec
approach and the Kalman filtering are able to detect electrica
faults of an induction motor. These algorithms require an
adequate noise characterization to be efficient. To take intc
account natural variations of the electrical parameters
(essentially due to the temperature influence) adaptive
schemes have to be implemented. This can be obtained wit
an extended Kalman filter or by a similar extension of the set-
membership filtering.
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