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Abstract
Electrical machines are nowadays always supplied by power converters to improve speed and torque control
capabilities. These converters use a chopping technique to supply A.C. machines with D.C. sources: these
converters apply a succession of pulse width modulation where only the fundamental component drives the
motor. These techniques permit a very good efficiency but lead to high frequencies components in voltage
spectrum. These harmonics lead to an increase of noise especially when they coincide with a mechanical
amplification – resonance. This paper treats a study of stator vibrational behaviour and the strategy to avoid
excessive noise emission. Further experiments conducted on induction machines are made to validate the
proposed models.

1 Introduction

Electrical machines are nowadays always supplied by
power converters to improve speed and torque control
capabilities. These converters use a chopping tech-
nique to supply A.C. machines with D.C. sources:
these converters apply a succession of pulse width
modulation where only the fundamental component
drives the motor. These techniques permit a very
good efficiency but lead to high frequencies compo-
nents in voltage spectrum. Due to the inductive be-
havior of the machine, these components are not per-
turbating for the electro-mechanical behaviour (speed
and torque) but increase significantly the vibrations
of the machine and the noise when the chopping fre-
quency is in the audible range.

Our laboratory has developed a modelisation that
permits to express the surface forces that are due to
the converter as a superposition of revolving fields
with different waveforms and velocity in the airgap of
the machine. These modelisation use Fourier Trans-
form in two dimensions (space and time) and the
forces obtained are the source of excitation due to the
converter. They lead to an increase of noise and vi-
brations.

The purpose of this paper is to explain how use the

characteristics of this force to determine the mechani-
cal behaviour of the machine and to estimate the noise
that are radiated. In this way, we develop a modeli-
sation using HAMILTON principle based on the me-
chanical behaviour of rings. After the obtaining of the
motion equations, we study the eigenvalues problem
(mode shapes and natural frequencies) and the forced
response of the structure when excited by electromag-
netic forces. This permits to extract rules to reduce
noise and vibrations.

Finally these theoretical results are confirmed by
experimental measures done on an 1kW induction
motor supply by a power converter. The force den-
sity can be easily modified by changing the control
strategy of the power converter. That permits a reduc-
tion of more than 16 dB of pressure level between a
bad and a good tuning of the converter.

2 Short review of noise and vi-
brations reduction in A.C. elec-
trical drives

Noise and vibrations of electrical drives are not a re-
cent subject of studies. These problems are well doc-



umentedin the literature [1] [2] but the fact of supply-
ing a machine with a P.W.M. power converter yields
new problems. The purpose of this paper isnot to
treat general noise of vibration in electrical drives but
only to focus on the noise that is directly correlated
with the use of a power converter. Therefore, the other
sources are not taken into account in this paper.

2.1 Use of control techniques

One of the most used techniques to avoid noise due
to the power converter is to use components that are
switched above audible frequencies. That reduces
drastically the perturbating due to the converter. This
method, although significantly efficient, can not al-
ways be used because high switching are not always
possible in high power drive and often leads to an in-
creased lost in power components and therefore re-
duce the efficiency and the life of the electronic com-
ponents.

2.2 Determination of the force due to
the power converter

To predict the mechanical behaviour of the machine,
we first have to determine the electromagnetic forces
applied to the structure. The forces are deduced by
an electromechanical energy conversion analysis. In
fact, the vibrations are principally due to the magnetic
fields produced in the airgap of the machine. These
fields create a radial force density applied in the inner
area of the stator. There is many means to compute
these forces – numerical and analytical methods – and
our laboratory has developed a modelisation that is
well adapt for the coupling to a vibrational modeli-
sation [3] [4]. These models permit to express the
surface forces that are due to the converter as a super-
position of revolving fields with different waveforms
and velocity. These modelisation use Fourier Trans-
form in two dimensions (space and time) and finally,
we obtain a radial force density expressed as:

f(t, θ) =
n=+∞∑

n=−∞

m=+∞∑

m=−∞
f̂n m · ejnωt · ejmθ (1)

Wheref is the force density applied to the inner sur-
face of the stator,t the temporal variable andθ the
angular position. The fieldf is the source of excita-
tion that is due to the converter and that leads to an
increase of the noise and vibrations.

Contrary to the common mind, this modelisation is
not linear because the forces applied on the structure

result of the MAXWELL stress tensor – MAXWELL

force density – that is a quadratic form of the mag-
neticfield. Therefore the frequencies of the forces are
not the frequencies present in the current and voltage.

3 Theoretical behaviour of the
machine

With the use of the electromechanical modelisation
developped previously, we can express the radial
forces as a superposition of revolving fields that are
applied to the inner area of the stator. Generated vi-
brations of electrical drives can significantly be re-
duced if the forces can not excite mechanical reso-
nance of the stator. Therefore a precise determina-
tion of frequencies and modes shapes are necessary.
With the use of a vibration behaviour models, a ma-
chine designer will be able to optimize his machine
and converter to reduce efficiently noise and vibra-
tions. A well adapted method in this way, is the modal
method.

3.1 Short review on the vibrational be-
haviour of induction electrical mo-
tor

For noise reduction in mechanical systems, it is es-
sential to avoid coincidence between excitation and
natural behaviour (frequenciesandmode shapes). In
a first step, we will analyse the eigenvalues and eigen-
vectors problem and in a second step, we will study
the forced behaviour. For noise due to the electromag-
netic source, it is well known that the most radiated
sources are the outer stator areas. A lots of papers
exist on numerical determination of stator natural be-
haviour and we can notice that in all these studies,in
the plane of a sheet, low frequencies modes shapes
are very closed to sinusoidal shapes. For them rank,
with s (θ = s

R ) the circumferential length andR the
mean radius of stator, we generally have the mode
shapeUm as:

Um(s) ≈ Am · sin(
m · s
R

) (2)

In stator vibrational behaviour, the contribution of the
teeth to the potential energy – elastic strain – is usu-
ally negligible whereas it isnot for kinetic energy [5].
We therefore can include this contribution by chang-
ing the mass density of magnetic materials and con-
sider the stator as anequivalent ring[6]. The natu-
ral frequency of a stator,in the plane of a sheetcan



thereforebe approximated by natural behaviour of an
equivalent ring. Our model will follow this hypothe-
sis.

For m = 0, we are generally speaking of a pure
extensional mode because the strain is principally due
to an extension rather than a bending. Form = 1, in
the plane of a sheet, it is a so-called rigid body motion
because there is motion without strain and finally for
m ≥ 2 we speak about bending modes (Figure 1).

+

m = 0

+
-

-

m = 1 m = 2 m = 3

Figure 1: modal motions for low frequencies, in the
plane of a sheet

For the development of our model, we will con-
sider the equivalent ring of radiusR and cross section
A as described in the Figure 2. We modify the mass
densityρ to take into account the teeth mass addition.
u andv are radial and tangential displacement of the
mean line. We assume that the beam can be mod-
elized as a thin beam (EULER - BERNOULLI) [7].

v
u

y

x0

R

Figure 2: definition of the thin ring

To obtain the motion equations, we will use the
HAMILTON theorem that leads to a variation formula-
tion of the problem. Firstly by cancelling the forces,
we will express the natural behaviour and secondly,
with the electromagnetic forces, we will consider the
forced motions.

3.2 Determination of motion equations

We have noticed previously that them = 0 mode can
be considerated as a pure extension mode when the
others can be considerated as bending modes1. We
will therefore study these two cases separately with

1We will see that rigid body motion –m = 1 – can be, in a
first step, included in the bending case

the use of HAMILTON and variational principle ap-
plied to a continuum body.

3.2.1 Pure extension motions

For m = 0 mode, we have a displacement that is
purely radial (onlyu 6= 0) but a strain that is purely
tangential (onlyεθθ 6= 0). The momentum isp =
ρ ·A · ∂u

∂t and the velocity∂u
∂t , that leads to the follow-

ing kinetic energy:

T =
1
2
·
∫ l

0
~p·(∂~u

∂t
) ds =

1
2
·
∫ l

0
ρ·A

(∂u

∂t

)2
ds (3)

In the case of a pure extension, elongation per unit for
the ring in circonferential directions equalεθθ = ∂v

∂s .
Potential energy of deformation is, in this case, the
deformation energy of a simple extension. Normal
force N equals normal constraintσθθ multiplied by
the cross sectionA (N = A · σθθ). If we consider
the deformation as an elastic deformation , we can
use the YOUNG formula that relies the constraintσθθ

and the deformationεθθ with the YOUNG modulusE
(σθθ = E · εθθ = E · ∂v

∂x ). Therefore, we obtain the
following potential energy:

V =
1
2
·
∫ l

0

~Fx · (∂~u

∂x
) ds =

1
2
·
∫ l

0
E · A

(∂v

∂s

)2
ds

(4)
HAMILTON theorem specifies that if we consider an
external forcefi and ifL = T − V is defined as the
LAGRANGIAN of the system, therefore the following
variational formulation must be zero forany admissi-
ble variationδxi (virtual displacement) between the
two timet1 andt2 [8]:

∫ t2

t1

(δL +
∑

i

fi · δxi) dt = 0 (5)

If u is the radial displacement of any point of the ring,
therefore the strain per unit in circonferential direc-
tion (extensional strain :εθθ = ∂v

∂s ) equals u
R . An

admissible displacement for external efforts isδu. By
using HAMILTON principle, this leads to:

∫ t2

t1

δ
( ∫ l

0

1
2
· ρ · A

(∂u

∂t

)2
− 1

2
· E · A

( u

R

)2
ds

)

+
∫ l

0
(f · δu) ds dt = 0

(6)
This equation can be modified by the use of varia-
tional calculus – integration by parts – and finally, we



obtain:
∫ t2

t1

∫ l

0
−ρ·A∂2u

∂t2
·δu−E · A

R2
u·δu+f ·δu ds dt = 0

(7)
We can factorized the termδu. This relation must
hold for anyδu, then we deduce the motion equation:

−ρ · A∂2u

∂t2
− E · A

R2
u + f = 0 (8)

3.2.2 Bending motions

In the case of pure bending motion, tangential dis-
placement is not zero (v 6= 0), this leads to the fol-
lowing kinetic energy:

T =
1
2
·
∫ l

0
ρ · A ·

((∂u

∂t

)2
+

(∂v

∂t

)2)
ds (9)

For a bending motion, potential energy equal bend-
ing moment multiplied by the curvature variation. We
consider the ring as sufficiently thin to use EULER-
BERNOULLI hypothesis:

• We can neglect shear deformation

• We can neglect rotation inertia of a cross section

For a curved beam, we have a curvature variation that
is [9]:

1
R + ∆R

− 1
R

=
∂2u

∂s2
+

u

R2
(10)

We can also consider that in a bending motion, the
elongation of neutral fiber can be neglected [10]:

εθθ =
u

R
+

∂v

∂s
≈ 0 (11)

Then, we haveu = −R · ∂v
∂s . In bending theory, the

bending moment equal curvature variation multiplied
by the factorE.IGz

2. We obtain the following poten-
tial energy:

V =
1
2
·
∫ l

0
E · IGz

(∂2u

∂s2
+

u

R2

)2
ds (12)

The electromagnetic effort are considered as radial,
the work resulting of these efforts will be in the di-
rection of a radial virtual displacementδu. We can
therefore apply the HAMILTON theorem:

∫ t2

t1

(δ
∫ l

0

1
2
· ρ · A

((∂u

∂t

)2
+

(∂v

∂t

)2)

− 1
2
· E · IGz

(∂2u

∂s2
+

u

R2

)2
ds

+
∫ l

0
f · δu) dt = 0

(13)

2this coefficient is know as the bending stiffness or flexural
rigidity andIGz =

∫
A

y2 dA as the area moment of inertia

As previously, we use variational calculus – integra-
tions by part according tot ands. We must notice
that the structure – a ring – is periodic therefore some
terms vanish. After some manipulations, we obtain:

∫ t2

t1

∫ l

0

(
− ρ · A

( ∂2

∂t2
(−R2 ∂2v

∂s2
+ v)

)

− E · IGz

(
− R2 · ∂6v

∂s6
− 2 · ∂4v

∂s4

− 1
R2

· ∂2v

∂s2

)
+ R · ∂f

∂s

)
· δv ds dt = 0

(14)

This equation must hold for any admissible displace-
mentδv, we therefore obtain the motion equation:

− ρ · A
( ∂2

∂t2
(−R2 ∂2v

∂s2
+ v)

)

− E · IGz

(
− R2 · ∂6v

∂s6
− 2 · ∂4v

∂s4
− 1

R2
· ∂2v

∂s2

)

+ R · ∂f

∂s
= 0

(15)

3.3 Eigenvalue problem

After the obtaining of the motion equations, we will
study the natural behaviour of the machine. Yet, we
are cancelling the external forcesf and we obtain an
eigenvalue problem. As previously, we study in a first
step, extension motion and in a second, bending mo-
tions.

3.3.1 Pure extension motions

We start with the equation (8) by consideringf as
zero. We are looking for the separate variables solu-
tion u(t, s) = φ0(t) · U0(s) this leads to:

−ρ ·A ·φ̈0(t) ·U0(s)−
E · A
R2

·φ0(t) ·U0(s) = 0 (16)

that can be rewritten:

− φ̈0(t)
φ0(t)

=
E · A

ρ · A · R2
= p2

0 (17)

There is only one solution to this equation – one fre-
quencyp0 – because the others are solutions of bend-
ing modes. We obtain for this mode, anU0 eigenmode
that does not depend ons (U0 = constant = Â0). In
elastodynamic, we usually normalize this mode ac-
cording to the mass:

∫ l

0
U0 · ρ · A · U0 ds = 1 (18)

Therefore, we havêA0 = 1√
2·π·R·ρ·A .



3.3.2 Bending motions

For this mode, we use the equation (15), withoutf .
Thereare yet many bending modes, the separate vari-
ables solution is writing asv(t, s) =

∑
i φi(t) ·Vi(s).

With V
(k)
i = ∂kVi

∂sk , we obtain:

∑

i

−ρ · A
(
φ̈i(t) · Vi(s) − R2 · φ̈i(t) · V (2)

i

)

+ E · IGz

(
R2 · φi(t) · V (6)

i + 2 · φi(t) · V (4)
i

+
1

R2
· φi(t) · V (2)

i

)
= 0

(19)
And for i = m :

− φ̈m(t)
φm(t)

=

− E · IGz

ρ · A
·
R2 · V (6)

m + 2 · V (4)
m + 1

R2 · V (2)
m

Vm(s) − R2 · V (2)
m

(20)

The variablest et s are independent, therefore right
and link members must hold simultaneously. With

− φ̈m(t)
φm(t) = p2

m, we obtain the eigenvalue problem:

− E · IGz

ρ · A
·
R2 · V (6)

m + 2 · V (4)
m + 1

R2 · V (2)
m

Vm(s) − R2 · V (2)
m

= p2
m

(21)

The solutions are complex exponential functions, but
the continuity boundary condition (Vm(s = 0) =
Vm(s = l)) restricts the solution to harmonic func-
tions:

Vm = Âm · ej·m·s
R (22)

Form, we have:

1
R4

· m2 · (m2 − 1)2

(1 + m2)
= p2

m · ρ · A
E · IGz

(23)

This leads to these eigenvalues and vectors according
to the literature [6]:

pm2 =
E · IGz

ρ · A · R4
· m2 · (m2 − 1)2

(1 + m2)

Vm(s) = Âm · ej·m·s
R

(24)

We normalize the eigenvector according to the mass
and obtainÂm = Â0.

3.4 Forced response of the structure

For the study of forced motions, we use the dynamic
equations that are projected on each mode shape.

3.4.1 Pure extension motion

We project the extension motion equation onU0

mode:
∫ l

0
(−ρ ·A · ∂2u

∂t2
− E · A

R2
· u + f) ·U0 ds = 0 (25)

We expressu(t, s) on modal basis, this means with
−∞ ≤ i ≤ +∞, 0 included, on the formu(t, s) =∑

i φi(t)·Ui(s). We have seen thatUi=0 is a constant
and the othersUi6=0 are complex exponentials. The
projection onU0 mode can be different from zero only
for this 0 mode (

∫ l
0 U0 · Ui6=0 ds = 0), this leads to:

∫ l

0
−ρ · A · φ̈0(t) · U0(s) · U0(s)

− E · A
R2 · ρ · A

· ρ · A · φ0(t) · U0(s) · U0(s)

+ f · U0(s) ds = 0

(26)

With the normalization (
∫ l
0 U0 ·ρ ·A ·U0 ds = 1) and

the definition of the eigenfrequency (p2
0 = E·A

R2·ρ·A ),
we have:

φ̈0(t) + p2
0 · φ0(t) =

∫ l

0
f · U0 ds = 0 (27)

This equation is known as modal equation on 0 mode
andF0 =

∫ l
0 f ·U0 ds is amodal forceor generalized

force.

3.4.2 Bending motions

As previously, we project the dynamic equation (15)
onVm6=0 modes:

∫ l

0
(−ρ · A

( ∂2

∂t2
(−R2 ∂2v

∂s2
+ v)

)

− E · IGz

(
− R2 · ∂6v

∂s6
− 2 · ∂4v

∂s4
− 1

R2
· ∂2v

∂s2

)

+ R · ∂f

∂s
) · Vm(s) ds = 0

(28)
We use variation calculus to simplify this equation
and we obtain:
∫ l

0
−ρ · A

( ∂2

∂t2

(
− R2 · v(t, s) · ∂2Vm(s)

∂s2

+ v(t, s) · Vm(s)
))

+ E · IGz

(
R2 · v(t, s) · ∂6Vm(s)

∂s6

+ 2 · v(t, s) · ∂4Vm(s)
∂s4

+
1

R2
· v(t, s) · ∂2Vm(s)

∂s2

)

−
(
R · f(t, s) · ∂Vm(s)

∂s

)
ds = 0

(29)



We have seen thatVm(s) = Âm · ej·m·s
R , ∂2Vm(s)

∂s2 =
−m2

R2 · Vm(s) and the eigenproblem gives:

− (R2 · V (6)
m + 2 · V (4)

m +
1

R2
· V (2)

m )

= (p2
m · ρ · A

E · IGz
) · (Vm − R2 · V (2)

m )
(30)

we replace and obtain:

∫ l

0

(
− ρ · A

( ∂2

∂t2
(v(t, s) · m2 · Vm(s)

+ v(t, s) · Vm(s))
)
− E · IGz

(
p2

m · ρ · A
E · IGz

)

·
(
v(t, s) · Vm(s) + v(t, s) · m2 · Vm(s)

)

− R · f(t, s) · j · m
R

· Vm(s)
)

ds = 0
(31)

Yet, we can expressv on the modal basis:
∑

i φi(t) ·
Vi(s) in using these properties (orthogonality be-
tween each mode:

∫ l
0 Vm · Vi6=m ds = 0 and normal-

ization :
∫ l
0 Vm · ρ · A · Vm ds = 1). We obtain these

decoupled modal equations:

− φ̈m(t) · (1 + m2) − p2
m · φm(t) · (1 + m2)

−
∫ l

0
(R · f(t, s) · j · m

R
· Vm(s)) ds = 0

(32)

With the modal forceFm = 1
1+m2 ·

∫ l
0 (R · f(t, s) ·

j·m
R · Vm(s)) ds, we obtain the well known equations:

φ̈m(t) + p2
m · φm(t) = Fm (33)

3.5 Application to the electromagnetic
forces

We have seen in the first part that the electromag-
netic forces can be expressed as a superposition of
harmonic revolving fields (withθ = s

R ).

f(t, s) =
∑

n

∑

m

f̂n,m · ej·nωt · ej·m·s
R (34)

Generalized forces will be the projection of these
forces on each mode. We noticed an orthogonality be-
tween modes of different ranks, in this case, we have
only one term that is different from zero, when the
mode and the force have the samem rank. Form = 0

(extension), we have:

F0(t) =
∫ l

0
f(t, s) · U0 ds

=
∫ l

0

∑

n

f̂n,0 · ej·nωt · Â0 ds

= 2π · R · Â0 ·
∑

n

f̂n,0 · ej·nωt

(35)

and form 6= 0 (bending) :

Fm =
1

1 + m2
·
∫ l

0
(R · f(t, s) · j · m

R
· Vm(s)) ds

=
m

1 + m2
· 2π · R · j · Âm ·

∑

n

f̂n,m · ej·nωt

(36)
In these two cases, we obtain a second order differen-
tial equation. This equation is excited by an harmonic
force. The solution of this system is well known, for
annω pulsation, this results to:

φm(t) =
∑

n

Fn,m

p2
m − (nω)2

· ej·nωt (37)

For theu solution due to the 0 mode, we come back
to the initial basis with3:

u(t, s) = φ0(t) · U0(s)

=
∑

n

2π · R · Â0 · Â∗
0 · f̂(n, 0)

p2
0 − (nω)2

· ej·nωt

=
∑

n

f̂(n, 0)
(ρ · A) · (p2

0 − (nω)2)
· ej·nωt

(38)

For bending modes –m 6= 0 –, we obtain forv:

v(t, s) =
∑

m

φm(t) · Vm

=
∑

n

∑

m

−j · m · f̂(n, m)
(ρ · A) · (1 + m2) · (p2

m − (nω)2)

· ej·nωt · ej·m·s
R

(39)
That leads foru(t, s) in usingu(t, s) = −R∂v

∂s :

u(t, s) =
∑

n

∑

m

m2 · f̂(n, m)
(ρ · A) · (1 + m2) · (p2

m − (nω)2)

· ej·nωt · ej·m·s
R

(40)
Final solution is the joining of them = 0 solution
(extension) andm 6= 0 solution (bending). When

3with Â∗
0, complex conjugate of̂A0



usingthe factorKm definedas:

Km =

{
1, if m = 0;

m2

1+m2 , if m 6= 0.
(41)

We obtain for radial displacement, withn andm from
−∞ to +∞ :

u(t, s) =
∑

n

∑

m

Km · f̂(n, m)
(ρ · A) · (p2

m − (nω)2)

· ej·nωt · ej·m·s
R

(42)
In this section, we have proposed a dynamic model
for the stator excited by electromagnetic forces. We
can express the solution into the form of the equation
(42) joining extension and bending motions. We can
already notice:

• Only forces with the same spatial rank as a mode
shape can be projected on it.

• Modal response is a second order differential
equation excited by harmonic forces.

• We have neglected damping, therefore these
models hold only for a force with the same space
rank far from the natural frequency.

• If there is a frequency coincidence without spa-
tial coincidence, there must be no resonance.

• Them = 1 mode was included in bending and
we find a zero frequency that is characteristic of
rigid body motion. Nowadays we will see that
further in 3D motions, this mode will become
a longitudinal mode – beam mode – with a non
zero frequency.

4 Experimental verifications

4.1 Description of the machine

The machine used for experimental verifications
was design in Laboratoire d’Électroḿecanique de
Compìegne (L.E.C.). Therefore the geometric char-
acteristics are perfectly known. It is a 3-phase induc-
tion machine supplied by a low voltage (between 9
and 12 V) at a power of 700 W. The machine has
Zp = 2 pairs of poles (1500 rpm when supplied by
a 50 Hz network). The stator hasZs = 27 slots, 2
layers and the rotor is aZr = 21 slots squirrel cage
rotor (Figure 3). This motor has a diameter of 200
mm and a length of 400 mm.

Figure 3: description of the machine

4.2 Natural behaviour

Teeth are not directly taking into account in our model
but indirectly by the modified mass density. Modal
frequencies are computed with previous formulas and
corrected by a factor for bending modes (K2 = 1.14,
K3 = 1.04, K4 = 1.02 et 1 ≤ K≥5 ≤ 1.015)
extracted from [11] to take into account the third di-
mension – longitudinal – that influences short shell
(and therefore sheets). These values are compared
with F.E.A. results, a shock method and a complete
modal analysis with an LMS acquisition and process-
ing system. The Finite Element Analysis was realized
with I.D.E.A.S software. The computation was done
in two dimensions for the stator core without taking
into account the winding that usually increases the
damping but does not change much the lower modes
shapes and frequencies [12]. The boundary condi-
tions were chosen as free. We have measured these
frequencies by two different experimental methods:
the first was an impact test. The hammer can excite
the structure up to 7000 Hz, therefore the measure can
be done above. The second method is a more precise
modal analysis: it permits a better precision but re-
quires more time and facilities. The excitation was
realized by a sinusoidal force at different frequen-
cies with the use of a shaker. The output measures
was done at different positions around the structure
to extract not only the spectrum but also the modal
shape associated with each natural frequency. This
experiment was realized up to 10000 Hz therefore the
measure can be expressed above. These measures are
reported on Figure 4, 5 and 6. These three modes
shapes correspond to the three first sinusoidal mode
shape computed theoretically form = 1, m = 2 and
m = 3.



Figure 4: first mode shape: 2 nodes atf1 = 1278 Hz

Figure 5: second mode shape: 5 nodes atf2 = 2423
Hz

Figure 6: third mode shape: 6 nodes atf3 = 6210 Hz

The first experimental method was done with the
machine placed on a low stiffness support and the mo-
tor can be considered having free boundaries. The
second experiment was done with the motor fixed on
its testing bench by the frontface. The results are re-
ported in Table 1 in Hz.

Mode Analytical Finite Shock Modal
number method Element method analysis

0 14859 14656 O. R. O. R.
1 0 0 1200 1273
2 2478 2364 2400 2423
3 6396 6473 6100 6210
4 12028 11898 11700 O. R.

Table 1: Natural frequencies by 4 different methods
(O. R.: Out of Range) in Hz

The results obtained with the analytical method
are very close to the results obtained with the other
methods. Therefore, this simple method can be used
if we employ properly the mass density modification
and the coefficients given in the previous section. For
example, in this machine, the density of the sheet is
7650 kg/m3. We have neglected the teeth bending
rigidity and having taken into account its mass by
modifying the density of the ring. It leads to a new
density of 10613 kg/m3. We have also used the coef-
ficient given before for the frequencies of rank greater
than 2. We can notice that when the motor is fixed on
its frontface, the natural frequencies are not really dif-
ferent from a free fixation (free boundary conditions).
We can also notice that the rigid body motion in a
plane of a sheet (in a 2D analysis) is not a rigid body
motion in 3D (natural frequency different from zero).
In fact, it corresponds to the first bending mode of the
stator in the longitudinal dimension (beam mode).

4.3 Forced behaviour

For the verification of the forced behaviour, the ma-
chine is supplied by a P.W.M. natural sampling power
converter. We can modifyff the fundamental fre-
quency andfc the chopping frequency. For this type
of converters, the principal harmonic components in
the voltage spectrum are at the frequenciesff , fc±ff ,
fc±2ff , fc±4ff , 2fc±ff , 2fc±4ff , 2fc±5ff . . . We
give an example of this spectrum voltage in Figure 7
for fc = 1500 Hz andff = 50 Hz in log scale (dB).

To reduce the noise and vibrations of the machine,
it is important to compare 2D spectrum of excitation
with 2D spectrum of natural frequencies. We have
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Figure 7: Amplitude of voltage spectrum for a chop-
ping frequency atfc = 1500 Hz and a fundamental
frequency atff = 50 Hz. in log scale (dB)

realized this comparison when the motor is supplied
by a natural sampling power converter. The motor is
supplied by using different carrier frequencies but al-
ways with the same fundamental component (50 Hz,
10 V). In the spectrum of excitations, if we neglect
too low amplitude components (more than a hundred
times smaller), only the 2 space rank of excitations
can approach a mode shape of the stator. This mode
shape for the 2 rank has a frequency around 2450 Hz.

With a carrier frequency of nearly 1500 Hz (1428
Hz), we find components with 2 space rank at 1802,
1902, 1952, 2052, 2102 and 2202 Hz. They are
spaced of 100 Hz multiples due to the fundamen-
tal frequency at 50 Hz. These components corre-
spond to the interaction between 1) the fundamental
componentn1ω, 2) the harmonic components around
the chopping frequencyn2ω and 3) the slots har-
monics (modulation due to the permeance function).
The corresponding force frequency is at the pulsa-
tion n1ω + n2ω · (1 + Zr·(1−ŝ)

Zp
) with ŝ the induc-

tion motor slip. The corresponding space ranks is
Zs−Zr−2 ·p0 = 27−21−2 ·2 = 2 ([13]) and there-
fore have the same space rank that the mode shape at
2450 Hz. In this case, these excitations are far enough
from the natural frequency therefore the noise and vi-
brations are relatively low. If we choose another car-
rier frequency for the power converter, for example
2000 Hz, the new components ofm = 2 space rank
have the frequencies 2374, 2474, 2524, 2624, 2674
and 2774 Hz. We notice, in this case, a component at
2474 Hz that is really close to the natural frequency at
2450 Hz therefore it leads to a strong resonance that
increases significantly the noise emitted by the motor
as it will be seen later. We can also notice that the
frequencies of these excitations are not the frequen-
cies present in the voltage and the current spectrum
but differ because of the permeance modulation.

There are different models to express the acoustic

pressure versus vibration velocity (see example [1]),
we have also developed and used an analytical model
of wave radiation in [14] but it is not the purpose of
this paper. We will just prove that a non-proper tuning
of the converters can become the main noise source in
an electrical drive and our method allows rapid diag-
nostics and a new tuning. The acoustic measures were
made in a semi-anechoic room for different positions
around the machine. The measurements reported in
this article correspond to the principal direction and
level of radiation. This direction corresponds to a ra-
dial direction in the middle of the stator (the vibration
displacement due to the MAXWELL tensor is princi-
pally a radial displacement). The measurements re-
ported are pressure levels (Lp = 10 · log(pRMS

p0
)2

with p0 = 2 · 10−5 N.m−2) for components at differ-
ent frequencies at a distance of one meter, measured
with pressure microphones. The acquisition, treat-
ment and signal processing were performed with a PC
computer and the help of numerical analysis software.
These results are reported on the Table 2 and on the
Figure 8 for the spectrum of pressure level at chop-
ping frequency equal 2000 Hz (strong resonance at
2474 Hz).

Chopping Preponderant Pressure level
frequency pressure amplitude

(Hz) frequency (Hz) (dB)
1500 2047 48
2000 2465 59
2500 2030 43

Table 2: Comparison between acoustic pressure level
amplitude versus chopping frequency of the power
converter
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Figure 8: Spectrum of pressure level at chopping fre-
quency equal 2000 Hz

In our experiment, we notice an excitation that ap-
pears close to the second resonance (n = 2 at fre-
quency equal to 2465 Hz) when the chopping fre-



quency approaches 2000 Hz. This coincidence leads
to a strong resonance. If we modify the chopping fre-
quency, we can strongly decrease this resonance and
therefore the noise emission. We can decrease the
acoustic pressure level by more than 16 dB only by
increasing the chopping frequency of 500 Hz. At a
chopping frequency equal to 2500 Hz, we obtain 43
dB of pressure level instead of 59 dB at a chopping
frequency equal to 2000 Hz because the force fre-
quencies are far from 2465 Hz whereas voltage fre-
quencies are closed (non linearity). We can also no-
tice that a change in the carrier frequency of 100 Hz
is enough to already decrease significantly the noise.

5 Conclusion

In this article, we present a short review of the noise
in electrical AC drive due to the power converter.
We explain how can be expressed the electromagnetic
forces. We proposed a model for vibration behaviour
that is verified experimentally by modal analysis. We
came to the conclusion that only the forces with the
same space rank than the mode shape can be projected
on it, and then, excite it. If there is a frequential coin-
cidence without spatial coincidence, there is no reso-
nance and therefore no strong additional noise. With
these electromagnetic and mechanic models, it is pos-
sible to choose the best strategy of the power con-
verter toplace the annoying forces components far
from a resonance with the same space rank and there-
fore reduce significantly the emitted noise.
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