
Fast optimization of an IPMSM  
with Space Mapping Technique 

 

S. VIVIER, D. LEMOINE, G. FRIEDRICH (IEEE Senior member) 
Laboratoire d’Électromécanique de Compiègne (LEC) 

Université de Technologie de Compiègne (UTC) 
Compiègne, FRANCE 
stephane.vivier@utc.fr 

  
Abstract— The work presented in this article relates to the 
design procedure of a permanent magnet synchronous 
machine, by the use of Output Space Mapping type methods. 
This type of optimization technique reduces significantly the 
time necessary to the search for optimal configurations, by the 
use of a fast modeling of the device to be optimized. At the 
same time, a second model, slower but more accurate, ensures 
the validity of the optimal configurations obtained. 
Two techniques belonging to this family of methods are applied 
in this study. Their results and performances are compared. 

I. INTRODUCTION 
This paper discusses the approach used for the 

optimization of an internal permanent magnet synchronous 
machine (IPMSM).  The main idea of this work is based on 
the desire to reduce as much as possible the time required for 
the design of this machine with appropriate mathematical 
and computer tools. 

The first step is achieved by building a finite element 
model of the machine to be optimized.  As part of this work, 
only the magnetostatic aspects are considered.  Dedicated 
tools have been developed in the laboratory to minimize the 
time required for the definition and the building of the finite 
element model.  This model is set to be used in the next step. 

The second step is the design process itself.  This study is 
performed by solving a multidimensional constrained 
equivalent optimization problem. 

To reduce the time required for design, the "Space 
Mapping" optimization approach is used.  In this paper, two 
methods in this class are applied: the "Output Mapping" 
(OM) and the "Manifold Mapping" (MM).  Both techniques 
use regular adjustments of output values of two models of 
the same system (in our case the synchronous machine).  
This common feature presents the advantage to benefit from 
the speed of a fast model, while exploiting the reference 
results of a second one. 

Results of these two approaches are presented and 
compared. In both cases, it is clear that the optimization 

process using two models (rather than a single one 
traditionally) outperforms conventional approaches in terms 
of efficiency [1]. 

II. SPACE MAPPING METHODS 

A.  Presentation 
The method used for the research of the best building 

characteristics of the actuator, belongs to the “Space 
Mapping” (SM) method family [2] [3]. As will be shown 
in the following, these techniques have in common their 
functioning principle: the simultaneous and coordinated use 
of two models of the same system to be optimized. These 
two models differ by the precision of their results and by 
their evaluation speed.  

In very general terms, the optimization problem to be 
solved is equivalent to find the definition of the vector of the 
n input values (collected in vector x) that minimizes the 
"distance" between the m output values f(x) given by the 
modeling, and those one wants to reach, gathered in vector y.  
This gives: 

 ( ) yxfx −= argmin*  (1) 

Asterisk indicates an optimal configuration. Values given 
by vector y can correspond to targets specified in 
specification books. 

Function f(x) is a reference model, that is to say, a set of 
mathematical methods giving reliable and accurate values of 
the output entities (performances, size of the machine, etc.) 
based on the values of input variables (geometrical 
specifications, power supply, etc.).  f(x) is called "fine 
model". 

In most cases, the good accuracy of this model comes 
with high computing times, due to the complexity of the 
mathematical relationships employed, the amount of data 
generated, etc.  Generally, this is a costly modeling (mainly 
in terms of time to get results).  Its heaviness forbids its 
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intensive use by design algorithms using the iterative 
optimization approach. 

However, to avoid losing the knowledge represented by 
the fine reference model, while keeping the objective of 
solving the optimization problem above, it becomes 
necessary to use a second model, similar to the reference 
one, but much faster.  This model is called "coarse model" 
and is denoted c(x). 

Hence, the coarse model should be fast to be used 
intensively by any optimization algorithm, that is to say, to 
be called many times. 

It will be assumed for the future that both fine and coarse 
models are defined using the same m output quantities, and 
the same n input variables (although this is not mandatory). 

Results of this optimization can then be compared to that 
obtained for the same optimum conditions by a single 
evaluation of the fine model.  If there is a difference between 
the outputs of the two models at this point, an adjustment is 
achieved.  This process can be repeated several times to get 
even closer to better optimal conditions. 

This adjustment is achieved through a transformation S 
applied to the outputs of the coarse model c(x), providing a 
new composed function ( )( )xcxc SS =)(�  which is then an 
approximation of the fine model f(x), at least locally.  From 
there, the Space Mapping technique applied to outputs solves 
the modified and approximated problem: 

 ( ) yxcx −= �Sargmin*
SM  (2) 

This mode of operation is common to both Space 
Mapping methods used in the work presented in this paper.  
They differ only in the readjustment process between coarse 
and fine models, that is to say about the definition of the 
transformation S. 

B. Summary 
Figure 1 below summarizes the overall functioning of Output 
Space Mapping methods. 

 
Figure 1.  General principles of Output Space Mapping methods 

The “coarse model” must be built in order to quickly 
compute the actuator performances (outputs). This model is 
used in an intensive way by a “traditional” optimization 
algorithm, based for example on the SQP (“Sequential 
Quadratic Programming”) algorithm or on the Sequential 

Simplex algorithm [4]. Results given by this model do not 
have to be precise, but should remain representative of the 
general characteristics and physical behavior of the actuator.  

The “fine model”, giving reference results, is used to 
automatically correct, at regular intervals, the output values 
of the “traditional” optimizations carried out using the coarse 
model, introduced previously.  

Hence, the “Space Mapping” approach corresponds to an 
automation of the optimization-correction procedures, which 
are generally “hand-made”, by the judicious use of the 
resources: fast models are used for optimizations only, 
whereas fine models are used to readjust previously obtained 
optimization results. The additional effort initially required 
for the development of both models “is recovered” in a 
certain way, by the increase of research efficiency for 
optimal conditions. 

C. Output Mapping method 
The first algorithm retained in this study is called Output 

Mapping (OM) [5] [6]. Its operating mode is given in Figure 
2.  

 
Figure 2.  Adjustment technique in Output Mapping 

The transformation used in the Output Mapping is very 
simple, as it is to correct the coarse model outputs by 
coefficients in order to find the corresponding output values 
given by the fine model.  This procedure is detailed in the 
following. 

At iteration i, from a vector of previous (or initial) input 
values 1−ix , an optimization is achieved, during which only 
the coarse model is used (and not the fine one). The 
optimization result corresponds to vector ( )ii xc  and is 
obtained for the corresponding optimal input vector ix . 

( )ii xc   is then compared to vector ( )ixf   given by the fine 
model, for the same optimal point ix  found previously. For 
the output j  (among the m  outputs defined), the lack of 
adjustment of the coarse model (which gives ( )i

j
ic x ) with 

respect to the fine model (giving ( )i
jf x ) ) is defined by the 

ratio ( ) ( )i
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exactly coincide with the fine model for the point ix , and 
partially in the vicinity of this point. This corresponds to an 
adjustment of the outputs, that is to say an output space 
mapping. Therefore, this technique does not alter the writing 
of the coarse model c(x), but only modifies its m outputs 
(with different factors i�  at each iteration). 

The ratio ( ) ( )i
j

ii
j cf xx  is obtained using results of 

iteration i, and allows to deduce the new values of the coarse 
model outputs, for iteration i+1. This one becomes ( )xc 1+i  
and replaces ( )xci , through a simple linear “rule of three” : 

 ( ) ( ) ( )
( )

( )x
x
xxx j

i
i

j
i

i
j

j
i

j
i

j
i c

c
fcc ..1 �

�
�

�
�
�
�

�
==+ θ  (3) 

This general procedure is repeated as long as it is possible to 
improve these values, with regard to the fixed objectives y.  

It should be noticed that no proof of convergence has been 
established for this algorithm.  

D. Manifold Mapping method 
The Manifold Mapping method (MM) is also a method 

of adjustment of the output values between coarse and fine 
models, that is to say a method of Output Space Mapping 
(OSM). 

However, this new approach possesses, under certain 
circumstances proofs of convergence, which may make it 
more interesting from a mathematical point of view [7].  
However, it is based on a more complex theoretical 
adjustment procedure, involving a more difficult algorithmic 
translation [8] [9]. 

Unlike the Output Mapping which makes the adjustment 
by a multiplication (i.e. a rule of three), the Manifold 
Mapping process performs two operations simultaneously, so 
the coarse model is: 

• translated towards the fine model; 

• rotated in order to better match (locally) the fine 
model. 

From the mathematical point of view, this double 
transformation S applied to the model c(x), is: 

 ( ) ( ) ( ) ( )( )** . ff O xcxcxfxc −+=�S  (4) 

With *
fx  the vector of input values for the best 

configuration found so far.  Thus, if initially the O-term is 
omitted, this operator can be written 

( ) ( ) ( ) ( )( )**
ff xcxfxcxc −+=�S .  This corresponds to 

translating the output values of the coarse model c(x) by the 
vector describing the lack of fit ( ) ( )( )**

ff xcxf −  between the 

two models evaluated at the same best point *
fx . 

Moreover, the Manifold Mapping method achieves the 
adjustment of the coarse model to the tangent plane of the 
fine model, at the point *

fx . This operation is realized thanks 
to jacobian matrices associated to fine and coarse functions, 
evaluated at the same point *

fx : 

 ( ) ( )** . fcffO xJxJ +=  (5) 

With +
cJ  the pseudo-inverse of the jacobian matrix.  The 

normal inversion is not applicable because jacobian matrices 
are generally not square: they have m rows (the number of 
input variables) and n columns (the number of output 
variables).  The operator O is a square matrix m×m. 

To sum up, ( )xc�S  represents the formulation of an 
approximate model of the fine model defined by f(x).  Its 
interest is the speed of its evaluation, as it is built from the 
fast (coarse) model.  In this context, this fast function 

( )xc�S  can advantageously replace f(x). 

The optimization problem therefore comes down to (2). 

However, strictly speaking, the optimal conditions *
SMx  

can match those *x  (for which ( ) yxf =* ) if and only if 
the transformation S is defined from the final optimum 
conditions *x , which are unknown a priori. So, the 
definition of the transformation S is not really defined.  To 
address this problem, S is replaced by an approximation Sk, 
updated at each iteration of the optimization algorithm: 

 ( ) yxcx −=+ �kk Sargmin*
1  (7) 

k is the iteration number of the OSM algorithm. 

The expression of the transformation Sk is based on an 
approximation Ok of the operator O.  For this, the jacobian 
matrices must themselves be approximated.  For example, 
since the term Jij is equal to ji dxdf , one can concede the 
classical approximation using a quotient of two differences: 

( ) ( )( ) ( ) ( )( )kxkxkfkfxf jjiiji −+−+=ΔΔ 11 . 

Generalizing, one can write that ( ) kffk �XxJ�F .*≈  

and ( ) kfck �XxJ�C .*≈ . By inverting this last equation:

( )*1. fckk xJ�X�C +−+ ≈ . This allows to deduce an expression 
of Ok : 

 ( ) ( )( )OO fckkffkkk ==≈ +−+ *1* .... xJ�X�XxJ�C�F  (8) 

At the first iteration of the algorithm, when k=1, the 
previous operator cannot be calculated, and one chooses the 
identity matrix mO I=1 . 
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The algorithm described above has the disadvantage of 
requiring at each iteration a new calculation of the function 

( )xc�S .  To avoid this, it may be more interesting to keep 
unchanged the definition of the coarse model c(x) and 
change the values of vector y at each iteration. Overall, this 
does not change the initial optimization problem, but only 
changes its expression: 

 ( ) yxcx �kk T−=+ argmin*
1  (9) 

Where Tk is a new transformation (approximated) 
applied to the constant vector y, as: 

 ( ) ( ) ( )( )yxf�F�Cxcy −−≈ + ** .. fkkfk �T  (10) 

At this level, small changes can be made at this writing, 
in order to improve the convergence behavior of the 
algorithm (by adding stabilization terms).  Also, further 
developments can possibly include in the same kind of 
writing, constraints whose evaluation is very expensive [8] 
[10]. 

III. OPTIMIZATION PROBLEM 

A. Presentation 
Space Mapping methods are applied here to optimize 

some performances and physical characteristics of an 
internal permanent magnet synchronous machine (IPMSM).  
This type of machine is commonly used nowadays, 
especially in embedded systems such as cars for example. 

The structure considered here is a three-phase machine, 
with a small size (diameter and length of about 5 cm), 2 pairs 
of poles and an internal rotor. 

The rotor position (i.e. its direct axis) is set to an angle of 
0°.  The stator power supply is fixed as well, and directed 
with an angle of 135 electrical degrees.  This particular value 
corresponds to the most favorable torque angle available for 
this type of machine.  For all three phases, a total of 250 A.t. 
is imposed in the stator windings.  This magnetomotive force 
remains constant, knowing that the corresponding current 
density may evolve because of geometry changes resulting 
from the optimization of the dimensions of the actuator, 
including those of the slots.  A filling factor equal to 0.6 is 
considered. 

The same sheet FeV-800-50 is used for “iron” non-linear 
parts of the stator and rotor.  Permanent magnets are NdFeB 
-type, linear, with Br = 1.13 T. 

The expected performances of this actuator are 
summarized in Table I.  They concern the electromagnetic 
torque, the total mass and the mass of permanent magnets. 

TABLE I.  OUTPUT VARIABLES ANS THEIR TARGET VALUES 

Descriptions Names Target values (y) 
Torque Cem 2.5 N.m

Global mass Mtot 3 kg

Magnet mass Mmag 250 g

 

Inputs of the optimization problem correspond to the 
probable variation sources of the output quantities.  They are 
here solely geometric (Figure 3).  

Table II gives their numerical specifications. 

 

 
Figure 3.  Parameterized geometry of IPMSM 

TABLE II.  INPUT VARIABLES (UNIT: MM) 

Descriptions Names Lower 
bound 

Upper  
bound 

Exterior stator radius Rstaext 14 35

Air gap radius Rent 4.2 24.5

Interior rotor radius Rrotint 5 10

Inner magnet radial position Raimint 10 14

Magnet width laim 1 3

Magnet height haim 10 20

Magnetic bridge height hrotbridge 0.2 0.7

Cavity height hrotcavity 0.1 1.4

Stator yoke height hstacula 1 5

Stator slot height hstacond 3 5

Half of tooth width lstademident 1 2

Half of slot opening height lstademiouvenc 0.2 0.7
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B. Models 
The operating procedures of “Space Mapping” 

optimization algorithms being well defined, the nature of 
coarse and fine models remains to be specified.  

The choice of model types must conform to the 
requirements presented in the previous paragraphs; to 
summarize, one needs: 

• a (very) fast “coarse” model, representative of the 
operating behavior of the actuator; 

• a “fine” model giving reference results.  

Typically, in the context of design and optimization of 
actuators by computer means, and within the framework of 
magnetic modeling, the fast model corresponds generally to 
a Magnetic Equivalent Circuit (MEC), more seldom to 
explicit and purely analytical relations, whereas the reference 
model consists of a finite element analysis (FEA).  

This approach suffers from the major drawback to 
require the construction of two separate models of two 
different types, which must be evaluated thanks to two 
different dedicated programs. Thus, in addition to the 
“doubling” of the adjustment time of the models, this 
solution demands a greater diversity of resources.  

For these reasons, it was decided to use the same 
modeling approach for the construction and the evaluation of 
both (coarse and fine) models.  In this context, these two 
models correspond to finite element modelings.  

At first, the fine model is built.  Since its output values 
should be accurate and reliable, it is defined using a fine grid 
(made with a large number of elements) and high precision 
elements (quadratic), as well as taking into account the non-
linearity of ferromagnetic materials. 

The coarse model is then deducted from the fine one, by 
making successive simplifications of its characteristics.  
Several options are available to the modeler in order to 
implement such simplifying changes on the initial reference 
model; for instance, he may consider: 

• a more or less fine consideration of the actuator 
geometry (simplified curves, etc.); 

• the use of more or less precise techniques for the 
consideration of special boundary conditions 
(typically, in the case of open spaces for the 
consideration of infinity); 

• the precision level requested, for the solution 
computed by finite element solver; 

• the definition of material properties; 

• the definition of the mesh. 

As part of this work, the applied simplifications concern 
the last three points, that is to say the accuracy of the finite 
element solution, the definition of the mesh and the 
mathematical description of materials. 

The most important difference between these two models 
concerns the characteristics of the material FeV-800-50.  It 
describes the magnetic saturation of the ferromagnetic sheets 
that occurs around 1.5 T.  The non-linearity represented by 
this curve is the chief difficulty for the solving of the finite 
element problem.  In this case, the fine modeling uses the 
Newton-Raphson algorithm to approximate the solution 
iteratively.  In the coarse model, to reduce as much as 
possible its evaluation time, it was decided to approach the 
non-linear magnetic characteristic by a linear evolution.  
Thus, the problem solving, initially non-linear, becomes 
linear and can be achieved directly (without iteration) and 
accurately. 

This solution gives priority to the evaluation speed of the 
coarse model, with regard to the accuracy of the results 
(theoretically given by the fine model).  The permeability of 
the material involved in the fast modeling is set at 150, about 
1/20 of the permeability of the linear part of the initial 
magnetic saturation curve (considered by the fine model).  
Since this coarse model is used for optimization, this 
particular value can to some extent limit naturally the 
magnetic flux density in ferromagnetic parts, or equivalently 
increase the flow sections of the magnetic flux flowing in the 
machine.  In addition, this value is not zero; therefore, 
permanent magnets are not short-circuited magnetically. 

To complement these provisions limiting the magnetic 
flux density, a constraint is added to the definition of the 
problem.  It consists in imposing the limit value of 2.5 T in 
the whole finite element model: 

 T5.2max ≤B  (11) 

In parallel, a second constraint is defined so as to limit 
indirectly the thermal heating in the machine.  For this, the 
current density in conductors is limited: 

 ²mm/A6max ≤J  (12) 

Also, the definition of the mesh allows tuning the 
precision of the finite element model, and acts in the same 
time on the evaluation speed of this model. Indeed, changing 
the mesh modifies the number of nodes (and elements) and 
thus modifies the mathematical size of the problem.  

The (per length and/or surface unit) node density of the 
mesh must be parameterized. Thus, a simple change of these 
parameter values makes it possible to modify the original 
fine mesh and obtain a “simplified” and faster model. Both 
models can therefore be defined from the same original data 
file. 

In a general way, the simplification of the FE fine model 
is achieved in such a way that the representativeness of the 
model is preserved with respect to the torque. For this, the 
mesh is “lightened” everywhere, except inside the air gap 
(main location of magnetic energy). 
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Figure 5.  Convergence evolution (OM method) 

The algorithm stops because the final conditions (at 
iteration 5 – green dot) correspond to the specifications 
defined by vector y, through the consideration of tolerances 
on output values. 

 

Figure 6.  Optimized geometry (OM method) 

B. Manifold Mapping 
The Manifold Mapping method uses 6 evaluations of the 

fine model and 3237 evaluations of the coarse model. This 
optimization lasts 11min 39s.  

 
Figure 7.  Convergence evolution (MM method) 

In Figure 7 which gives the convergence history, green 
dots denote configurations for which good solutions of the 
design problem are found, that is to say configurations for 
which the specifications are met or even improved. 

 

Figure 8.  Optimized geometry (MM method) 

C. Comparison 
The following tables gather numerical data on the sizing 

of the synchronous machine, by the use of both Output Space 
Mapping methods. 

TABLE IV.  OPTIMIZATION RESULTS – OUTPUT VALUES 
COMPARISON BETWEEN OM AND MM APPROACHES 

Descriptions Names OM MM Units 
Torque Cem 2.51 2.49 N.m

Global mass Mtot 3.35 3.30 kg

Magnet mass Mmag 0.142 0.149 kg

TABLE V.  OPTIMIZATION RESULTS – CONSTRAINT VALUES 
COMPARISON BETWEEN OM AND MM APPROACHES 

Descriptions Names OM MM Units 
Max. field density Bmax 1.09 1.03 T

Max. current density Jmax 4.38 5.52 A/mm²

TABLE VI.  OPTIMIZATION RESULTS – INPUT VALUES – (UNIT: MM) 
COMPARISON BETWEEN OM AND MM APPROACHES 

Descriptions Names OM MM 
Exterior stator radius Rstaext 24.72 24.87

Air gap radius Rent 13.52 15.77

Interior rotor radius Rrotint 7.74 8.59

Inner magnet radial position Raimint 9.27 10.64

Magnet width laim 1.59 1.45

Magnet height haim 11.87 13.79
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Descriptions Names OM MM 
Magnetic bridge height hrotbridge 0.18 0.53

Cavity height hrotcavity 0.29 0.74

Stator yoke height hstacula 3.09 2.77

Stator slot height hstacond 6.86 5.47

Half of tooth width lstademident 0.68 0.84

Half of slot opening height lstademiouvenc 1.08 1.21

 

Optimal solutions found by the two optimization 
techniques are not strictly equivalent: they virtually do not 
describe exactly the same machine, even if their outer radii 
Rstaext are very close. 

The convergence history of these two algorithms is 
different. The Output Mapping was able to approach directly 
the desired configuration, never away from it. However, the 
Manifold Mapping approach did not converge 
monotonously, and not as fast as in the case of the OM 
method. 

Conclusions provided by this comparison between the 
two methods, can be found in many other configurations.  It 
gives the ability to describe the following general behavior: 

• OM cannot guarantee convergence towards target 
values.  In any case, there will be a rapprochement to 
these data, but sometimes oscillations may appear 
near them, without showing a real convergence. 

• MM guarantees convergence (not necessarily 
monotonous), but may be slower than the approach 
by OM. 

V. GENERAL REMARKS 
It is clear that the main interest of Space Mapping 

methods holds in the will or the need to save as much as 
possible the number of fine model evaluations.  For example, 
such a model may be a three-dimensional finite element 
model taking into account time or movement.  In this case, 
each evaluation of this reference model may last several 
hours.  It becomes obvious, even necessary to resort to a 
second model (much) faster, to be able to perform 
optimizations. 

This necessity is not obvious here because the average 
evaluation time of the fine model is actually quite low.  
However, this article has attempted to present the specific 
Space Mapping methods as tools for a new efficient 
approach for the optimization of electromechanical systems. 

Finally, it should be mentioned that the use of these two 
optimization techniques has been achieved here with the 
underlying objective to compare their mutual performances, 
rather than maximizing the efficiency of researches for 
optimal conditions.  In this context, the definition of the 
models (that is to say that of the input variables, the output 
quantities and constraints) was made identical between the 

two performed optimizations.  Thus, it is certainly possible 
to improve the effectiveness of these methods (for the 
optimization of the synchronous machine) by exploiting their 
intrinsic characteristics, and making the appropriate and 
corresponding changes in model definitions.  

CONCLUSION 
This article describes the techniques used for the design 

of an electromagnetic actuator. The central theme of this 
work focuses on the increase of the efficiency of the overall 
process optimization. Thus, novel solutions have been 
presented to reduce the development time of models (by 
using a single FE model with adjustable speed and 
precision), to reduce the evaluation time of the coarse model 
(using linear magnetic materials) and about the research for 
optimal conditions (by applying the Output Space Mapping 
techniques). This approach does not sacrifice the speed at the 
expense of the “quality” of the results, since it uses regular 
recalibrations thanks to the reference model.  

Applied to the current design problem, the Output 
Mapping, although very simple (to understand and 
implement), clearly gives good results. The Manifold 
Mapping, using a more complicated adjustment technique, 
also gives interesting results. However, it does not 
outperform the approach by Output Mapping.  

In both cases, these two optimization approaches offer 
new interesting perspectives for the efficient optimization 
and design of non-linear electromagnetic systems. 

REFERENCES 
[1] Vivier S., Lemoine D., Friedrich G., "Optimal design a high dynamic 

actuator for diaphragm pumps", IEMDC 2009 
[2] Sondergaard, “Optimisation using surrogate models – by Space 

Mapping technique”, PhD thesis, 2003 
[3] Encica L., Echeverria D., Lomonova E.A., Vanderput A.J.A., Hemker 

P.W., Lahaye D., "Efficient optimal design of electromagnetic 
actuators using Space Mapping", Struct. Multidisc. Optim., 2006 

[4] Ryan, P.B., Barr R.L., Todd H.P., “Simplex techniques for non linear 
optimization”, Analytical Chemistry, Vol 52, pp. 1460-1467, 1980 

[5] Cheng, “Advances in implicit and output space mapping technology”, 
PhD thesis, 2004  

[6] Tran T.V., Brisset S., Echeverria D., Lahaye D., Brochet P., "Space 
mapping techniques applied to the optimization of a safety isolating 
transformer", ISEF 2007 

[7] D. Echeverria, P.W. Hewker, “Manifold mapping: A two-level 
optimization technique”, Computing and Visualization in Science, 
Vol. 11, N°4-6, pp. 193-206, 2008 

[8] Echeverria D., "Two new variants of the manifold-mapping 
technique", COMPEL, Vol. 26, N°2, pp. 334-344, 2007 

[9] D. Echeverria, D. Lahaye, L. Encica, E.A. Lomonova, A.J.A. 
Vandenput, “Manifold-mapping optimization applied to linear 
actuator design”, IEEE Transactions on Magnetics., Vol. 42, N°4, 
pp.1183-1186, 2006 

[10] P.W. Hewker, D.Echeverria, “A trust-region stategy for manifold 
mapping optimization”, Journal of Computational Physics, 224, pp. 
464-475, 2007 

[11] Vivier S., Lemoine D., Friedrich G., "Improvements for multi 
objective optimizations using Output Space Mapping technique", 
OIPE 2010 

 

3686


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

