
 

 
Figure 1.  Evolution of the load with respect to the rotor’s angular 

position 

 
Figure 2.  Simplified electric model of the machine 
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Abstract—This paper presents DC brushless (DCBL) 
machine design methods using the three Matlab’s 
optimization algorithms. Instead of optimizing the 
machine’s design with respect to a classic criterion such as 
the minimization of losses, of weight or cost (usually at one 
operating point), our criterion will be the time it takes for 
the machine to drive a variable load to fulfill its trajectory. 
This will require the calculation of the machine’s behavior 
on the whole of its operating diagram (torque/speed 
diagram). A simplified analytical model of a DCBL machine 
is used in order to compare the performance of the three 
algorithms. The characteristics of the optimization results 
and the use of different algorithms in cascade will be 
discussed. 

I. INTRODUCTION 

In the literature, many articles have proposed different 
methods to optimize the design of electrical machines 
based on one operating point (torque/speed) ([1], [2], [3], 
[4]). In [4] an optimization method using the sequence of 
genetic and gradient-based algorithms has been proven to 
give the optimal solution with a small calculation time. 
This method is applied for the design of a DCBL motor 
where the criterion is the total losses at only one particular 
operating point. 

One particularity of our problem is that the machine has 
to drive a variable load, which is in function of the rotor’s 
angular position (see Fig. 1). At first the load increases 
linearly, then it stays at the maximal position. The second 
particularity is our optimization criterion: the travel time. 
This ”travel time” is defined as the time it takes for the 
machine’s load to fulfill its trajectory. This method is 
different from an optimization method at one operating 
point. 

In this article, a simplified analytical model of a DCBL 
machine as well as a discretized travel time calculation 
method will be shortly presented, then the three 
optimization algorithms of Matlab (SQP, Direct Search 
and Genetic Algorithm) along with their advantages and 
drawbacks will be described. Finally the results obtained 
by different methods will be mentioned. 

The DCBL machine in this article is a small one with 
the following fixed external dimensions: 70mm of length 
and 18mm of the outside radius. 

II. ANALYTICAL MODEL OF A DCBL MACHINE 

Synchronous surface permanent magnet machines are 
famous for their high compacity and their high massic 
torque. In this section, a linear DCBL machine’s 
analytical model (with a realistic flux density limit for the 
considered section) is presented. This model is validated 
and fine-tuned with help of FEM method (FLUX2D 
software). 

A. Electromagnetic model 

The main idea is to calculate the torque with torque 
constant from design parameters. In this analytical model, 
the torque constant K is assumed to be equal to the EMF 
constant. An equivalent LRE electric circuit (Fig.2) is 
needed to calculate the behavior of the motor. The EMF is 
calculated by the following formula [5]: � � ��    (1) 
where ω is the machine’s rotation speed. 
The torque constant of a peripheral permanent magnet 
machine can be calculated by the following formula: � � 4��	
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where 
• p: number of pole pairs 
• N: number of conductors per slot 
• Nenc: number of slots per pole per phase 
• Bg: flux density in the air gap 
• Ra: average radius of the air gap 
• Lst: machine’s length 

 
The flux density in the air gap Bg is calculated with 

help of the magnetic field circulation. It takes into account 
the geometric dimensions, the remanent flux density of 
permanent magnet and the saturated magnetic field. 	
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In order to be able to simulate the motor’s behavior, we 
need to determine its inductance and resistance. 

1. Coil inductance calculation:  
The net phase winding inductance in a machine is 

calculated by [5]: 
 � 

 % 
� % 
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where 
• 

 is the air gap inductance: 
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 �89 is the rotor’s radius, 
� is the air gap’s width, :; is the depth of permanent magnet and <= is 
the relative magnet’s coverage. 

• 
� is the slot leakage inductance 
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(6) 
where �; is the number of slots. 

• 
� is the end turn inductance 
� � F3()GHIFJ& :� KGHI√'M&N+ O   (7) 

where As is the cross sectional area of the air gap, the 
other variables are presented in Fig.3. 

2. Resistance calculation:  
The total resistance of the motor is calculated from the 

total length of the conductor in the stator, this is a classic 
calculation and won’t be presented here. 

B. Mechanical calculation 

Once the magnetic and the electric models have been 
made, the maximal torque can be calculated. From this 
maximal torque, the minimal radius of the drive shaft is 
calculated thanks to a material resistance formula, then the 
inertia of the whole rotor is calculated. 

III.  OBJECTIVE FUNCTION CALCULATION 

In order to obtain the optimal solution for an 
optimization problem, one has to define an objective 
function along with its optimization variables and 
constraints if necessary. In this article, the objective 
function will calculate the travel time with three stages: 
acceleration, constant speed and acceleration. Because of 

the size of our machine, some dimensions have been fixed 
in order to satisfy dimensional requirements of the 
application. Table I presents some fixed and optimization 
variables. Among these variables, p and NQRS are discrete 
variables with the following constraints (due to the size of 
the machine): 

• 1 U p U 3 

• 1 U NQRS U 2 
 

Unfortunately, Matlab’s optimization algorithms cannot 
handle directly problems with discrete values, thus the 
optimization procedure is the following: 

• Initializing the value of these two variables (6 
possible combinations thanks to the above 
constraints). 

• Proceeding the optimization with three rest 
variables using different algorithms available in 
Matlab. 

In this article, only results with the initialization p = 3 
and NQRS = 1 are detailed.  

One can also notice that the variable N (number of 
conductors per slot) is also an integer value. The 
difference of this variable and the two above discrete 
variables is that N can vary in a large range of values. 
That’s why we opted to do an optimization as if N were 



 

continuous; the solution given by the optimizer for N will 
then be rounded to the closest integer value. Finally, the 
objective function value will be re-evaluated with the 
rounded value of N. This technique can lead to a problem 
called “integrality gap” which is that the optimal solution, 
with continuous variables, respects all the constraints 
whilst the neighbor points which correspond to discrete 
variables do not; and so the final solution, with discrete 
values, is far away from the solution given by the 
optimizer. In our case, no constraints are connected to N 
(cf. V), this technique is applicable. 

The analytical model helps obtain the torque constant 
K, the inertia of the whole rotor W89�98, the resistance R 
and inductance L of the machine. We will use these values 
to determine the dynamics (acceleration, speed and 
displacement). 

Since we have a variable load, which depends on the 
angular position of the drive shaft, it is difficult to have a 
direct formula to calculate the travel time of the machine. 
We choose the method of discretizing the time into small 
intervals and calculate the displacement and speed of the 
machine in each interval. Figure 4 presents the calculation 
principle of the objective function. At the iteration 1, all 
values are set to be 0. Then at each iteration k, we execute 
the following calculations: 

• The electromotive force of the motor: �XY�Z$ � � Ω �Z \ 1$  (8) 

• The current I which flows in the machine: ]�Z$ � ^_`ab�c$1*d�efg$h,-1 ih,   (9) 

where dt is time step. 

• The resistive torque j��kl�-���Z$ at each 
iteration is determined by Fig.1 

• The Torque given by the motor at each iteration 
is calculated by j��kl��Z$ � � ]�Z$   (10) 

• If the torque developed by the motor is superior 
to the resistive torque, the speed of the machine Ω �Z$ is calculated by Ω �Z$ � Ω �Z \ 1$ % j��kl��Z$ \ j��kl�-���Z$W89�98 % Wm9�n �� 

(11) 

where W89�98 and Wm9�n are the inertia of the rotor and the 
load (included the tranmission system) seen by the motor. 
Otherwise, the travel time increases without the increase 
of displacement which will bring us to the limit time 
(f=0.4 s). 

• The angular position is calculated by: o�Z$ � o�Z \ 1$ % Ω�Z$��  (12) 
• And finally the travel time at iteration k is 

determined by �����Z$ � �����Z \ 1$ % ��  (13) 
At the end of each iteration, the angular position is 

compared with the final angular position of the motor, if 
the two values are equal, the calculation will stop and the 
value of the objective function is the value of time(k). 
Another comparison is conducted here to see if the travel 
time exceeds the limit time, if yes, the calculation is 
stopped, and the objective function is given the value 2, 

this comparison is to minimize the calculating time of the 
objective function when the machine’s configuration can’t 
satisfy the predetermined conditions. Consequently, all the 
machine’s configurations which don’t satisfy the time 
criteria will have the objective function’s value equals to 
0.4. This will create a flat plan as one can see in Fig.5 (as 
an example, several cases have been computed to show 
the evolution of the objective function). This figure 
presents the variation of the objective function with 
respect to the magnet’s depth and the interior radius of the 
stator. 

IV.  INTRODUCTION TO MATLAB ’S OPTIMIZATION 

ALGORITHMS 

A. Sequential Quadratic Programing (SQP) 

This is a gradient-based optimization method. At each 
iteration, the gradient of the objective function and a linear 
step are calculated in order to calculate the variables for 
the next iteration. 



 

According to [6] the stopping criteria of this algorithm 
are: 

• The distance of the two consecutive points (input 
vectors of design parameters) is less than X 
tolerance TolX. 

• The change of the objective function between 2 
iterations is less than function tolerance TolFun. 

• The constraint violation is more than TolCon, 
which represents the maximum value by which 
parameter estimates can violate a constraint and 
still allow successful convergence. 

• The number of iterations exceeds MaxIter. 
A rapid convergence is the advantage of this algorithm. 
However, the drawbacks are: 

• To use this algorithm, we must specify a starting 
point; moreover this point must not be far away 
from the global minimum unless the algorithm 
will converge to a local minimum. So to use this 
algorithm, we must have an idea on the zone 
where the optimal solution could be. To 
overcome this drawback, the multi-start 
technique can be used but this also means that 
the computing time will increase. 

• This algorithm can only be used when the 
objective function is continuous and 
differentiable, which is not always the case as 
seen in fig5. 

B. Direct Search (DS) 

Direct search methods belong to a class of optimization 
methods that do not compute derivatives. Examples of 
direct search methods are the Hooke and Jeeves’ pattern 
search [7], the Nelder-Mead Simplex method [8], the 
Dennis and Torczon’s parallel direct search algorithm 
PDS [9] and the Box method [10]. In Matlab, the pattern 
search method is used.  

From an initial point Mi, the algorithm will create a 
mesh with the central point is Mi then the value of the 
objective function is evaluated at each node of the mesh. 
The node Mmin corresponding to the lowest function 
value is determined. If Mmin and Mi are not the same 
point, Mmin becomes the initial point for the next 
iteration. Moreover in the next iternation an expansion 
step to form a new mesh is carried out in which the size is 
expanded by some multiple, usually 2. If Mmin and Mi 
are the same point, then a contraction step to for a new 
mesh is carried out in which the size is reduced by some 
multiple, usually 1/2. The algorithm stops when one of the 
stopping criteria is encountered. According to [6], Direct 
Search stops when one of these conditions is satisfied: 

• The mesh size is less than Mesh tolerance. 
• The number of iterations reaches the value of 

Max iteration. 

• The total number of objective function 
evaluations reaches the value of Max function 
evaluations. 

• The distance between the points found at two 
consecutive iterations is less than X tolerance. 

• The change in the objective function from one 
successful poll to the next successful poll is less 
than Function tolerance. 

Because the Direct Search only uses function 
comparisons, no derivative is needed, this is an advantage 
compared to the SQP method when encounting problems 
which are difficult to compute their derivatives. However, 
as SQP methods there is still a drawback of this method: 
the initial point must be specified. This point must not be 
far from the global optimum unless the algorithm will 
converge to a local optimum. 

C. Genetic Algorithm (GA) 

This third optimization algorithm imitates the natural 
biological evolution. From an initial population of 
”individuals”, through selection, crossover and mutation, 
the algorithm will converge to the global optimum. At 
each iteration, the following procedure is conducted: 

1) Choose initial population 
2) Evaluate the fitness of each individual in the 

population 
3) Repeat until termination: 

• Select best-ranking individuals to reproduce 
• Breed new generation through crossover 

and/or mutation (genetic operations) and give 
birth to offspring 

• Evaluate the individual fitnesses of the 
offspring 

• Replace worst ranked part of population with 
offspring 

The difference between this algorithm and SQP and 
Direct Search (column standard algorithms) is presented 
in table II. 

According to [6], this algorithm will stop when: 
• The number of generations reaches the value 

of Max Generations. 
• The running time in seconds equal to Time 

limit. 
• The value of the fitness function for the best 

point in the current population is less than or 
equal to Fitness limit. 

• The weighted average change in the fitness 
function value over Stall generations is less 
than Function tolerance. 

• The algorithm stops if there is no improvement 
in the objective function during an interval of 
time in seconds equal to Stall time limit. 

• The algorithm runs until the weighted average 
change in the fitness function value over Stall 
generations is less than Function tolerance. 

The advantage of this algorithm, from the point of view 
of a user, is that we don’t have to specify the initial 
population, the algorithm itself will do this job. So it is 
particularly adapted to problems where there is no a priori 



 

knowledge about the zone where the optimal solution is. 
But some drawbacks must be mentioned here: 

• It is difficult to determine the stopping 
conditions. 

• It is time-consuming because at each iteration, 
a population of individuals is evaluated. 

To conclude, using SQP, Direct Search or Genetic 
Algorithm depends on the objective function’s nature and 
on the a priori knowledge that we have about the optimal 
solution. 

V. RESULTS 

We have applied the three algorithms to our objective 
function with the idea to test which one is the best fitted to 
this problem.  

Since the different variables vary in different ranges 
which are not homogenous, they are normalized. The 
normalization consists of transforming the variation of 
these variables into the interval [0; 1]. The transformation 
is just a linear one in which the lower bound corresponds 
to 0 and the upper bound corresponds to 1. This helps the 
variation of all variables be homogenous. 

The following constraints are posed to make sure that 
the final result is adequate: 

• The drive shaft radius must be smaller than the 
interior radius of the stator minus the depth of the 
magnet and the air gap. 

• The slot area must be positive 
• The magnet’s depth must be inferior to a ratio of 

the interior radius of the stator. This ratio is 
determined to insure that the centrifugal and 
tangential forces do not pull the magnets out of 
the rotor.  

Once the objective function and the constraint function 
(which contains inequality expressions and is the same for 
all the three algorithms that we proceed subsequently) 
have been made, the optimization procedure can be 
carried out. The three optimization variables can be 
presented by a vector p � qpr p& pst where pr is the 
normalized stator’s interior radius, p& is the normalized 
magnet’s depth and ps is the normalized number of 
conductors per slot. Each normalized variable pu varies in 
the interval [0,1]. The other geometric or electric variables 
are either fixed or dependent on these three optimization 
variables. 

1) Firstly, we will use the SQP method with the 
Matlab function fmincon. As explained in the section IV-
A, this method can only be used when the objective 
function is continuous and differentiable. this method can 
not be applied to our problem because of the 
particularities of our objective function (figure 5): a big 
jump at the border of the valid zone and a flat invalid 
zone. Several tests with SQP confirmed this. 

2) The search for an optimal configuration of our 
motor goes on with the utilization of ”Direct Search” 
method. Our starting point is pA=[0.8182 0.75 0.75] 
which corresponds to �u��_���� = 11mm, :; = 6.5mm and 
N = 11, and the stopping criterion is that tolerence over 
the change of X is 10e-6. We obtained the final value pv 
=[0.9312 0.3335 0.2540]. We can see the evolution of the 

objective function throughout the optimization procedure 
with the figure 6. A comparison between the starting 
configuration (pA) and the final configuration (pv) is 
presented in the figure 7. The Direct Search algorithm is 
robust : the starting configuration (figure 7(a)) chosen out 
of constraint on permanent magnet’s depth allows to 
reach a final solution which repects all the constraints 
(figure 7(b)). 

3) Finally, we try out the Genetic Algorithm. As 
presented above, the algorithm does not require a starting 
point. The stopping criteria are the following: 

• The population size is 30. 
•  Number of generation: 30 
• Tolerence on the objective function : 1e-3. 

With these criteria, we obtained the vector pv= [0.5830 
0.2818 0.5222] (see figure 8(a)); the value of the 
objective function is 0.1775. 
Cascading method using SQP and GA has been 

presented in [11]. Here the result from the cascading 
method of Direct Search and Genetic Algorithm, which 
means using Direct Search, with the solution given by 
Genetic Algorithm as the starting point, will be presented. 
The final result is illustrated in the figure 8(b), the 
obtained vector is pv= [0.583 0.2804 0.5226] and the 
value of the objective function is Fval=0.17745, which is 
better than the result given by using GA only (0.17745 
compares to 0.1775). There is only a small difference 



 

between the two configurations shown in figure 8. 

VI.  CONCLUSION 

From the results, we can see that in order to satisfy the 
travel time constraint, the motor can have either a high 
torque (large interior radius of the stator as shown in the 
case of Direct Search method) or low rotor inertia (smaller 
interior radius of the stator as shown in the case of Genetic 
Algorithm). There is not necessarily one unique good 
result when optimizing travel time: two optimal solutions 
can be found, one with a high torque and the other with 
low rotor inertia. In order to choose the definitive solution, 
other criteria must be taken into consideration such as 
losses, costs or heating (out of the scope of this article). 

Concerning optimization algorithms, SQP algorithm is 
not suitable with our particular problem. However it is 
possible to use either Direct Search or Genetic Algorithm 
to obtain the optimal solution. 

To be able to reach the global optimal solution with 
Direct Search method, one has to have an a priori 
knowledge on the zone where the optimal solution could 
be. This has been shown very clearly in our case: the 
result obtained by Direct Search has the value of the 
objective function of 0.18905 (fig 6), whilst the objective 
function’s value for the case of Genetic Algorithm is 
0.1775), which means that the starting point for Direct 
Search does not lie near the optimal solution. This starting 
point leads to a local optimum. 

Another aspect that we have to mention here is that the 
calculating time for Direct Search is much shorter than the 
calculating time for Genetic Algorithm (350 seconds 
compare to 13000 secondes). To overcome this limit, we 

can use the Genetic Algorithm first, with relatively less 
strict stopping criteria in order to reduce the calculating 
time, to obtain the starting point for Direct Search. This 
cascading utilization of the two algorithms will help to 
have fully the advantages and avoid the drawbacks of the 
two algorithms. 
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