
Outils pour le dimensionnement efficace des systèmes électromécaniques

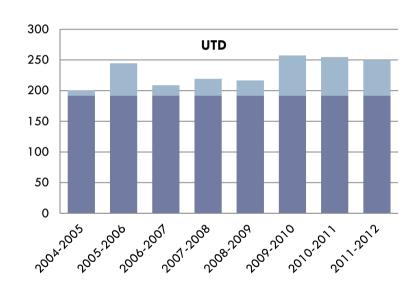
Stéphane VIVIER

Sommaire

- Parcours
- Activités d'enseignement
- Activités de recherche
- Travaux de recherche
- Bilan & Perspectives

Parcours & Activités

Parcours


- Diplôme d'ingénieur 1992-1997
 - ESIEE (Ecole Supérieure d'ingénieurs en Electronique et Electrotechnique) Amiens
- ▶ DEA -1998
 - FPMs (Faculté polytechnique de Mons Belgique)
- ▶ Doctorat 1998-2002
 - ▶ Ecole Centrale de Lille USTL (Université des Sciences et Technologies de Lille)
 - ► [Service militaire]
- ▶ ATER (poste complet) 2002-2003
 - ▶ IUT de Béthune Université d'Artois
- ► ATER (poste complet) 2003-2004
 - Ecole Centrale de Lille USTL (Université des Sciences et Technologies de Lille)
- Maître de conférences depuis 09/2004
 - UTC (Université de Technologie de Compiègne)

Activités d'enseignement

- École Centrale de Lille
 - Génie Électrique (général) / Probabilités / Statistiques
- ▶ IUT Béthune
 - Machines électriques / Électronique
- UTC
 - Électromagnétisme
 - Responsable de l'UV
 - Robotique (filière)
 - Machines électriques (filière)
 - Électricité (tronc commun)
 - Optique (tronc commun)

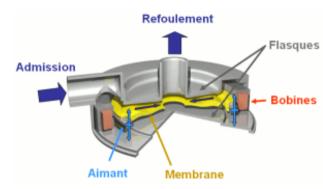
Responsable de l'UE

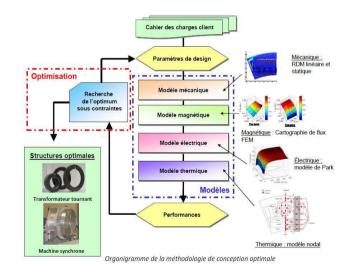
Activités de recherche


- Positionnement
 - Laboratoire d'Electromécanique de Compiègne (LEC EA 1006)
 - Actionneurs Electriques et Systèmes de motricité à énergie électrique embarquée

AS2E COMEC

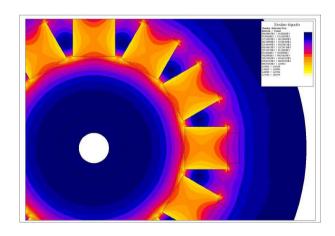
Alimentation des Systèmes à Cérrerepiti Emploptiquésation des machines électriques et de leur commande




Activités de recherche

- Activités contractuelles
- Projet AMS AirBooster
 - ▶ Projet PREDIT 2007-/
 - Conception d'un système embarqué de pompe à membrane pour la surcompression des gaz d'échappement
 - ➤ Conception d'un actionneur linéaire résonnant haute dynamique, grands efforts

- ▶ Projet PREDIT ~2007-2009
- Evaluation des concepts innovants pour l'hybridation des véhicules



Activités de recherche

- Activités contractuelles
- Projet AREMA
 - ▶ Projet PREDIT ~2007-2009
 - Conception des alternateurs automobiles à haut rendement

- Projet « Ferrofluide »
 - Étude industrielle
 - Étude d'un trieur densimétrique de billes amagnétiques, à base de ferrofluide

Activités scientifiques

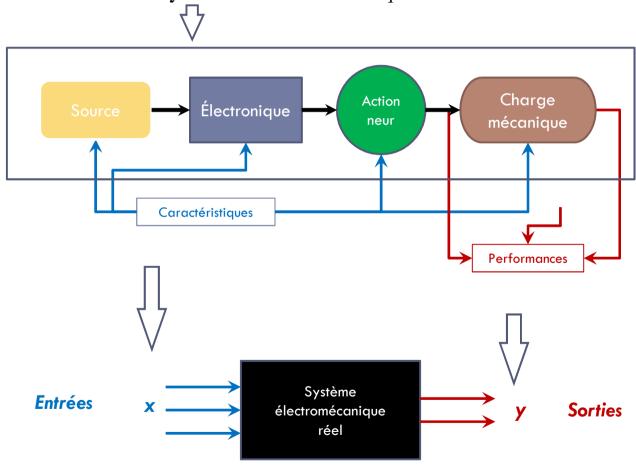
- Co-encadrements (50%) Thèses
 - Jérôme LEGRANGER
 - **≥** 2007**→**2009
 - Étude des machines brushless dans les applications moteurs-générateurs embarquées
 - Anthony GIMENO
 - ≥ 2007-2008→2010-2011
 - ▶ Étude des alternateurs automobiles Caractérisation des pertes
 - Radhouane KHLISSA
 - ▶ 2011-...
 - Application des outils de dimensionnement efficace
- Publications
 - 12 revues avec comités de lecture
 - > 33 articles en Conférences internationales
 - 4 articles en Conférences nationales
 - 2 brevets

Activités scientifiques

- Participation aux jurys de thèse
 - 2, comme co-encadrant
 - Jérôme LEGRANGER Anthony GIMENO
 - 2, comme membre extérieur
 - Aurélien VAUQUELIN (UTC) Jilin GONG (EC Lille)
- Comités de lecture
 - ▶ EF2009, ICEM 2010, MATCOM
- Commissions de spécialistes / de sélection

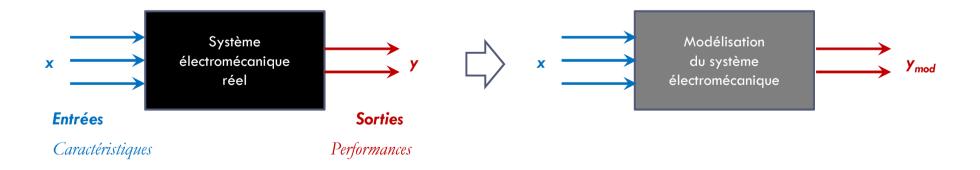
Travaux de recherche

Travaux de recherche - Sommaire

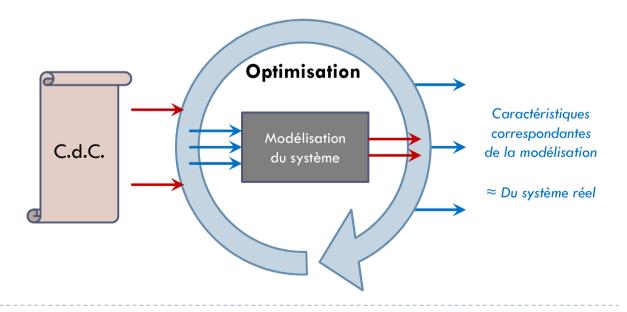

- Vision unifiée des travaux
- Problématique & Outils
 - Objet des travaux
- Modélisation
 - Différentes physiques
 - Différentes techniques
- Optimisation
 - Différentes méthodes
 - Différents supports

Travaux de recherche

Problématique & Outils


Problématique

Dimensionnement d'un **Système** Électromécanique


Problématique

- Le « système réel » est dans tous les cas inexistant réellement, car:
 - Soit il n'a jamais été conçu / construit
 - Soit il existe mais n'est pas dimensionné de manière optimale
- Utilisation d'un outil mathématique informatique permettant de se substituer au système « réel »
 - Modélisation

Problématique - Outils

- Dimensionnement d'un Système Électromécanique
- But recherché:
 - La conception optimale du système, par utilisation de sa modélisation
 - Selon un cahier des charges (spécifications données a priori)
- Démarche privilégiée
 - Optimisation

Problématique - Outils

- Modélisation & Optimisation: Outils pour le dimensionnement
- Grand nombre de possibilités quant au choix de :
 - La méthode de modélisation
 - La procédure d'optimisation
 - Des combinaisons entre elles
- ▶ Intention des travaux :
 - Déterminer un meilleur choix sur le plan de l'efficacité globale du dimensionnement

Critère supplémentaire

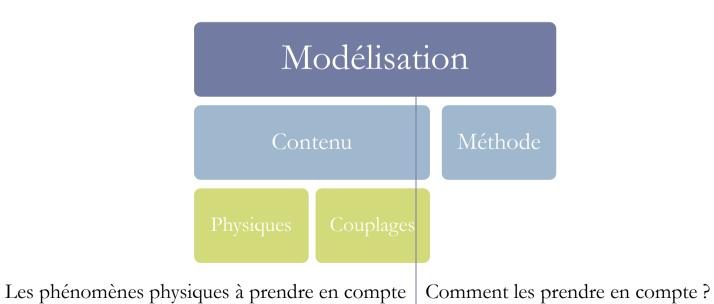
- Dutils pour le dimensionnement efficace des systèmes électromécaniques
- Notion d'efficacité

efficacité =
$$\frac{\text{Qualité de la solution}}{\text{Coût de la solution}}$$

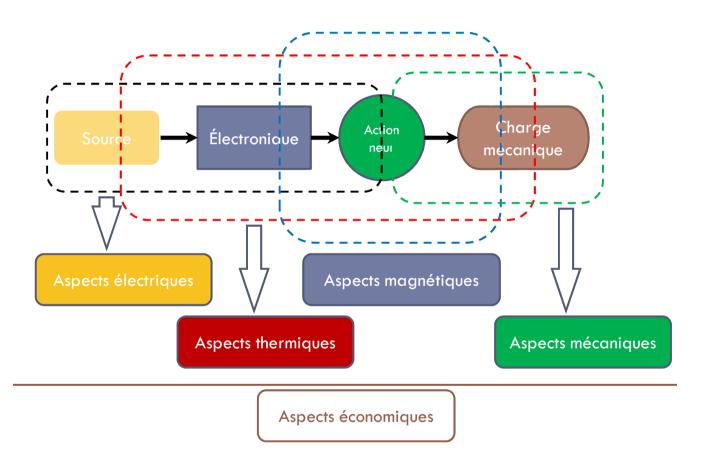
- Coût d'un dimensionnement
 - Matériel utilisé
 - Investissement des personnes
 - > Temps nécessaire
 - A l'optimisation
 - A la construction des modélisations

Qualité:

- Proximité avec la réalité
 - Performances
 - Caractéristiques
 - Variabilité des variables (tolérances / incertitudes)


Travaux de recherche

Modélisation

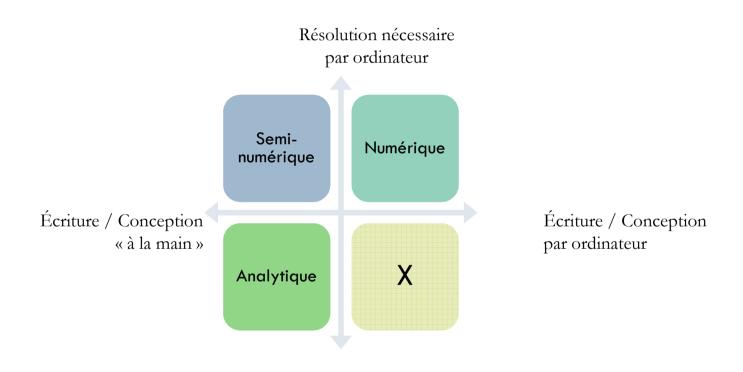

Modélisation

Constitution d'une modélisation

Modélisation – Quelles physiques?

- Un modèle par phénomène physique
- ▶ Une modélisation = Des modèles

Modélisation - Physiques considérées



Modélisation - Méthodes

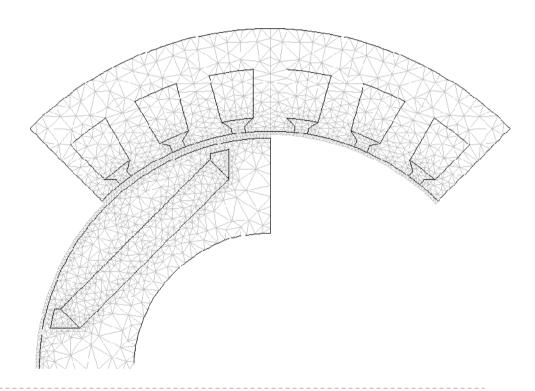
- Construction d'une modélisation
 - Une histoire de choix multiples
 - Des phénomènes physiques à considérer / De leur niveau de description
 - Des techniques mathématiques et informatiques permettant de les prendre en compte
 - De la nature des couplages à prendre en compte / De la manière dont ils sont décrits (naturel, faible, fort)
 - De préférence les bons ...
 - Relativement à un objectif d'efficacité
- Hypothèses de construction d'une modélisation
 - Le moins possible
 - Pour se rapprocher de la réalité modélisée
- Dans une finalité supérieure de dimensionnement
 - Par optimisation

Modèles - Méthodes

Quelles méthodes pour quelles physiques ?

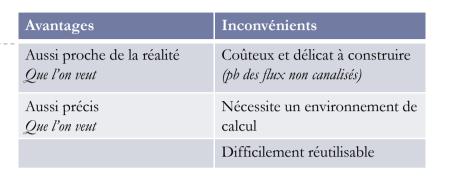
Résolution possible « à la main »

Modèles – Approche analytique


Avantages	Inconvénients
Rapide	Hypothèses nombreuses et lourdes
Dérivable	Peu précis
	Difficilement réutilisable

- Souvent indispensable:
 - Seule approche raisonnable (efficacité) pour le calcul de grandeurs secondaires
 - Pertes fer (formules de Steinmetz, Bertotti)
 - Donne des approximations utiles dans des configurations complexes
 - ▶ Inductances Pertes dans les chignons
 - Est utilisée par d'autres approches de modélisation!
 - La Calcul des résistances des méthodes nodales
- Pré-dimensionnement
- Aide à la modélisation

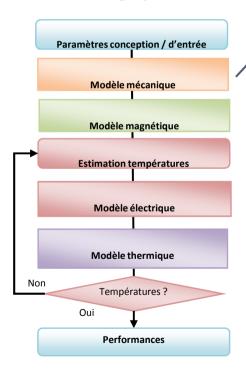
Modèles - Approche numérique


- Calcul de la solution physique en une multitude de points
- Méthodes avec ou sans maillage
- Méthode des Éléments Finis
- Modélisation de référence
- Permet la modélisation multiphysique des actionneurs
 - Magnétique
 - **Thermique**
 - Mécanique

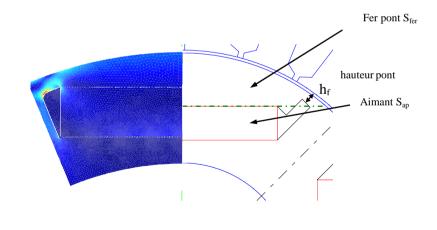

Avantages	Inconvénients
Au plus proche de la réalité (peu d'hypothèses)	Coûteux à évaluer (3D - temporel)
Précis	Nécessite un environnement de calcul
Réutilisable	Difficulté pour la dérivation

Modèles – A. semi-numérique

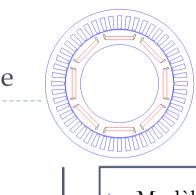
- Calcul de la solution physique par décomposition en tubes de flux
- Méthodes nodales
- Modélisation intermédiaire
- Permet la modélisation multiphysique des actionneurs
 - Électrique
 - Magnétique
 - Thermique
- Offre une solution intéressante à la modélisation tridimensionnelle
 - Magnétique
 - Thermique

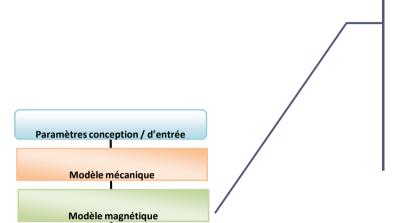


MSAPI - Réseau de reluctance axe q


Projet M2EI

- Modélisation multiphysique MSAPI
- Fonction alterno-démarreur
- Enchainement des modèles
 - Couplages naturels et faibles



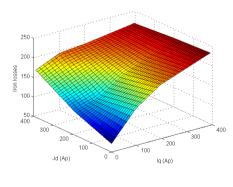

Modèle mécanique

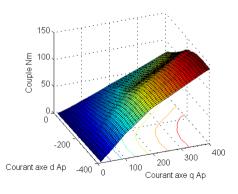
- Calcul statique de résistance du pont magnétique aux forces centrifuges
- Rôle de vérification de ce critère

Projet M2EI

Estimation températures

Modèle électrique

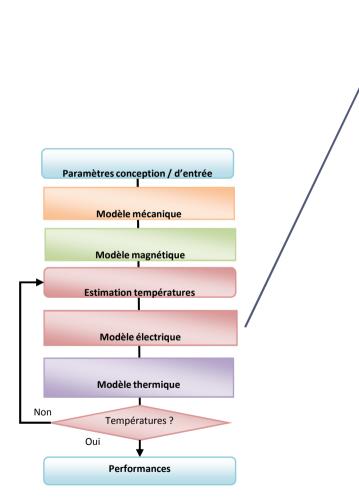

Modèle thermique


Températures ?

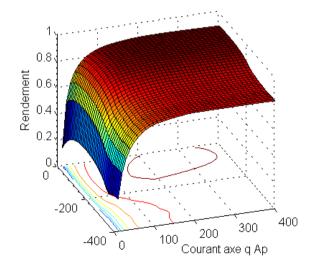
Performances

Oui

- Modèle magnétique
 - Approche combinée 2 axes dq (Park)
 - Cartographique de flux
 - Évaluation des grandeurs magnétiques
 - Couple / Pertes fer, ...



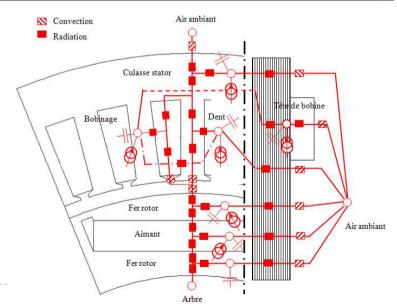
Pertes fer

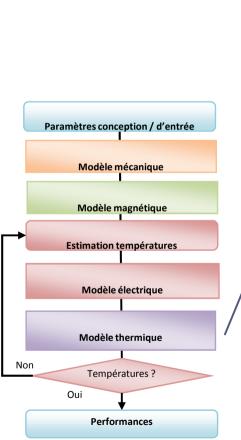

Couple

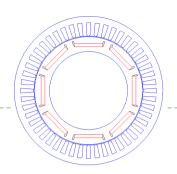
Projet M2EI

Modèle électrique

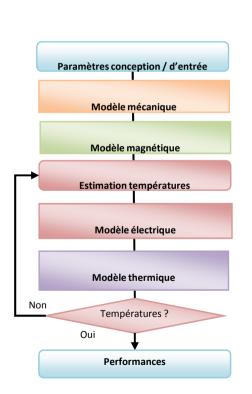
- Basé sur la cartographie de flux
- Génération d'une commande (grandeurs électriques)
 - Rendement maximal

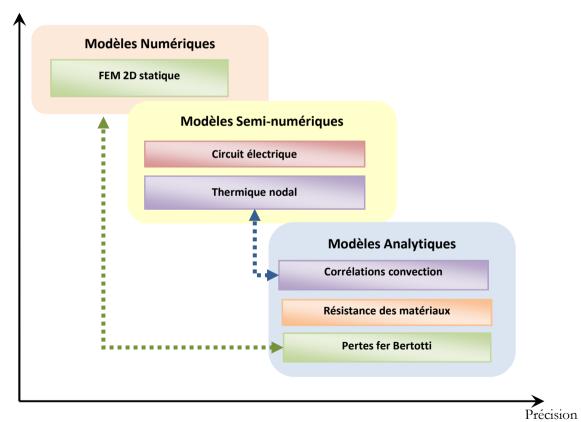



Projet M2EI


Modèle thermique

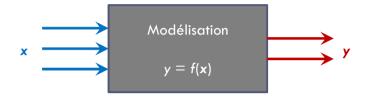
- Modèle nodal tridimensionnel non linéaire
- Estimations analytiques:
 - Des coefficient de conduction de bobinage
 - Des coefficient de convection (entrefer, ailettes, chignon, ...)

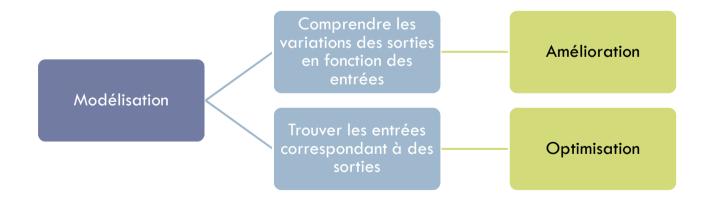



Projet M2EI

Types de modèles

Temps de calcul

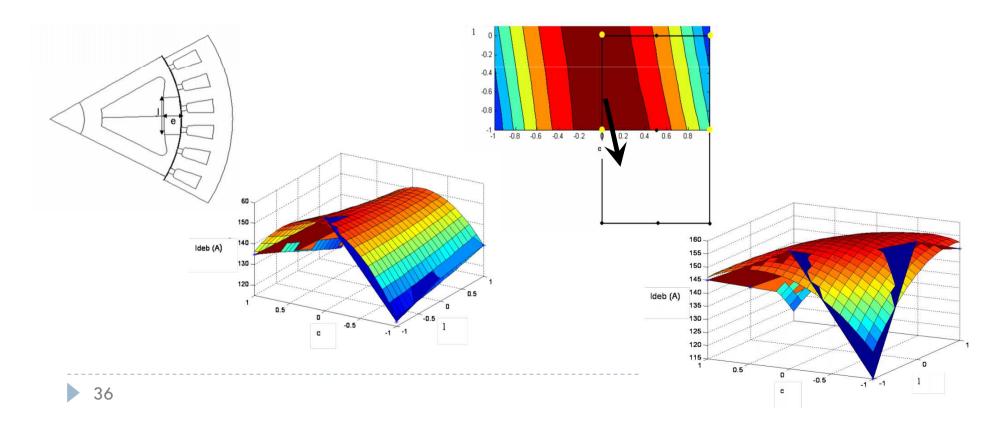



Travaux de recherche

Dimensionnement par Optimisation

Dimensionnement...

Utilisation d'une modélisation d'un système



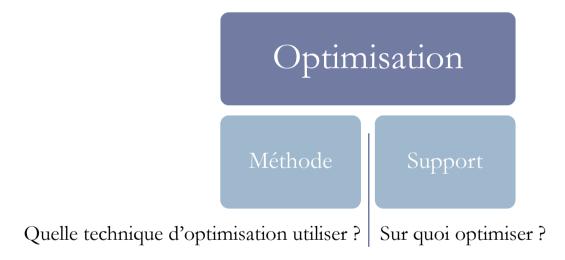
Amélioration

- **Comprendre et évaluer** les variations des sorties en fonction des entrées
- Pourquoi ?
 - Les modélisations (multiphysiques) sont complexes
 - Les liaisons entre les entrées et les sorties sont difficiles
 - A apprécier / A quantifier
- Nécessité d'outils supplémentaires aider à la compréhension des liaisons entre variables
- Méthode des Plans d'Expériences
 - Détermination d'une liaison mathématique simple entre les entrées et les sorties
- Réalisation d'une série d'expériences différentes (plan d'expériences)
 - Ensemble de modalités de valeurs des entrées
- Déduction des valeurs des sorties pour ces valeurs d'entrées

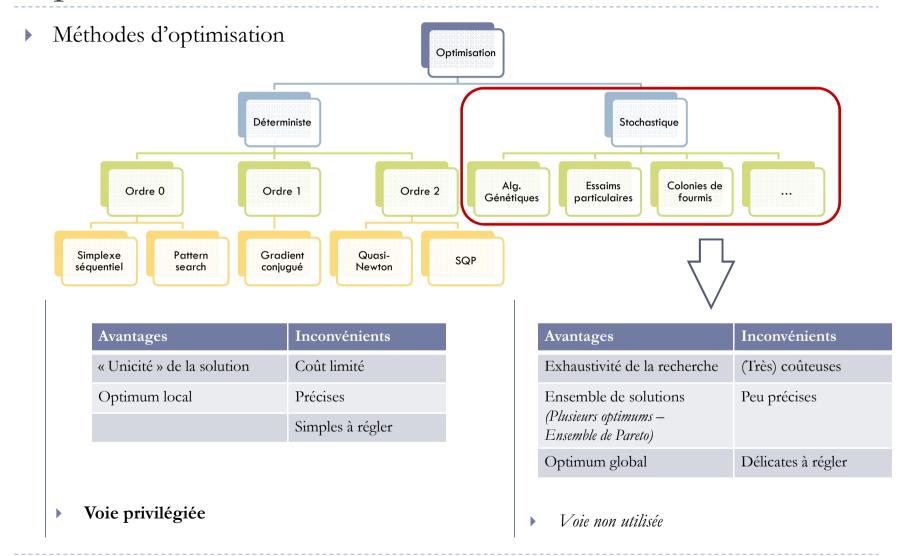
Amélioration

- Méthode des Plans d'Expériences Surfaces de réponses
 - Prise en compte des variations des sorties en fonction des entrées jugées influentes
 - Fonctions de liaisons polynomiales
 - ▶ 1^{er} ordre / 2nd ordre
 - Leur simplicité permet de déduire des directions privilégiées d'améliorations possibles

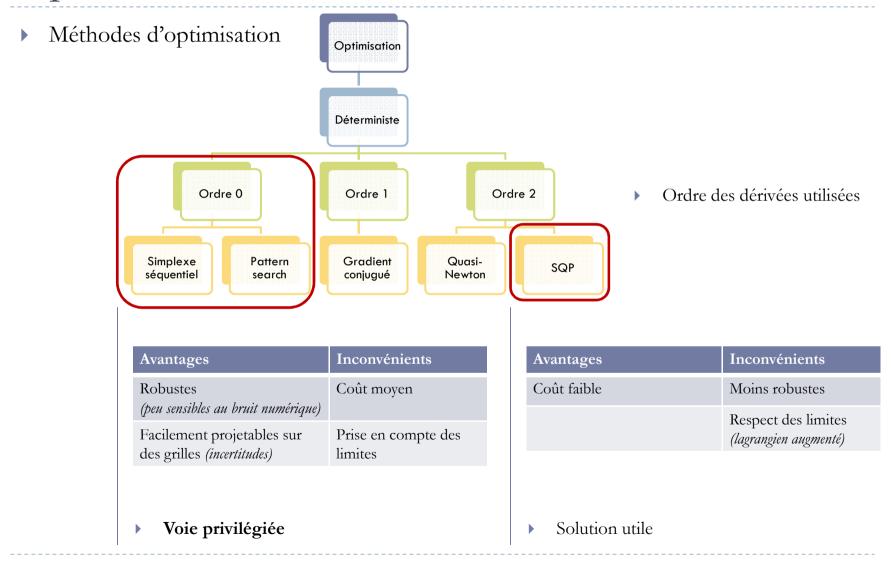
Amélioration → Optimisation


- Amélioration
 - Processus simple
 - Généralement en 1 étape
 - Ne garantit pas l'augmentation des performances...

- Extension du concept: **Optimisation**
 - Tout faire pour bénéficier d'améliorations effectives des performances
 - Itératif, convergent
 - Processus plus complexe
- ▶ But: Déterminer la bonne (meilleure ?) définition d'un système tel qu'il présente les performances attendues
 - Selon un cahier des charges


 Caractéristiques correspondantes de la modélisation inversée

 ≈ Du système réel


Optimisation

Optimisation- Méthodes

Optimisation- Méthodes

Optimisation - Supports

- Supports d'optimisation
 - Sur quoi appliquer les méthodes d'optimisation?
 - Comment choisir ?

Modélisation

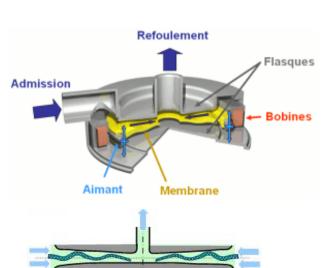
Modélisation
(" substitut))

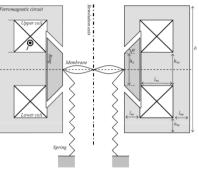
Modélisations
multiples

Modélisations
multiples

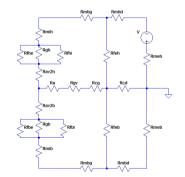
Modélisations
multiples

Modélisations
multiples

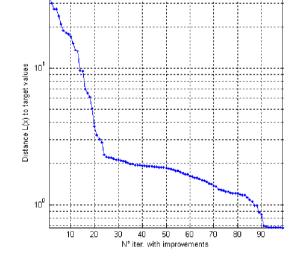

- Modélisations de faible coût
 - Relations analytiques
 - Réseaux nodaux simples
 - Peu de couplages


- Modélisations lourdes
 - Approches numériques
 - ▶ 3D / temporelles
 - Couplages prépondérants

Optimisation directe


La modélisation est utilisée directement pour calculer les sorties (performances) en fonction des entrées (caractéristiques) du système modélisé

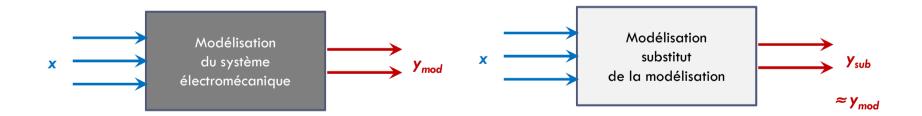
Avantages	Inconvénients
Accès direct à la modélisation (fiable)	Selon la modélisation, coût pouvant être important
Ne nécessite rien d'autre	



Structure axisymétrique résonnante

Modèle nodal magnétique

Optimisation par l'algorithme du Simplexe Séquentiel


[350 évaluations – 24min 33s]

Optimisation indirecte

•	L'optimisation directe est trop coûteuse dès que
	les coûts des évaluations de la modélisation
	deviennent trop élevés

Avantages	Inconvénients
Accélération du processus d'optimisation	Nécessite la construction du substitut
Compréhension des liens entrées – sorties (Meth. Plans d'Exp.)	(Faible) Qualité du substitut pour un nombre d'entrées important

- Substitution à la modélisation (multiphysique, proche de la réalité) :
- Un objet mathématique équivalent, (plus) rapide:
 - Modélisation substitut
 - Calculé à partir d'évaluations de la modélisation

- Solution appliquée partiellement
 - Sur les parties électriques et magnétiques (cartographies de flux)

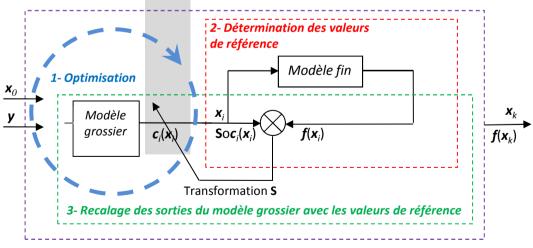
Optimisation multi-modélisations

- La modélisation est très lourde: le nombre de ses évaluations doit être limité au maximum
- Ses résultats (fiables par hypothèse) sont exploités
- Modélisation « fine »
- L'optimisation ne peut pas être réalisée sur la modélisation
- Utilisation d'une seconde modélisation rapide
- Modélisation « *grossière* »

Approche de *Space Mapping*

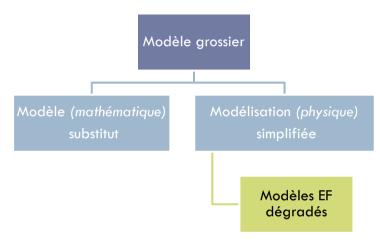
Avantages

Ne fait pas de compromis précision/rapidité

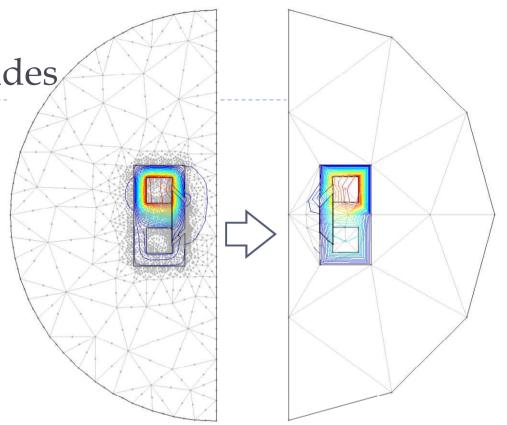

(Seule ?) solution
 exploitable pour les modélisations lourdes

Inconvénients

Nécessite la construction d'une seconde modélisation

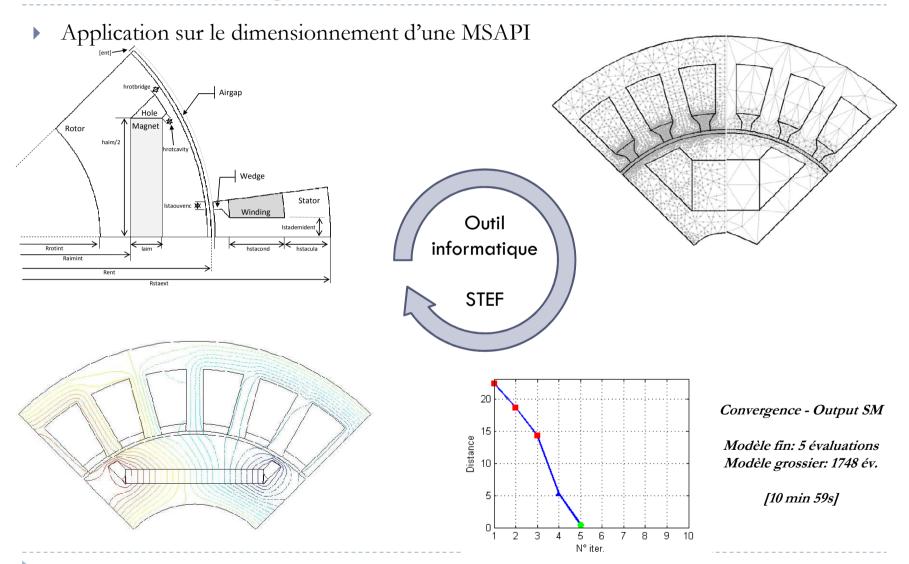

Repose sur plusieurs optimisations internes successives

- Recalage automatique
- Ajustement des sorties
 - Output (Space) Mapping

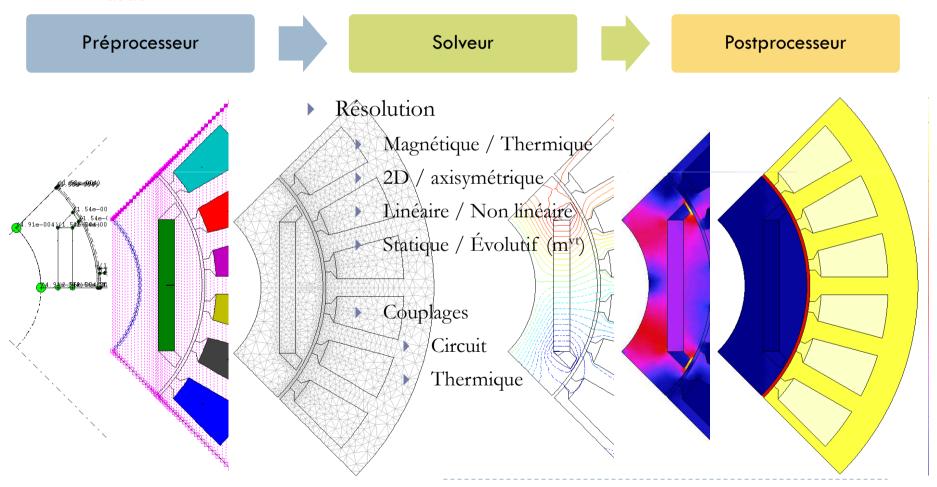


Modèles physiques rapides

Nature du modèle grossier?



- Degrés de liberté
 - Maillage
 - Nombre de nœuds / éléments
 - Type d'éléments
 - Précision de la solution
 - Matériaux
 - Non linéarité → linéarité
 - Propriétés physiques
 - Couplages


	Modèle fin	Modèle grossier	Ratio
Nb noeuds	6830	77	1/89
Nb éléments	3366	142	1/24
Type élément	Triangulaire 6 noeuds (T6)	Triangulaire 3 nœuds (T3)	-
P.e.c. infini	Transformation de Kelvin	Condition asymptotiques	-
Tps résolution	3.1 s	0.033 s	1/94
Tps construction + résolution	4.3 s	0.068 s	1/63

Space Mapping

STEF

- Solveur Temporel Éléments Finis
 - Matlab

Bilan & Perspectives

Bilan

- Le dimensionnement: Répondre à de nombreux compromis Faire des choix
 - Modélisation / Optimisation
- Ces travaux: Une sélection parmi les outils existants
 - Critère supplémentaire: efficacité de la démarche de dimensionnement

Modélisation

- Multiphysique / Multi modèles
- Nature des modèles dépend de la physique décrite

Optimisation

- Méthodes déterministes
- Méthodes les plus robustes
- Space Mapping

Choix réalisés, compte tenu:

- Des types de problèmes considérés (essentiellement 2D)
- ▶ Des outils informatiques → STEF

Perspectives

- Peut-on aller plus loin ?
- Considérer des modélisations naturellement (très) lourdes
 - Machines tridimensionnelles
 - Problèmes temporels / avec mouvement
 - Prise en compte des aspects vibrations / acoustiques
 - Intégration d'informations issues de mesures
 - **...**
- Prendre en compte des incertitudes
 - Dans la modélisation
 - Transmission des incertitudes des entrées sur les sorties
 - Au cours de l'optimisation
- ▶ [Exploiter la technologie...]

