Contribution à l'étude des phénomènes couplés (multi-physiques et systèmes) pour la conception et la commande des actionneurs électriques

LABORATOIRE ELECTROMECANIQUE DE COMPIEGNE

Vincent Lanfranchi

Habilitation à Diriger des Recherches

Le 28/11/2011

Utc Recherche

HDR- V. Lanfranchi - 28/11/2011

Partie 1: Maîtrise du contenu harmonique des actionneurs par la commande

Partie 2 : Modélisation harmonique de la machine dans un problème multi-physique : Impact sur le comportement vibro-acoustique de l'ensemble machine-convertisseur

Partie 3 : Optimisation de l'actionneur électrique par la conception et la commande de la machine

Maîtrise du contenu harmonique des actionneurs par la commande

- **1.** Impact de la topologie du convertisseur statique
- 2. Impact des stratégies de commande du convertisseur statique
- 3. Influence simultanée de la topologie et des stratégies de commande

3 / 52

Impact de la topologie du convertisseur statique

4 / 52

5 / 52

E.A. 1006

6 / 52

Impact des stratégies de commande du convertisseur statique

MLI intersectives ou vectorielles :

la méthode de construction change, mais contenu identique possible

Analogie MLI intersectives / vectorielles:

Ajout de composante homopolaire

Domaine temporel DPWM Laboratoire de Compiègne

Impact des stratégies de commande du convertisseur statique

Influence simultanée de la topologie et des stratégies de commande

9 / 52

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

de Compiègne

Modélisation harmonique de la machine dans un problème multiphysique :

Impact sur le comportement vibro-acoustique de l'ensemble machine-convertisseur

- **1. Stratégies de modulation et comportement vibratoire de l'actionneur**
- 2. Modélisation harmonique de machines
 - modélisation mécanique
 - modélisation électromagnétique
 - couplage multiphysique et système

Laboratoire d'ELectromécanique de Compiègne

12 / 52

E.A. 1006

Stratégies de modulation et comportement vibratoire de l'actionneur

Laboratoire d'ELectromécanique de Compiègne EA.1006

HDR – *V. Lanfranchi*, 28/11/2011

13 / 52

14 / 52

Modélisation harmonique de machines:

•Modélisation mécanique (2D) analytique et vérification par éléments finis [Jordan]

•Validation expérimentale

d'ELectromécanique de Compiègne

E.A. 1006

Fonction de transfert mécanique

Mode	Analytical	Finite	Shock
number	Method (Hz)	Element (Hz)	Method (Hz)

0	14463	14656	O. R.
1	x	x	1200
2	2420	2364	2400
3	6244	6473	6100
4	11742	11898	11700

Objectif de la modélisation harmonique électromagnétique :

expliquer toutes les raies importantes => modèle analytique

Hypothèses:

•Uniquement prise en compte des déformations du stator
•Force de Laplace, magnétostriction: négligée; pression de Maxwell seule
•Pression de Maxwell purement radiale
•Induction magnétique purement radiale

$$P_M = B_g(t, \alpha_s)^2 / (2\mu_0)$$

fréquences des vibrations = fréquences de la pression de Maxwell

modélisation de l'induction magnétique d'entrefer pour calcul de pression: [Alger-Hubert]

$$B_g = B_0 \cdot \cos(P\theta - \omega t) + B_1 \cdot \cos((S - P)\theta + \omega t) + B_2 \cdot \cos((S - P)\theta - \omega t)$$
$$+ B_3 \cdot \cos((R - P)\theta - \omega t \cdot (1 - \frac{R \cdot (1 - s)}{P})) + B_4 \cdot \cos((R + P)\theta + \omega t \cdot (1 - \frac{R \cdot (1 - s)}{P}))$$

16 / 52

modélisation électromagnétique insuffisante :

Élimination a priori d'harmoniques de rang élevé
 ⇒ pas d'ordres spatiaux impairs de faible rang

- Ou ordres spatiaux non entier

Laboratoire

E.A. 1006

de Compiègne

d'ELectromécanique

Spectre vibratoire (non accouplée, excitation MLI étalée)

couplage multiphysique et système $B^2 = [... + B_1B_4 . \cos((S - R - 2P)\theta + n_1\omega t - n_2\omega t . (1 - \frac{R.(1 - s)}{R})) + ...]$

17 / 52

Spectres vibratoires

Laboratoire d'Electromécanique de Compiègne

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

Perspectives après ces 2 premières parties

- étendre le modèle au calcul des amplitudes
- prendre en considération toutes les harmoniques (ordre spatiaux et fréquences)
 - : ne pas écarter a priori des sources de vibration et bruit

Objectif « ultime »: synthèse de spectres vibratoires (validés)

Outil logiciel précis pour:

Amélioration de la commande

Diagnostic vibro-acoustique

Conception optimale d'actionneurs

Optimisation de l'actionneur électrique par la conception et la commande de la machine

- 1. Outils d'optimisation et méthodes de conception
- 2. Amélioration de la finesse du modèle harmonique
- **3. Réduction des bruits et vibrations**

19 / 52

20 / 52

Méthode SQP

Laboratoire

E.A. 1006

ectromécanique

de Compiègne

- Méthode de recherche directe (DS)
- Méthode évolutionnaire par algorithme génétique (AG)

Influence du système:(E-Clutch)

Critère: temps de trajet de la butée d'embrayage

Outils d'optimisation appliquée à la MLI :

Minimisation du taux de distorsion harmonique

SQP	AG	Hybride AG-SQP
Taux = 0.0031	Taux = 0.0039	Taux = 0.0031
Alpha_optimal =	Alpha_optimal =	Alpha_optimal =
8.7122 13.7647 26.8142 29.4618	8.9536 13.8708 27.4232 30.0449	8.7122 13.7647 26.8139 29.4616
V_optimal =	V_optimal =	V_optimal =
311.1100 -1.2756 -0.1651 6.8387 -8.5489 3.4739	311.1100 0.9970 3.1290 6.4712 -10.0000 9.0869	311.1100 -1.2760 -0.1655 6.8402 -8.5470 3.4731
Temps : 22.2 seconds.	Temps : 22.8 seconds.	Temps : 12.5 seconds.
- Î		

(Initialisations multiples)

Travaux de recherche: partie 3 22 / 52 Harmoniques d'induction Amélioration de la finesse du modèle: (Aït-Hammouda: Diva1, Prosodie - L2EP) pulsations de couple vibrations, bruit acoustique Chaînage multi-physique Réponse vibratoire Rayonnement & Forces magnétiques Alimentation du stator transmission Treasured in 170,000 Ki

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

Laboratoire

ectromécanique

de Compiègne

Amélioration de la finesse du modèle harmonique (MAS)

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

Amélioration de la finesse du modèle harmonique

24 / 52

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

Laboratoire

d'ELectromécanique de Compiègne

25 / 52

Représentation de l'induction magnétique d'entrefer

Répartition spatiale grandeurs électromagnétiques

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

Laboratoire

de Compiègne

d'ELectromécanique

26 / 52

Calcul et représentation spectrale des pressions de Maxwell

[Zhu]

FFT 2D: Alim sinus, fmm sinus 50 Hz [500 Hz,3000 Hz] FFT 2D: Alim MLI, fmm sinus, entrefer lisse, 50 Hz, fc = 1600 Hz [600 Hz,4000 Hz]

Introduction de l'effet de la saturation dans un modèle analytique harmonique

27 / 52

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

Laboratoire

ectromécanique

de Compiègne

d'EL

Effet de la saturation dans un modèle analytique harmonique

Composante de saturation dans la perméance

28 / 52

Expérimentation : Saturation volontaire

Laboratoire d'ELectromécanique de Compiègne

Amélioration du modèle mécanique:

Prise en compte des amplitudes:

$$Y_{m\omega}^d = Y_{m\omega}^s \left[\left(1 - \frac{f^2}{f_m^2} \right)^2 + 4\xi_m^2 \frac{f^2}{f_m^2} \right]^{-1/2}$$

30 / 52

31 / 52

Réduction des bruits et vibrations par méthodes d'optimisation

32 / 52

Une démarche de modélisation harmonique **U**Système **Multi-physique Outils logiciels (analyse, diagnostic, conception)** □ Forte dominante expérimentale **Compréhension** Des avancées scientifiques en adéquation avec les besoins industriels Perceptives à court et long terme

Des projets démarrés

35 / 52

Autres modélisations pour MSAP(S-I), bobinage concentrique : AROMAT (M. FAKAM)

Laboratoire d'ELectromécanique de Compiègne

Conception transformateur-inductance : ECOTRAC (M. ROSSI)

Couplage multi-physique EF pour GMPE 3D : AVELEC (P. PELLEREY)

Approche système:

GMPE complet, passage à la caisse

HDR – V. Lanfranchi, 28/11/2011

Déformations d'ordres 4 – 0 par EF couplés

37 / 52

Perspectives à long terme

Quelques expériences et des idées

Perspectives à long terme

Intégration des méthodes modernes en acoustique dans la conception d'actionneurs: traitement du signal, psycho-acoustique...

39 / 52

Laboratoire d'ELectromécanique de Compiègne

Perspectives à long terme

Introduction des tolérances et incertitudes dans la modélisation

Approche trans-discipline : automatique et harmoniques, régulateur flou, DTC...

HDR – V. Lanfranchi, 28/11/2011

E.A. 1006

Laboratoire

d'ELectromécanique de Compiègne