Hematin loses its membranotropic activity upon oligomerization into malaria pigment

By: Azouzi, S (Azouzi, Slim)
El Kirat, K (El Kirat, Karim)
Morandat, S (Morandat, Sandrine)

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume: 1848 Issue: 11 Pages: 2952-2959 Part: A
DOI: 10.1016/j.bbamem.2015.08.010
Published: NOV 2015
View Journal Information

Abstract
Malaria is an infectious disease caused by Plasmodium type parasites transmitted by the bites of infected female anopheles mosquitoes. The malaria parasite multiplies in red blood cells where it degrades hemoglobin. This degradation of hemoglobin proteins releases hematin, an iron-containing porphyrin, which provokes membrane disruption and lysis. The malaria parasite blocks hematin-induced lysis by biocrystallization, a process that converts hematin into insoluble and chemically inert crystals. Hematin molecules are especially prone to self-assembly as dimers, oligomers and aggregates depending on environmental conditions (pH, solvent, temperature, concentration, ionic
strength). Considering the different forms of hematin-based assemblies, it is still unclear which are the ones able to interact with membranes. We have prepared hematin under different conditions to form hematin-based assemblies and to measure their ability to interact and to disorganize membranes. Our results show that different forms of hematin molecules are able to penetrate lipid membranes. Interestingly, this membrane activity is spontaneously inhibited at acidic pH and it can be restored under neutral pH. By contrast, the oligomers of beta-hematin were found to be completely harmless toward lipid membranes. Finally, the AFM visualization of hematin interaction with supported lipid bilayers showed for the first time its preferential interaction with defaults in membranes, at the boundaries between two distinct lipid phases. The superficial adsorption of aggregates on membranes and the absence of effect due to oligomers were also confirmed with AFM. (C) 2015 Elsevier B.V. All rights reserved.

Keywords

Author Keywords: Hematin; Oligomerization; Monomer; Dimer; Lipid membranes; Hemozoin

KeyWords Plus: DIGESTIVE VACUOLE MEMBRANE; PLASMODIUM-FALCIPARUM; FERRIPROTOPORPHYRIN-IX; BETA-HEMATIN; ANTIMALARIAL-DRUGS; QUINOLINE ANTIMALARIALS; HEMOZOIN; HEME; CHLOROQUINE; NUCLEATION

Author Information

Reprint Address: Morandat, S (reprint author)

Univ Technol Compiegne, Univ Paris 04, CNRS, Lab Genie Enzymat & Cellulaire FRE 3580, Ctr Rech Royallieu, CS 60319, F-60203 Compiegne, France.

Addresses:

[1] Univ Paris Diderot, Inst Natl Transfus Sanguine, Lab Excellence GR Ex, Inserm S1134, F-75739 Paris 15, France

[2] Univ Technol Compiegne, Univ Paris 04, CNRS, Lab BioMecan & BioIngén UMR 7338, Ctr Rech Royallieu, CS 60319, F-60203 Compiegne, France

[3] Univ Technol Compiegne, Univ Paris 04, CNRS, Lab Genie Enzymat & Cellulaire FRE 3580, Ctr Rech Royallieu, CS 60319, F-60203 Compiegne, France
E-mail Addresses: sandrine.morandat@utc.fr

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre National de la Recherche Scientifique (CNRS)</td>
<td></td>
</tr>
<tr>
<td>French Ministry of Higher Education and Research</td>
<td></td>
</tr>
<tr>
<td>Universite de Technologie de Compiègne (UTC, Plan de Pluri-formation "Assemblages Biomimetiques-PPF BIOMIM")</td>
<td></td>
</tr>
<tr>
<td>Region Picardie ("Ce projet est cofinance par l'Union Europeenne. L'Europe s'engage en Picardie avec le Fonds Europeen de Developpement Regional")</td>
<td></td>
</tr>
</tbody>
</table>

View funding text

Publisher

ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Categories / Classification

Research Areas: Biochemistry & Molecular Biology; Biophysics

Web of Science Categories: Biochemistry & Molecular Biology; Biophysics

Document Information

Document Type: Article

Language: English

Accession Number: WOS:000364270800020

PubMed ID: 26296297

ISSN: 0005-2736

eISSN: 0006-3002
Journal Information

Table of Contents: Current Contents Connect®
Impact Factor: Journal Citation Reports®

Other Information

IDS Number: CV4XW
Cited References in Web of Science Core Collection: 40
Times Cited in Web of Science Core Collection: 0