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Abstract
Two approaches are presented in this paper to estimate the
state of an induction motor and detect faults: a geometric
approach, assuming only that the perturbations belong to
known bounded sets with no hypothesis on their distributions
inside these sets, and a stochastic approach by Kalman
filtering. Recursive and explicit algorithms are presented and
illustrated by real data of an induction motor that has been
designed to have some more and less important faults.

1  Introduction
Estimation techniques are more and more used in fault
detection and diagnosis of induction motors [West, Naït].
Most state estimation problems are solved via a stochastic
approach. Measurement noise, disturbances and model errors
are assumed to be a realization of a random process. These
estimation techniques require the knowledge of stochastic
characteristics of the different disturbances and a Kalman
filter is often used to solve such a problem [Atki, Loro,
Deva]. However, in some situations, it can be more natural to
consider a geometric approach, assuming only that the
perturbations belong to known bounded sets with no
hypothesis on their distributions inside these sets. This
bounded-error approach describes the set of all the states that
are consistent with the model, the data and the error bounds.
All elements of this feasible set are then candidate solutions
for the estimation problem. The set thus obtained may
become extremely complicated. In order to be computed in
real time, this feasible set is recursively characterized by the
smallest ellipsoid that encloses it [Schw]. Usually, the size of
an ellipsoid, characterizing the state estimation uncertainty, is
measured by its volume, which is proportional to the square
of the product of the semi-axe lengths and corresponds to the
determinant criterion. However, this criterion presents some

disadvantages, this is why an alternative criterion, namely the
trace criterion which corresponds to the sum of the squares of
the semi-axe lengths of the ellipsoid, is also considered
[Duri].

In this paper, the fault detection is based on the electrical
model of the induction motor. Therefore, the Kalman filter
and the set-membership will only detect faults that have a
significant effect on the electrical behavior of the motor. Both
approaches take into account model approximations and
measurement errors to estimate the motor state. To obtain a
fault detection with a high sensitivity, these uncertainties
must be minimized. Moreover, the working conditions have a
large influence on the fault detection sensitivity. For instance,
a broken bar cannot be detected if the motor torque is null.
Nevertheless, the proposed approaches offer practical
advantages: no supplementary instrumentation is required and
the state estimation can also be used for the torque control of
the motor.

To illustrate the behavior of these schemes, realistic
electrical faults of the motor, instead of the usual elementary
faults (additive or multiplicative faults), are considered in this
paper. One of the weakest parts of the induction motor is the
stator insulation. Modern static converters produce high
electrical strains which may cause insulation failure like turn-
to-turn short-circuit. The Laboratoire d'Automatique et
d'Informatique Industrielle de Poitiers (LAII) has specifically
designed an induction motor to simulate electrical failure: the
stator winding can be more or less unbalanced by shortening
partially one phase.

The paper is organized as follows. Models of the motor
are specified in Section 2. Algorithms are presented in
Section 3 and illustrated in Section 4 to detect faults of the
induction motor.

2  Models
State estimation is based on a discrete-time varying linear
model of the induction motor in the two-phase rotor reference
frame. The model assumes sinusoidal magnetomotive forces,



non-saturation of the magnetic circuit and a negligible skin
effect. If the mechanical speed ω is assumed to be quasi-
stationary with respect to the dynamics of the electric
variables, the model becomes linear but not stationary with
four order differential equations.

Yamamura has shown that the repartition of the leakage
inductance between the stator and the rotor can be arbitrary --
chosen, provided that the leakage factor is kept [Yama]. The
model of the induction motor is simplified if one chooses a
null rotor leakage inductance. Then, the continuous time
model, expressed in the mechanical reference frame, is
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The state vector x  is composed of the two-phase components
of the stator currents ( βα ss i,i ) and the rotor flux ( βα φφ rs , ):

[ ]Trsss   i ix βαβα φφ= . (4)

The input vector )t(u  and the output vector )t(y  are

composed respectively of the two-phase stator voltages and
the two-phase stator currents. The parameters Rs, Lfs, Rr and
Lr are respectively the stator resistance, the global leakage
inductance referred to the stator, the rotor resistance and the
rotor inductance. These parameters were previously estimated
by an extended Kalman filter from experimental data similar
to those of Figure 4.a.

The discrete-time model is deduced from the continuous
model by a second order serie expansion of the transition
matrix. By using a second order serie expansion and the
mechanical reference frame, a sampling period of 1 ms can be
used. The usual first order serie expansion (Euler
approximation) requires a very short sampling period to give
a stable and accurate model. These approximations by serie
expansion are more precise with low frequency signals. Thus,
the mechanical and synchronous reference frames are best
suited for the definition of accurate discrete-time models. The
mechanical reference frame is directly deduced from the rotor
position measurement.

Let Te   be the sampling period. The second order serie
expansion of the transition matrix gives
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with ))t((AA kck,c ω=  and ek kTt =  ( Nk  ).

To take into account discretization errors, model errors,
input errors and measurement noise, a process noise vector vk
and an observation noise vector wk are added respectively to
the state equation and the observation equation of (1) and the
discrete-time state model is
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where )t(xx kk =  and )t(yy kk =  ( Nk  ). The

components of the known input vector ku  are the average of

the stator voltages between kt  and 1kt + . In this paper, we

assume that the different components of the noises are
independent.

2.1 Kalman filtering

Kalman filtering assumes that process noise and measurement
noise are independent, white and zero-mean random variables
with known covariance. The initial state 0x  is assumed to be

random with known mean and covariance. Noise kw and

noise kv  are also assumed to be independent of 0x .

Moreover, if the noise is Gaussian, the Kalman filter is an
optimal state estimator with respect to the variance of the
estimation error.

In practice, the state noise and the observation noise are
due to model approximations and measurement noise.
Therefore, due to the Central limit theorem, one might expect
that the observation noise distribution is roughly Gaussian.
More precisely, an analysis with experimental data reveals
that the noise is bounded and nearly Gaussian between its
bounds that are nearly equal to three times its standard
deviation [Loro]. Note that with an exact scalar Gaussian
noise, the probability that a noise value belongs to the interval[ ]σσ 3,3− , where σ  is its standard deviation, is equal to
0.997 . Even if the model error is essentially deterministic, to
use Kalman filtering, one assumes that it is also stochastic
with known standard deviation.

2.2 Set membership filtering

With this approach the only information available is that the
state noise kv , the observation noise kw  and the initial state

0x  belong to known compact sets. To reduce complexity, the

different components i,kv  ( 4, ,1i L= ) of kv  and j,kw

( 2,1j = ) of kw  are assumed to be independent. The noise

bounds being time-invariant, we can write that
i,kii,k v)vmax(v ′=  with 1v i,k ≤′  and j,kjj,k w)wmax(w ′=

with 
1w j,k ≤′

. So the equations in (6) can be written as
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Note that the set of all the states kx  that satisfy one of the

measurement equations of (7), which can be rewritten as
1xCy kjj,k ≤− , is a strip. If the components i,kv  or j,kw

are not independent, then the algorithms to be presented still
apply but the approximation obtained will be more
pessimistic.

Any bounded ellipsoid E  of 
nR  with a non-empty

interior can be defined by
{ }1)cx(P)cx/(xPc 1Tn ≤−− −R=),E( , (11)

where c  is its center while P  is a symmetric positive
definite matrix that specifies its size and orientation. The
considered measure of the size of ),E( Pc  is  tr(P) for the

trace criterion and  det(P) for the determinant criterion. A

strip { }1xdy /xdy TnT ≤− R=),S( (12)

is an unbounded ellipsoid that is useful to take into account
information provided by a scalar measurement. Indeed
observation equations of (7) can be rewritten as

)21j(  Cyx jj,kk ,=),S( .

3  Algorithms
3.1 Kalman filtering

For linear system, Kalman filtering gives the linear minimum
variance estimate of the state vector. The first step of the
Kalman algorithm is the state prediction and the second step
is the state correction, which takes into account the new
measurements. This approach being classical, the equations
are not remembered here (Jazw).

The fault detection consists in computing a Mahalanobis
distance comparing a measurement j,ky  to its predicted value

- 1k/kjj,1k/k x̂Cŷ −− =  where 1k/kx̂ −  is the prediction of kx .

More precisely a fault is detected if the following condition is
satisfied

j,kj,k  y ση∆ > , (13)

with

j,1k/kj,kj,k ŷyy −−=∆ (14)

and
2

j,1k/k
2
j

2
j,k −+= σσσ , (15)

jσ  being the standard deviation of the observation noise and

j,1k/k −σ  the standard deviation of the predicted observation

( 2,1j = ). The difficulty is then to choose η . According to

the previous results, we have taken 3=η . This value leads

theoretically to a rate of false alarm of about %3.0  with exact
Gaussian hypothesis. This solution allows real time fault
detection. This approach can be completed by a careful
analysis of the errors as in [Loro].

3.2 Set-membership filtering

The aim of the set-membership filter with ellipsoidal
approximation is to find recursively the smallest ellipsoid that
encloses the feasible set. A recursive algorithm, well adapted
to be implemented in real time, can be deviated. More
precisely, bounded error algorithm gives a recursive
ellipsoidal approximation of the uncertainty sets k/kΩ  and

k/1k+Ω  which enclose respectively all values of kx  and 1kx +

that are compatible with all available information up to kt ,

namely the model equations, the error bounds, the initial
condition and the measurements ly  for . The

smallest ellipsoid is computed by minimizing the determinant
or trace criterion. The initial state space vector 0x  is assumed

to belong to an ellipsoid 0 /0Ê .

The predicted set k/1k+Ω  and the corrected set 1k/1k ++Ω

are recursively provided by

��

�
�
�

=

++=

+++++

=
+ �

I I )C,y)C,y

VuBA

22,1k11,1kk/1k1k/1k

4

1i
ikkk/kkk/1k

S(S(

U

ΩΩ

ΩΩ
(16)

with ]1,1[ −=U .

These equations are too complicated to be used in real

time. Let kk
ˆ

/E  be an ellipsoidal approximation of k/kΩ .

k/1k+Ω  is approximated by k1k
ˆ

/+E  that is the smallest

ellipsoid  containing
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which is a weighted sum of ellipsoids. So we have
( )k/1k/k1k Ptrminargˆ

1k
+


+

+

=
LE

E (18)

or
( )k/1k/k1k Pdetminargˆ

1k
+


+

+

=
LE

E (19)

with (c,P)EE = . Figure 1 illustrates the prediction step for

the studied application. 1k1k
ˆ

+/+E  is the smallest ellipsoid

containing



I I )C,y)C,yˆ
22,1k11,1kk1k1k +++ = S(S(EI /+ , (20)

that is the intersection of the predicted ellipsoid and the
measurement strips. So we have

( )k/1k1/k1k Ptrminargˆ
1k

+


++
+

=
IE

E (21)

or

( )k/1k1/k1k Pdetminargˆ
1k

+
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++
+

=
IE

E . (22)

Figure 2 illustrates the correction step.
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To find the smallest ellipsoids, optimization problems (17,
18, 21 and 22) are solved over parameterized families [Duri]
and yield to an explicit solution of the predicted ellipsoid

k1k
ˆ

/+E  with the trace criterion, and also an explicit solution

with the determinant criterion if the different components of
the state noise are recursively introduced. An explicit solution

of 1k1k
ˆ

+/+E  is  obt ai ne d if  each strip )C,y jj,1k+S(

( 2,1j = ) is introduced successively. To obtain a real time

algorithm an explicit solution, avoiding optimization
problems, is retained at the cost of a suboptimal solution. The

ellipsoid center is ordinarily used as a particular estimator of
the state. The algorithms are detailed in [Sedd].

The set 1k+I  is not empty if the error bounds and the

model are correct. If the intersection is empty, a fault or an
incoherence due to a model error, underestimated bounds or a
faulty sensor is detected. So the bounded technique allows
detecting incoherences, but due to the different
approximations, we are not guaranteed to detect small faults.
If an incoherence is detected, no correction is done and the
algorithm is then applied with a new ellipsoid that is large
enough to contain the exact state.

4  Experimental results
To illustrate the algorithms three examples have been
considered: first a motor without fault (Figures 3-a, b and c),
then a motor that is a little unbalanced (Figures 4-a, b and c)
and then a motor with an important unbalanced fault (Figures
5-a, b and c). The sampling period is equal to  ms 0.7 .
Voltage inputs, current measurements and speed are plotted
on Figures a. The differences 1,ky∆  and 2,ky∆  computed by

the Kalman filtering can be compared on Figures b with three
times their standard deviation, this comparison allowing to
detect a fault. Similarly 1,ky∆  and 2,ky∆  and their bounds

computed by the set-membership filtering with the trace
criterion are plotted on Figures c. An incoherence is detected
if 1,ky∆  or 2,ky∆  is greater than its bound. With the

determinant criterion similar results were obtained, so the
different curves are not drawn here.

As expected, it can be seen in Figure 3.b, that difference
j,ky∆  ( 2 ,1j = ) computed by the Kalman filter may

occasionally exceed the detection level, even without default.
Therefore, to avoid false alarms a sliding window testing
several successive data must be considered. On the contrary,
Figure 3.c shows that, with the same experiment, the bounded
approach offers a suitable margin between the errors and their
bounds.

With a small stator unbalance, the rate of the large
differences increases significantly with the Kalman filter
(Figure 4.b) and at times the bounded approach detects
incorrect bounds (Figure 4.c). Both algorithms are more
sensible during speed transients.

With a large unbalance, the Kalman filter continuously
detects the fault (Figure 5.b), while the bounded approach
detects it only during speed transients (Figure 5.c). These
experimental results show the importance of an adequate
noise characterization, the influence of the operating
conditions and illustrate the feasibility of the algorithms.
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5  Conclusions
The results reported here indicate that both the bounded
approach and the Kalman filtering are able to detect electrical
faults of an induction motor. These algorithms require an
adequate noise characterization to be efficient. To take into
account natural variations of the electrical parameters
(essentially due to the temperature influence) adaptive
schemes have to be implemented. This can be obtained with
an extended Kalman filter or by a similar extension of the set-
membership filtering.
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