

La qualité des données scientifiques et techniques (DST)[1]

L. BOCK, A. FAHIM, S. ING, M. RONCIN - Tuteur: JP. CALISTE - Décembre 2009 Université de Technologie de Compiègne - Master 2 Management de la Qualité

1. Contexte et enieux

Oualité et Exactitude

Une requête sur la consommation mondiale en énergie en 2000, sur Google ®, donne plus de 754 000 résultats avec des imprécisions et des incohérences, comme par exemple:

Site 1:10 110 Mtep

Site 2:8 Mtep

(en Mégatonne équivalent pétrole) [2,3]

Nouveaux modes de diffusion de l'information ⇒ surabondance des DST Origine et fiabilité des DST ⇒ incertaines ou impossibles à vérifier

Production

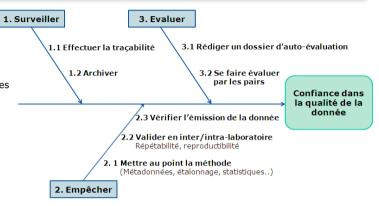
En France, 242 213 chercheurs (public ou entreprise) Centre National de la Recherche Scientifique ⇒ ~25 000 publications/an [4]

Production de DST est riche } réel enjeu socio-économique Qualité et exactitude des DST-

Ouestion clé à résoudre

Comment améliorer la confiance dans la qualité des données scientifiques et techniques?

2. Option d'intervention: 3 processus clés


Cette étude est basée sur la transposition de la théorie de P. Rosanvallon [5] à la problématique de la qualité des DST

Trois processus majeurs ont été identifiés :

- **surveiller** les données
- empêcher la diffusion de mauvaises données
- évaluer les données

Des bonnes pratiques et des normes ont été associées à ces processus [1], par exemple:

Surveiller: ISO 14721 v2003 Empêcher: NF EN ISO/CEI 17025 Evaluer: NF EN ISO/CEI 1720

3. Mesurer la confiance dans la qualité des données scientifiques et techniques: outil d'autodiagnostic

L'outil d'autodiagnostic ci-dessous (extrait) reprend la synthèse des exigences (bonnes pratiques et normes) des 3 processus

AUTODIAGNOSTIC: Qualité des données scientifiques et techniques

SURVEILLER

TRACABILITE

	4	Votre travail s'appuie sur des constantes référencées dans des ouvrages de qualité (comme les abaques, handbooks, base de données type CODATA)
	-	(comme les abaques, handbooks, base de données type CODATA)
		Votre travail (rapport, bilan, synthèse, interprétation de résultats) utilise des données provenant de publications, thèses ou documents expérimentaux
		données provenant de publications, thèses ou documents expérimentaux
	3	Vous mettez en œuvre un processus garantissant la traçabilité (information sur le
		stockage, fiche de données sécurité, données fournisseur) des produits,
		échantillons que vous utilisez pour réaliser les analyses
ĺ	4	Vous faites des revues périodiques de ce processus de traçabilité (amélioration)
		vous raites des revues perrodiques de ce processus de traçabilité (amerioration)

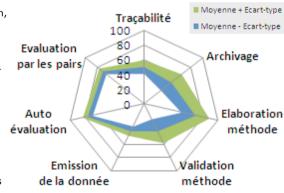
FAUX	PLUTÔT FAUX	PLUTÔT VRAI	VRAI
0	0	•	0
0	•	0	0
0	0	•	0
0	0	•	0

Types de données visées:

les DST non uniques (non répétables), provenant des sciences « dures », de mesures de capteurs, de l'instrumentation, de la métrologie

Questionnaire sous Excel:

36 critères d'évaluation - Evaluation partielle ou/et totale sur les 3 processus -15 min d'évaluation


Mode d'évaluation:

« la bonne pratique citée est connue, réalisable et réalisée »: Faux - Plutôt faux - Plutôt vrai - Vrai (ou 0% - 30% - 60% - 100%)

Scores obtenus (pondérations des affirmations, sous-processus et processus selon importance):

⇒ Niveaux de confiance en pourcentage

Niveaux de confiance moyen et dispersion des résultats du groupe d'évaluateurs

4. Enseignements et Bilans

Bilans Axes d'amélioration Structure claire et synthèse de toutes · Pour rester crédibles, les critères doivent les exigences normatives répertoriées évoluer avec le temps Autoévaluation rapide avec l'outil Affiner l'échelle de véracité Capacité d'évaluer collectivement · Intégrer une interface full web

[1] L. BOCK, A. FAHIM, S. ING, M. RONCIN. La qualité des données scientifiques et techniques, Université de Technologie de Compièane, 2009

Disponible sur http://www.utc.fr/master-qualite/ rubrique travaux

- [2]Site 1, http://www.developpement-durable.gouv.fr/energie/politiqu/pdf/seminaire-prop2004.pdf, consulté le 7 octobre 2009
- [3]Site 2: http://www.econologie.com/la-consommation-mondiale-d-energie-articles-3282.html, consulté le 7 octobre 2009
- [4] CNRS, Centre national de recherche scientifique, http://www.cnrs.fr/fr/organisme/chiffrescles.htm, consulté le 1er décembre 2009 [5] ROSANVALLON (Pierre), La contre démocratie. La politique à l'âge de la défiance, Paris, Points seuil, 2008