
UNIVERSITE DE TECHNOLOGIE DE COMPIÈGNE
Département de G énie Informatique

MOSS 7 - Kernel Methods

Jean-Paul Barth ès

BP 349 COMPIÈGNE
Tel +33 3 44 23 44 66
Fax +33 3 44 23 44 77

Email: barthes@utc.fr

N223
July 2008

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Warning

The document presents a set of methods that can be used in a programming environment. With the
exception of advanced format handling methods, they preserve the integrity of the objects according
to the PDM4 model. They assume that all objects are in core or were brought into core before they
are used. Default methods are provided for standard operations like creating entry points or checking
cardinality. Such methods can be redefined by the user for any class.

The terms class, instance, terminal property, structural property have been dropped to be replaced
by concept, individual, attribute and relation that will be used in the document. However, now and
then class and instances are still used. The should be understood as synonyms for concept and
individual.

The current research version of MOSS 7 runs in a MacIntosh Common Lisp environment (MCL
5.2 for OSX). It has been ported to Allegro Common Lisp (ACL 6.1 and 8.1 running under Windows
XP).

Keywords

Object representation, object-oriented programming environment, kernel methods.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 2

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Revisions

Version Date Author Remarks

1.0 Jul 06 Barthès Version 1
1.1 Jul 08 Barthès Upgrade to v7

Jean-Paul A. Barthès©UTC, 2008 N223/Page 3

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

MOSS documents

Related documents

• UTC/GI/DI/N196L - PDM4

• UTC/GI/DI/N206L - MOSS 7 : User Interface (Macintosh)

• UTC/GI/DI/N218L - MOSS 7 : User Interface (Windows)

• UTC/GI/DI/N219L - MOSS 7 : Primer

• UTC/GI/DI/N220L - MOSS 7 : Syntax

• UTC/GI/DI/N221L - MOSS 7 : Advanced Programming

• UTC/GI/DI/N222L - MOSS 7 : Query System

• UTC/GI/DI/N223L - MOSS 7 : Kernel Methods

• UTC/GI/DI/N224L - MOSS 7 : Low Level Functions

• UTC/GI/DI/N225L - MOSS 7 : Dialogs

• UTC/GI/DI/N228L - MOSS 7 : Paths to Queries

Readers unfamiliar with MOSS should read first N196 and N219 (Primer), then N220 (Syntax),
N218 (User Interface). N223 (Kernel) gives a list of available methods of general use when program-
ming. N222 (Query) presents the query system and gives its syntax. For advanced programming N224
(Low level Functions) describes some useful MOSS functions. N209 (Dialogs) describes the natural
language dialog mechanism.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 4

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Contents

1 Introduction 6

2 Convenient Kernel Methods 6
2.1 Creating Objects . 6

2.1.1 Creating an Attribute . 6
2.1.2 Creating Orphans (Classless Objects) . 7
2.1.3 Viewing Objects . 7
2.1.4 Creating a Concept (Class) . 8
2.1.5 Creating Relations . 8

2.2 Creating Methods . 10
2.2.1 Instance Methods . 10
2.2.2 Own Methods . 11
2.2.3 Universal Methods . 12

2.3 Entry Points . 13
2.4 Accessing Values . 13
2.5 Adding Data to Objects . 14

2.5.1 Adding Values to Attributes . 14
2.5.2 Adding Links between Objects (Relations) . 14
2.5.3 Adding Methods . 15

2.6 Removing Data from Objects . 15
2.6.1 Removing Attribute Values . 15
2.6.2 Removing Links . 16
2.6.3 Deleting Objects . 16

2.7 Printing Objects . 17
2.8 Recovering an Internal Id . 18
2.9 Synonyms . 18
2.10 Multilingual Names . 19
2.11 Multiple Class Belonging (Advanced) . 20

3 Kernel Methods Organized by Type and Class 20
3.1 Universal Methods . 20
3.2 Methods Associated with Concepts (Classes) . 23
3.3 Methods Associated with Attributes . 24
3.4 Methods Associated with Relations . 25
3.5 Methods Associated with Inverse Links . 26
3.6 Methods Associated with Entry Points . 27
3.7 Methods Associated with Methods . 27
3.8 Methods Associates with Counters . 28
3.9 Methods Associated with Systems . 28
3.10 Methods Associated with Specific Objects . 29

3.10.1 Metaclass . 29
3.10.2 Property: Concept Name . 29
3.10.3 Property: Property Name . 29

4 Kernel Methods (Reference) 30

Jean-Paul A. Barthès©UTC, 2008 N223/Page 5

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Warning: MOSS has a versioning mechanism, i.e. all objects can have different versions in the same
environment. The current document is intended for beginning users creating a prototype application
in their own environment. In so doing, they normally remain in the same context in their own working
space. Thus, all the following examples are given assuming a context 0.

1 Introduction

The methods documented in this manual implement the basic mechanism of MOSS, and thus be-
long to its kernel. Some methods apply to all objects; they can be considered as default meth-
ods since it is always possible to redefine them at various levels (instance or own). Other methods
are attached to the defining classes of the MOSS kernel, i.e. the classes: CONCEPT, RELATION,
ATTRIBUTE, INVERSE-LINK, METHOD, UNIVERSAL-METHOD, ENTRY-POINT, COUNTER,
SYSTEM; they specify the behavior (or default behavior) of the instances (individuals) of such classes
(concepts). Finally some methods deal with the implementation format of the objects; as such they
are universal methods, but their action is elementary (e.g. add a value, remove a directed link), and
they do not respect the integrity constraints of the PDM model; those are grouped in the section
”Formatting methods.”

Section 2 presents some methods progressively according to what the user intends to do, Section 3
presents them by nature (universal methods, methods attached to classes). Section ?? presents them
alphabetically.

2 Convenient Kernel Methods

This section intends to present methods progressively as one would need them to construct a small
application. We give their name and a small example. For more details refer to Section ??.

2.1 Creating Objects

MOSS allows creating objects without first creating the corresponding classes. This may be surprising
at first but results from the need to describe unknown objects when captured by the sensors of a
robot. Of course to describe an object we need to use attributes. They must be created first.

2.1.1 Creating an Attribute

There are several ways of creating attributes:

• Using defattribute macro

• Using the make-attribute function

• Sending a =new message to the object (class) representing an attribute (moss::$EPT)

For example, we create attributes COLOR, SHAPE and DATE:

? (defattribute COLOR)

$T-COLOR

? (m-make-attribute ’SHAPE)

$T-SHAPE

? (send ’moss::$EPT ’=new ’date)

$T-DATE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 6

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Each time the internal id of the property (assigned by the system) is returned. Each name must
be unique.

Using one method rather than another is a question of taste and opportunity. When creating
interactively, the defattribute macro is convenient, and does not require quoting arguments, when in
a program the two other methods are more useful.

In addition to creating a generic attribute in each case, MOSS has created a few other things:

• External names HAS-COLOR, HAS-SHAPE, HAS-DATE

• Temporary variables has-color, has-shape, has-date the values of which are the internal ids

• Accessor functions with the same names as et external names: HAS-COLOR, HAS-SHAPE,
HAS-DATE.

2.1.2 Creating Orphans (Classless Objects)

Once attributes or terminal properties are defined it is possible to create objects. This can be done
by:

• Using the defobject macro

• Using the moss m-make-object function

• Sending a =new message to ?*none*

For example we create 3 objects:

? (defobject ("COLOR" "Orange")(:var _o1))

$0-0

? (m-make-object ’("SHAPE" "Square")’("color" "Red")’(:var _o2))

$0-1

? (send ’moss::*none* ’=new ’("COLOR" "Blue")’(:var _o3)(list "date" (get-universal-time)))

$0-2

? $0-2 ; internal format

((MOSS::$TYPE (0 MOSS::*NONE*)) (MOSS::$ID (0 $0-2)) ($T-COLOR (0 "Blue"))

($T-DATE (0 3362110553)))

The :var option allows assigning the internal id to a user-defined external variable, so that it is
possible to manipulate it easily. In practice, it is equivalent to do a setq, i.e.,

? (m-make-object ’("SHAPE" "Square")’("color" "Red")’(:var _o2))

and

? (setq _o2 (m-make-object ’("SHAPE" "Square")’("color" "Red"))

are equivalent.
Note however that variables associated with the :var option must start with an underscore.

2.1.3 Viewing Objects

Objects can be printed using the =print-self method:

Jean-Paul A. Barthès©UTC, 2008 N223/Page 7

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

? (send _o2 ’=print-self)

----- $0-2

TYPE: *NONE*

identifier: $0-2

SHAPE: Square

COLOR: Red

:DONE

? (send _has-color ’=print-self)

----- $T-COLOR

INVERSE: IS-COLOR-OF

PROPERTY-NAME: COLOR

:DONE

We will see later better ways to display or edit objects.

2.1.4 Creating a Concept (Class)

Creating a concept can be done by:

• Using the defconcept macro

• Using the moss m-make-concept function

• Sending a =new message to the model of classes (moss::$ENT)

Examples

? (defindividual ORANGE ("color" "Orange") (:var _orange1))

$E-ORANGE.1

? (m-make-individual ’orange ’(:var _orange2))

$E-ORANGE.2

? (send _banana ’=new ’("color" "Yellow") ’("shape" "long" "curved") ’(:var _banana1))

; Warning: property "shape" is not a property of class "BANANA". We add it anyway.

; While executing: MOSS::%%MAKE-INSTANCE-FROM-CLASS-ID

$E-BANANA.1

? $E-BANANA.1

((MOSS::$TYPE (0 $E-BANANA)) (MOSS::$ID (0 $E-BANANA.1))

($T-FRUIT-COLOR (0 "Yellow")) ($T-SHAPE (0 "long" "curved")))

On the third example we create a banana with a shape property, that is not part of its concept
definition, nor of that of the concept of Fruit. The system however lets us do so, issuing a warning.
Note also that the SHAPE attribute is multi-valued. All attributes are multi-valued unless restrictions
are imposed on the corresponding properties.

2.1.5 Creating Relations

Once classes are defined it is possible to create relations. This can be done by:

• Using the defrelation macro

Jean-Paul A. Barthès©UTC, 2008 N223/Page 8

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

• Using the moss m-make-relation function

• Sending a =new message to the model of relations (moss::$EPS)

• Including the property while the class is being defined

Examples

Create a class PERSON (note 2 options :entry, and :min):

? (defconcept PERSON (:att NAME (:entry)(:min 1)) (:att FIRST-NAME))

$E-PERSON

Create a relationship FOOD between a person and a fruit:

? (defrelation FOOD person fruit)

$S-PERSON-FOOD

? (send _has-person-food ’=print-self)

----- $S-PERSON-FOOD

INVERSE: IS-FOOD-OF

SUCCESSOR: FRUIT

PROPERTY-NAME: FOOD

:DONE

Check that it has been added to the class:

? (send _person ’=print-self)

----- $E-PERSON

CONCEPT-NAME: PERSON

RADIX: $E-PERSON

ATTRIBUTE : NAME/PERSON, FIRST-NAME/PERSON

RELATION : FOOD/PERSON

COUNTER: 1

:DONE

Check that we can now create a person with food:

? (defindividual PERSON ("name" "Dupond")("food" _banana1) (:var _dp))

$E-PERSON.2

? (send _dp ’=print-self)

----- $E-PERSON.1

NAME: Dupond

FOOD: $E-BANANA.1

"*done*"

Or a student?

? (defconcept Student (:is-a PERSON))

$E-STUDENT

? (send _student ’=print-self)

----- $E-STUDENT

Jean-Paul A. Barthès©UTC, 2008 N223/Page 9

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

CONCEPT-NAME: STUDENT

RADIX: $E-STUDENT

ATTRIBUTE : NAME/PERSON, FIRST-NAME/PERSON

RELATION : FOOD/PERSON

IS-A: PERSON

COUNTER: 1

:DONE

? (defindividual student (has-food _banana1))

$E-STUDENT.1

? (send ’$E-STUDENT.1 ’=print-self)

----- $E-STUDENT.1

FOOD: $E-BANANA.1

:DONE

2.2 Creating Methods

There is nothing special about a method. It is an object that contains code and that will be used to
implement the behavior of other objects.

However, because of orphans (classless objects) there are three kinds of methods, instance-methods,
own-methods, and universal-methods.

2.2.1 Instance Methods

Instance methods are like standard methods in most object-oriented languages. They are associated
with a class and apply to its instances. They are inherited from super-classes.

Example. Let us define a method that prints ”How are you?” (and returns nil) when a person
receives the message =HELLO. One can do that by:

• Using the definstmethod macro

• Using the m-make-method function

• Sending a =new message to the model of instance method

Examples

? (definstmethod =HELLO PERSON ()

"polite method #1"

(princ "How are you?") nil)

$FN.193

? (send _dp ’=hello)

How are you?

NIL

? (m-make-method ’=HELLO-BIS ’PERSON ()

’("polite method #2"

(princ "How are you today?") nil))

$FN.194

Jean-Paul A. Barthès©UTC, 2008 N223/Page 10

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

? (send _dp ’=hello-bis)

How are you today?

NIL

? (send ’moss::$FN ’=new ’=HELLO-TER ’PERSON ()

"polite method #3"’((princ "Fine weather, isn’t it?") nil))

$FN.195

? (send _dp ’=hello-ter)

Fine weather, isn’t it?

NIL

We have created method objects and can view one as follows:

? (send ’$FN.195 ’=print-object)

----- $FN.195

TYPE: $FN

identifier: $FN.195

METHOD-NAME: =HELLO-TER

ARGUMENTS: NIL

DOCUMENTATION: polite method #3

CODE: ((PRINC Fine weather, isn’t it?) NIL)

IS-METHOD-LIST-OF: MOSS

IS-INSTANCE-METHOD-OF: PERSON

FUNCTION-NAME: $E-PERSON=I=0=HELLO-TER

:DONE

We can check that the method are inherited by students:

? (defindividual STUDENT (HAS-NAME "Molière" "Pocquelin")(:var _jbp))

; While executing: MOSS::%MAKE-INSTANCE-FROM-CLASS-ID

$E-STUDENT.1

? (send _jbp ’=hello-bis)

How are you today?

NIL

2.2.2 Own Methods

A problem arises for objects that are not instances of classes, or for exceptions (i.e., objects that are
instances of a class, but that do not behave like the other objects of the same class). For such objects,
one can define own-methods, that are attached to the objects directly. To do so one can:

• Using the defownmethod macro

• Using the m-make-ownmethod function

• Sending a =new message to the model of methods ($FN) with an :own option.

Examples

? (defownmethod =HELLO _dp ()

"Not so polite method"

(princ "Grrr...")

nil)

$FN.196

Jean-Paul A. Barthès©UTC, 2008 N223/Page 11

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

? (send _dp ’=hello)

Grrr...

NIL

? (m-make-own-method ’=hello-bis _dp ()

’("Not so polite method #2"

(princ "Bad day to you.")

nil))

$FN.197

? (send _dp ’=hello-bis)

Bad day to you.

NIL

? (send ’moss::$FN ’=new ’=hello-ter _dp ()

"Not so polite method #3"

’((princ "Go to hell!")

nil) ’(:own))

$FN.198

? (send _dp ’=hello-ter)

Go to hell!

NIL

2.2.3 Universal Methods

Universal methods are methods that apply to any object, i.e., a default method. It can be done by:

• Using the defuniversalmethod macro

• Using the m-make-universal-method function

• Sending a =new message to the model of universal methods ($UNI).

Examples

? (defuniversalmethod =BYE () "Default parting method"

(princ "Bye, nice to have met you...")

nil)

$UNI.45

? (send _dp ’=bye)

Bye, nice to have met you...

NIL

? (send _orange1 ’=bye)

Bye, nice to have met you...

NIL

? (send _person ’=bye)

Bye, nice to have met you...

NIL

? (m-make-universal-method ’=SO-LONG () "Another parting method"

’((princ "Bye, bye...") nil))

$UNI.46

? (send _dp ’=so-long)

Bye, bye...

NIL

? (send ’moss::$UNI ’=new ’=CIAO () "a final parting method"

’((princ "Leaving now...") nil))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 12

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

$UNI.47

? (send _banana1 ’=ciao)

Leaving now...

NIL

Universal methods apply without distinction to all objects.

2.3 Entry Points

An entry-point is an index onto an object. It is used to locate objects in the environment. An
entry-point is built from the data associated with a terminal property. The simplest way to build
entry points is to use the :entry option when defining the property.

Example. We already used the :entry option for the property HAS-NAME of a PERSON. Let us
see what this implies.

We gave the NAME ”Dupond” to a person we created. An entry-point object was automatically
created with id the symbol DUPOND.

? (send ’dupond ’=print-self)

----- $E-PERSON.1

NAME: Dupond

FOOD: $E-BANANA.1

:DONE

Now what happens if we create a student named ”Dupond” ?

? (defindividual STUDENT ("name" "Dupond" "Durand")(:var _dd))

$E-STUDENT.2

? (send ’dupond ’=print-self)

----- $E-PERSON.1

HAS-NAME: Dupond

HAS-FOOD: $E-BANANA.1

----- $E-STUDENT.2

HAS-NAME: Dupond,Durand

:DONE

We can see that the same entry-point leads to two different objects that share the same name.
Hence, entry-points allow locating objects easily in the environment. Their use takes full significance
in queries.

2.4 Accessing Values

Accessing values inside an object is done by using the =get universal method.

Example

? (send _o2 ’=get ’HAS-SHAPE)

("Square")

ou:

? (send _o2 ’=get "shape")

("Square")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 13

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

? (send ’$E-PERSON.1 ’=get ’HAS-FOOD)

($E-BANANA.1)

? (send ’$E-PERSON.1 ’=get " food ")

($E-BANANA.1)

Note that the result is always a list, since our properties are multi-valued. Note also that property
references can be given as the MOSS name of the property, e.g., HAS-FOOD or has-food or Has-Food,
or as a string referencing the property, e.g. ” food ” or ”Food”. In the latter case the string will be
transformed into the internal name before being processed. Using one or the other is a question of
style. Note finally that the case of the data is not important.

Null Values

When =get returns a null value, i.e., NIL, then the meaning is ambiguous. It may mean that the
object has no such property or that it is not known that the object has the property.

2.5 Adding Data to Objects

Once objects have been created one must be able to add data to them or to remove data. This
paragraph deals with adding data.

2.5.1 Adding Values to Attributes

The universal method =add-attribute-values allows adding values to any type of objects.

Examples

? (send _o1 ’=add-attribute-values ’HAS-COLOR ’("Blue" "Green"))

((MOSS::$TYPE (0 MOSS::*NONE*)) (MOSS::$ID (0 $0-0))

($T-COLOR (0 "Orange" "Blue" "Green")))

? (send _dp ’=add-attribute-values ’has-name ’("Dupuis"))

((MOSS::$TYPE (0 $E-PERSON)) (MOSS::$ID (0 $E-PERSON.1))

($T-PERSON-NAME (0 "Dupond" "Dupuis")) ($S-PERSON-FOOD (0 $E-BANANA.8)))

? Dupuis

((MOSS::$TYPE (0 MOSS::$EP)) (MOSS::$ID (0 DUPUIS))

($T-PERSON-NAME.OF (0 $E-PERSON.1)) (MOSS::$EPLS.OF (0 MOSS::$SYS.1)))

The strange returned list is in fact the internal format of the objects. One should not be bothered
by that. Viewing the internal value of the object is only useful when debugging the system.

Notice on the example that adding the value ”Dupuis” to the name of Dupond has automatically
created the new corresponding entry-point.

Maximal cardinality can be specified for any given property. However, the user is free to add values
past the maximal cardinality. A warning is issued.

When the order of multiple values is important, then the (:before) option can be used:

? (send _dd ’=add-attribute-values ’HAS-NAME ’("Dubois") ’(:before "Durand"))

((MOSS::$TYPE (0 $E-STUDENT)) (MOSS::$ID (0 $E-STUDENT.2))

($T-STUDENT-NAME (0 "Dupond" "Dubois" "Durand")))

2.5.2 Adding Links between Objects (Relations)

Links are added by using the =add-relations universal method.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 14

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Examples

? (send _orange ’=add-relations ’HAS-IS-A _FRUIT)

((MOSS::$TYPE (0 MOSS::$ENT)) (MOSS::$ID (0 $E-ORANGE))

(MOSS::$ENAM (0 (:EN "ORANGE"))) (MOSS::$RDX (0 $E-ORANGE))

(MOSS::$ENLS.OF (0 MOSS::$SYS.1)) (MOSS::$CTRS (0 $E-ORANGE.CTR))

(MOSS::$PT (0 $T-ORANGE-COLOR $T-ORANGE-SHAPE)) (MOSS::$IS-A (0 $E-FRUIT)))

? (defrelation brother person person)

$S-PERSON-BROTHER

? $S-PERSON-BROTHER

((MOSS::$TYPE (0 MOSS::$EPS)) (MOSS::$ID (0 $S-PERSON-BROTHER))

(MOSS::$PNAM (0 (:EN "BROTHER"))) (MOSS::$ESLS.OF (0 MOSS::$SYS.1))

(MOSS::$IS-A (0 $S-BROTHER)) (MOSS::$INV (0 $S-PERSON-BROTHER.OF))

(MOSS::$PS.OF (0 $E-PERSON)) (MOSS::$SUC (0 $E-PERSON)))

? (send _dp ’=add-relations ’HAS-BROTHER _dd)

((MOSS::$TYPE (0 $E-PERSON)) (MOSS::$ID (0 $E-PERSON.1))

($T-PERSON-NAME (0 "Dupond" "Dupuis")) ($S-PERSON-FOOD (0 $E-BANANA.8))

($S-PERSON-BROTHER (0 $E-STUDENT.2)))

? (send _dp ’=print-self)

----- $E-PERSON.1

NAME: Dupond,Dupuis

FOOD: $E-BANANA.8

BROTHER: $E-STUDENT.2

:DONE

We first added an $IS-A link between the class ORANGE and the class FRUIT. Then we created a
new relationship BROTHER between persons and told the system that the student Dupond-Durand
was a brother of Dupond.

Like attributes, relations may have a maximal cardinality limit, however, the user is allowed to
add values past the limit (i.e., cardinality constraints are indicative).

2.5.3 Adding Methods

Adding methods was described in Section ??.

2.6 Removing Data from Objects

A number of methods exist for removing data, whether attached to attributes, relations, or be it
objects. In every case the consistency of the internal data structure must be preserved (e.g., entry-
points or inverse links).

2.6.1 Removing Attribute Values

One or more values associated with a terminal property may be removed by using the =delete-attribute-

values universal method.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 15

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Examples

? (send _dd ’=print-self)

----- $E-STUDENT.3

NAME: Dupond,Dubois,Durand

:DONE

? (send _dd ’=delete-attribute-values ’HAS-NAME ’("Dupond"))

:DONE

? (send _dd ’=print-self)

----- $E-STUDENT.1

NAME: Dubois,Durand

:DONE

? (send ’dupond ’=print-self)

----- $E-PERSON.1

NAME: Dupond,Dupuis

FOOD: $E-BANANA.1

BROTHER: $E-STUDENT.3

:DONE

We removed the name ”Dupond” from the list of names of dd. The entry-point has been updated.
Note that a minimal cardinality could exist for the property HAS-NAME. If the number of values

falls under the limit, a warning message is sent but the values are nevertheless removed.

? (send _dd ’=delete-attribute-values ’HAS-NAME ’("Durand"))

; Warning: The number of values for HAS-NAME in $E-STUDENT.3 is now less than the allowed minimum

; While executing: MOSS::*0=DELETE-ATTRIBUTE-VALUES

:DONE

2.6.2 Removing Links

The same approach is used to remove links, using the =delete-related-objects universal method.

Example

? (send _dp ’=delete-related-objects ’HAS-BROTHER (list _dd))

:DONE

? (send _dp ’=print-self)

----- $E-PERSON.1

NAME: Dupond,Dupuis

FOOD: $E-BANANA.1

:DONE

If the property has a minimal cardinality constraint and if the number of links falls under the limit,
then a warning message is issued.

2.6.3 Deleting Objects

This can be done by using the =delete universal method.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 16

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Example

? (send _o1 ’=delete)

((MOSS::$TYPE (0 MOSS::*NONE*)) (MOSS::$ID (0)) ($T-COLOR (0)) (MOSS::$TMBT (0 T)))

? (send _o1 ’=print-self)

? (send _o1 ’=print-self)

reference to $0-0 which does not exist in context 0

> Error: Can’t throw to tag :ERROR .

> While executing: MOSS::%%ALIVE?

> Type Command-. to abort.

See the Restarts? menu item for further choices.

When an object is deleted, then all values associated to terminal properties and links associated to
structural properties, and inverse links are removed. However the object is not removed from the envi-
ronment, but a tombstone is added for this particular version, as shown in the internal representation
returned by the first message. This is to protect other possible versions of the object.

2.7 Printing Objects

Several methods can be used for printing objects: =print-self, =print-object, =print-history.

• =print-self uses the class to collect properties to be printed, thus may not print everything

• =print-object prints the actual properties of the object

• =print-history is used to print all versions of a specific object.

Example

? (send _dp ’=print-self)

----- $E-PERSON.1

NAME: Dupond,Dupuis

FOOD: $E-BANANA.1

:DONE

? (send _dp ’=print-object)

----- $E-PERSON.1

TYPE: $E-PERSON

identifier: $E-PERSON.1

NAME: Dupond,Dupuis

FOOD: $E-BANANA.1

OWN-METHOD: =HELLO OWN/ $E-PERSON.1, =HELLO-BIS OWN/ $E-PERSON.1,

=HELLO-TER OWN/ $E-PERSON.1

:DONE

? (send _dp ’=print-history)

$E-PERSON.1

TYPE: t0: $E-PERSON

Jean-Paul A. Barthès©UTC, 2008 N223/Page 17

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

IDENTIFIER: t0: $E-PERSON.1

----- Attributes

NAME: t0: "Dupond", "Dupuis"

----- Relations

FOOD: t0: $E-BANANA.1

OWN-METHOD: t0: $FN.197, $FN.198, $FN.199

BROTHER: t0:

-----Inv-Links

:DONE>

All instances of a given class may be printed using =print-all-instances. However, instances of

? (send _student ’=print-all-instances)

1 - $E-STUDENT.1

2 - $E-STUDENT.2

3 - $E-STUDENT.3

:DONE

2.8 Recovering an Internal Id

Since internal ids are important, there is a way to recover an internal id from an entry point, using
the universal method =id.

Example

? (send ’DUPOND ’=id ’HAS-NAME ’PERSON)

$E-PERSON.1

? DURAND

((MOSS::$TYPE (0 MOSS::$EP)) (MOSS::$ID (0 DURAND)) ($T-PERSON-NAME.OF (0))

(MOSS::$EPLS.OF (0 MOSS::$SYS.1)))

? (send _dd ’=add-attribute-values "nAME" ’("Dupond"))

((MOSS::$TYPE (0 $E-STUDENT)) (MOSS::$ID (0 $E-STUDENT.3))

($T-PERSON-NAME (0 "Dupond")) ($S-PERSON-BROTHER.OF (0)))

? (send ’DUPONd ’=id ’HAS-NAME ’PERSON)

($E-STUDENT.3 $E-PERSON.1)

Note that the method can return a single value as a symbol or a list of symbols.

2.9 Synonyms

MOSS 6 introduces the possibility of defining synonyms.

Example

? (defconcept "town ; city" (:att "size ; number of inhabitants"))

$E-TOWN

? (send ’city ’=print-self)

----- $E-TOWN

CONCEPT-NAME: town

Jean-Paul A. Barthès©UTC, 2008 N223/Page 18

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

RADIX: $E-TOWN

ATTRIBUTE : size /town

COUNTER: 1

:DONE

Inserting semi-columns in a string allows defining any number of synonyms, like town and city in
the above example. A concept name being an entry point, the object can be accessed by any of the
synonyms. The first name is chosen as the main name, the others are synonyms.

In the same fashion the attribute size has received a synonym, number of inhabitants. Two
attribute names have been built, namely HAS-SIZE and HAS-NUMBER-OF-INHABITANTS referring
to the same object.

2.10 Multilingual Names

MOSS 6 has also been extended to allow multilingual names. By default the language is English. It
is specified by the *language* global variable set to :EN. In practice several names can be given to
an object by using a multilingual name.

Example

? (defconcept (:name :en "teacher; professor" :fr "enseignant")

(:att (:name :en "name" :fr "nom") (:entry)))

$E-TEACHER

? (send ’teacher ’=print-self)

----- $E-TEACHER

CONCEPT-NAME: teacher

RADIX: $E-TEACHER

ATTRIBUTE : name/teacher

COUNTER: 1

:DONE

? (send ’enseignant ’=print-self)

----- $E-TEACHER

CONCEPT-NAME: teacher

RADIX: $E-TEACHER

ATTRIBUTE : name/teacher

COUNTER: 1

:DONE

Note that we can combine multilingual names with synonyms.
The format for multilingual names is the following:

({:name} {<langage-tag> <synonyms>}*)

Except for the English tag defined at system level, the other tags can be freely chosen by the
designer.

Note however that some languages use extended alphabets and require a UNICODE coding. I
recommend using UTF-8.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 19

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

2.11 Multiple Class Belonging (Advanced)

MOSS 7 also has the possibility for an object to belong to several classes.

Example

? (defindividual ("teacher" "student")("name" "Albert"))

$E-TEACHER.1

? (send ’ $E-TEACHER.1 ’=print-history)

$E-TEACHER.1

TYPE: t0: $E-TEACHER, $E-STUDENT

IDENTIFIER: t0: $E-TEACHER.1, $E-STUDENT.4

----- Attributes

NAME: t0: "Albert"

----- Relations

-----Inv-Links

:DONE

From the history one can see that the system created two ids for Albert: $E-TEACHER.1 and
$E-STUDENT.4, allowing to consider the object as an individual of either concept.

This possibility however should be used with caution.

3 Kernel Methods Organized by Type and Class

The following methods implement the basic mechanisms of MOSS, and thus belong to its kernel.
Some methods apply to all objects; they can be considered as default methods since it is always
possible to redefine them at various levels (instance or own). Other methods are attached to the
defining classes of the MOSS kernel, i.e. the classes: ENTITY, ATTRIBUTE, RELATION, INVERSE
LINK, METHOD, UNIVERSAL METHOD, ENTRY POINT, COUNTER, SYSTEM; they specify
the behavior (or default behavior) of the instances of such classes. Finally some methods deal with
the implementation format of the objects; as such they are universal methods, but their action is
elementary (e.g. add a value, remove a directed link), and they do not respect the integrity constraints
of the PDM model; those are grouped in the section ”Formatting methods.”

3.1 Universal Methods

Each method in the following set can apply to any object in the system; hence they are defined as
universal methods.

=add-attribute-values attribute-name value-list Universal method

adds values associated with an attribute to the object receiving the message. If the attribute
has a method building entry points, then all entry points are created accordingly. Checks that the
property belongs to the model of the object. If not, then a warning is issued but the property is added
nevertheless.

=add-attribute-values-using-idattribute-id value-list Universal method
is equivalent to the previous method but does less checking and uses the internal attribute identifier

directly.

=add-related-objects relation-name successor-list &rest option-list Universal method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 20

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

links successor objects to the object receiving the message.

=add-related-objects-using-id relation-id successor-list Universal method
is equivalent to the previous function but does less checking and uses the internal property identifier
directly.

=check Universal method
checks an object for compliance with the PDM format. For terminal properties checks that entry

points are defined in case they must be. For structural properties, checks for inverse links. For all
properties checks that the number of values is between the minimal cardinality and the maximal
cardinality when they are specified. The method prints all the defaults it finds in the structure.

=check-cardinality-constraints Universal method
when sent to an object returns the list of all properties for which the number of values violates one

of the cardinality constraints. I.e., some values are missing, or they are too many.

=clone Universal method
makes a copy of any object. The copy is an instance of the same class if the original object was an

instance, or else is an orphan (classless object) if the original object was an orphan. All properties and
values in the current context are copied in the new object. No checks are done (cardinality, demons).
Finally, all entry points are modified to reflect the existence of the new object. Hence a clone has the
same entry points as the cloned object.

=clone-from-context Universal method
clones an object, importing it from another context. Must be used carefully. Does not import

properties that do not exist in the new context. Untested

=delete Universal method
deletes the current version of the object from memory, removing the eventual entry-points and cleaning
the inverse links. The object is not actually removed from the environment, rather a tombstone is
installed in the current context.

=delete-attribute attribute-reference Universal method
Delete all values associated with a particular attribute and removes the attribute from the object,

making it locally unknown rather than empty. Uses the =delete-all method for the bookkeeping.

=delete-attribute-values attribute-name value-list &rest option-list Universal method
Deletes a list of values from an object, cleaning entry points when necessary.

=delete-attribute-values-using-
id

rel-id successor-list &rest option-lis Universal method

Deletes a list of values from an object using the relation id.

=get property-name Universal method
gets the value list associated to a given property in the current context. If the object has no local

value, then its looks in the list of ancestors in a depth first manner; if this does not yield any result
then tries to obtain a default value from the property.

=get-default property-id Universal method
The method is used by =get-id to try to obtain a default value when it could not be obtained from

the object itself or from its prototypes. The way to do it is to ask all the classes of the object, then
the property itself. Default so far are only attached to attributes. Default cannot be inherited.

=get-id property-id Universal method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 21

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

is analogous to =get but take as an argument the property internal id rather than its external name

=get-properties Universal method
Gets the list of all properties (attributes and relations) for a given object. If the object has a class,

then the list is obtained from its class; otherwise, properties are returned in a random order.

=has-inverse-properties Universal method
returns the list of all inverse property ids. This is used in particular in connection with processing

entry points.

=has-properties Universal method
returns the list of all properties actually present in the object, with the exception of the property

$TYPE and of the inverse properties.

=has-value property-name Universal method
returns the value list associated to a given property if it is present in the object itself; i.e., does not

try to inherit the values, nor looks into default values.

=has-value-id property-id Universal method
works with the internal property id rather than with its external name.

=inherit-instance method-name Universal method
is the default inheritance mechanism implementing a lexicographic search (depth first) in case of

multiple inheritance. The mechanism invoking this method is disabled in MOSS 7 rendering the
method useless. However advanced users can restore the complex inheritance mechanism.

=inherit-isa-instance method-name Universal method
is the default inheritance mechanism when one tries to inherit an instance method starting with an

orphan, and following prototype links to see whther one of the prototypes in the list is an instance
of some class. The mechanism invoking this method is disabled in MOSS 7 rendering the method
useless. However advanced users can restore the complex inheritance mechanism.

=inherit-own method-name Universal method
is the default inheritance mechanism (lexicographic depth first) when one looks into the list of

prototypes for a local method. The mechanism invoking this method is disabled in MOSS 7 rendering
the method useless. However advanced users can restore the complex inheritance mechanism.

=kill-method method-name Universal method
used to remove a method from the list of objects that can have inherited it and have cached it on

their p-list.

=new &rest dummy-list Universal method
Creates a new instance using the radix contained in the model. Uses =basic-new. Returns the id of

a newly created object.

=print-all Universal method
prints an object bypassing its print function if present. It uses the method =get-properties and

=print-value to print each of them.

=print-error stream message &rest arg-list Universal method
is the default method that is executed when an error is detected and a =print-error message is

sent to an object. It simply prints the message argument using the Lisp format primitive into the
error-output stream.

=print-history &key (stream *moss-output*) Universal method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 22

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

prints the content of an object. For each property prints all values in all contexts from the root of
the version graph to the current context.

=print-local-methods &key (stream *moss-output*) Universal method
prints all methods and documentation associated with the current object.

=print-methods &key (stream *moss-output*) Universal method
prints all methods and documentation associated with instances of the current object which should

be a class. Methods redefined locally are ignored.

=print-object &key no-inverse (stream *moss-output*) Universal method
prints the content of an object by sending a =print-value message to all its properties including

inverse properties except when the option specifies not to print inverse properties.

=print-self &key (context *context*) (stream *moss-output*) Universal method
prints an object in a nicer format that =print-object.

=replace property-name value-list Universal method
replaces the value list associated with a given property with the specified value list. Use the methods
=delete-all and =add associated with the specific property.

=summary &rest option-list Universal method
is a default method for returning a list to be used as a summary of any object. The default summary
is the internal id of the object!

=unknown-method method-name Universal method
is the default method for taking care of unknown methods. The default is to print a message stating
that the method is not available for the specific object and continuing execution.

=what? &key (stream t) Universal method
gives a summary of the type of object we are considering, including documentation if available, and

the list of ancestors of the model.

3.2 Methods Associated with Concepts (Classes)

=add-attribute-default Instance method
Adds a default value for a given attribute of a class. The default is added to the ideal, replacing

whatever value was present.

=get-instances Instance method
gets a list of instances of the corresponding class. Uses the counter to build instance names (not

including the ideal).

=instance-name Instance method
returns the class name (as a list containing the main name in the current active language as a string).

=instance-summary individual-id Instance method
returns a list summarizing the object (usually for printing purposes). By default it returns the first

value attached to a terminal property. Thus, it is not very useful unless redefined by the user.

=print-all-instances &rest option-list Instance method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 23

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

prints instances of a class in abbreviated form or in full format. Default is to print them all using the
=summary method. A range can be specified to limit the printing.

=print-instance instance-id &key (stream *moss-output*) Instance method
Print an instance using model to get list of properties.

=print-name &key (stream *moss-output*) Instance method
prints the name of the concept into the current active window.

=print-typical-instance &key (stream *moss-output*) Instance method
prints a typical instance of a class, corresponding to its ideal, i.e., the bearing all the default attributes.

=summary Instance method
returns in a list the first name of the concept in the current language.

3.3 Methods Associated with Attributes

=add object-id value-list &rest option-list Instance method
adds a value or a list of new values. Duplicates are NOT discarded. Values are normalized to an

internal format before being added (using the =xi method), and then are added at the end of the
current list. Cardinality constraints are checked for maximal number of values only. Data can be
inserted in front of a specific value if requested.

=check value-list Instance method
checks that the value list obeys the various restrictions attached to the attribute. Prints eventual

errors using mformat. Not sure this method is really useful.

=delete object-id value &rest option-list Instance method
deletes a single value corresponding to the attribute receiving the message, removing the entry points
if any. The value is normalized using the =xi method if any has been defined.

=delete-all object-id Instance method
deletes all values corresponding to terminal properties of an object, removing the entry points if any.

= format-value value Instance method
a method normally defined by the user to format a field of data in a special way (i.e., to express a

date as an integer). The default method does not do anything and returns the value as it, unless the
value is a multilingual name, in which case we extract national canonical part. The method acts as a
demon and is called by =add-attribute-values-using-id

=get-instances aaa Own method
gets all instances of inverse relations by extracting them from the $ETLS property of *moss-system*.

=get-name value-list Instance method
Returns the name of an instance $ENAM or $PNAM. Calls =instance-name.

=if-added value object-id Instance method
is a demon for doing some bookkeeping after values have been removed. Is normally called by

=add-attribute-values-using-id.

=if-removed value object-id Instance method
is a demon for doing some book keeping after values have been added. Is normally called by =delete.

=input-value stream &rest text Instance method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 24

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

is a demon for querying the user, and eventually doing a dynamic check of the value type. By default
print the name of the terminal property, reads whatever is typed back by the user and filters the result
by using the =format-value method which acts as a semi-predicate.

=instance-name &key class Instance method
returns attribute name with associated class name if class keyword is true.

=inverse-id Instance method
returns the inverse internal id of the inverse attribute. Needed to build entry points.

=make-standard-entry data Instance method
Makes standard entry points using make-entry. Returns a list of symbols will be used as ids for the

entry points.

=modify-value object-id value Instance method
is a method normally defined by the user to modify current value attached to a method. The standard
default action is to ask the user.

=normalize value Instance method
Normally normalizes data values - default is to do nothing.

=print object-id Instance method
is a printing function attached to attributes. Value-list is the set of values to be printed.

=print-value value-list &rest option-list Instance method
is a printing function attached to an attribute. It prints the property name and the associated values.

=summary Instance method
returns the property name.

=xi value Instance method
obsolete. Replaced by =normalize.

3.4 Methods Associated with Relations

=add object-id suc-list &rest option-list Instance method
adds a successor or a list of new successors. Duplicates are discarded. Successors are added at the

end of the current list. Each successor’s type is checked and must be allowed by the property. All
constraints implemented by means of the =filter and the =if-added method are checked. Whenever
they fail, the corresponding successor is not added. Cardinality constraints are checked for maximal
value. If too many values are specified, then some of them are discarded. Minimal cardinality is also
checked and a warning is eventually issued.

=check suc-list Instance method
Check that the value list obeys the various restrictions attached to the relation. Prints eventual errors
using mformat.

=delete object-id suc-id Instance method
deletes a link between the two specified objects. It calls the =if-removed demon after the operation.

=delete-all object-id Instance method
deletes all links corresponding to terminal properties of an object, removing the inverse links.

=filter successor-id object-id Instance method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 25

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

is a method normally defined by the user to filter a successor to an object. Criteria are left to the
user. The method is applied by =add-related-objects-using-id just before doing the actual link. It
is a semi-predicate returning the successor-id if OK, nil otherwise. The default method does not do
anything and returns the value as it.

=format-value-list successor-id Instance method
Deprecated.

=get-instances &rest option-list Own method
gets all instances of inverse relations by extracting them from the $ESLS property of *moss-system*.

=if-added successor-id object-id Instance method
is a demon for doing some book keeping after links have been added. Is normally called by =add-

related-objects-using-id. The actual bookkeeping is left to the imagination of the user.

=if-removed &optional old-object-id old-sucessorc-id object-id successor-id Instance method
is a demon for doing some book keeping after links have been removed. Is normally called by =delete.
The actual bookkeeping is left to the imagination of the user.

=instance-name &key class Instance method
returns the property name in a list, showing at what level it was defined if the class key is true.

=instance-summary object-id Instance method
returns a summary of a structural property using =get-name.

=inverse-id Instance method
returns the inverse internal id of the inverse structural property. Needed to build inverse links.

=link object-id successor-id Instance method
links two objects using the current relation. The link is semantically directed, inverse links are only

a facility for navigating in the reverse direction.

=print-value successor-list &key (stream *moss-output*) header no-value-flag Instance method
Printing function attached to structural properties. Successor-list is the set of successors to be printed.
The description printed for each successor is a list obtained by sending the message =summary to
each of them in turn.

=summary Instance method
returns the property name with the associated class.

=unlink object-id successor-id Instance method
removes the links between two objects. This is an elementary operation in the sense that no call to

the =if-remove daemon is done, contrary to =delete.

3.5 Methods Associated with Inverse Links

=delete object-id successor-id Instance method
deletes a link between object and its successor. No =if-removed daemon is ever called.

=delete-all object-id Instance method
deletes all existing links between object and its successor. This is used when deleting an entity

entirely.

=get-instances &rest option-list Own method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 26

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

gets all instances of inverse relations by extracting them from the $EILS property of *moss-system*.

=if-removed &optional old-object-id old-successor-id object-id successor-id Instance method
Daemon for doing bookkeeping after removing something. Default is to do nothing returning nil.

=instance-name Instance method
returns the inverse name qualifying the inverse link.

=inverse-id Instance method
returns the property corresponding whose inverse link is the inverse. .

=new Own method
Creates a new instance of inverse-link e.g. $S-NAME.OF

=print-value successor-list &key stream header no-value-flag Instance method
prints a summary of all linked objects.

=summary Instance method
returns the inverse property name

=unlink object-id successor-id Instance method
removes a link between the two objects (same as =delete).

3.6 Methods Associated with Entry Points

=get-instances &rest option-list Own method
gets all instances of entry-points by extracting them from the $EPLS property of *moss-system*.

=id property classe Instance method
recovers the internal id of an object from its entry-point, associated property, and class. The result

can be a list of objects in case of ambiguities.

=merge application-entry-point Instance method
when reloading application from disk, we must merge app entry-points with entry-points (already

active). ***** Uses raw data format.

=print-as-method-for &key (stream *moss-output*) Instance method
looks at an entry point for a possible name of a method. If so for each object prints the instance

method and local method corresponding to the name if any.

=print-self Instance method
actually prints all objects associated with a given entry point.

3.7 Methods Associated with Methods

=get-instances &rest option-list Own method
gets all instances of inverse relations by extracting them from the $ESLS property of *moss-system*.

=instance-name Instance method
returns the name of the method that received the message.

=print-code Instance method

Jean-Paul A. Barthès©UTC, 2008 N223/Page 27

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

prints the code associated with the given method in a pretty format.

=print-doc Instance method
prints the documentation associated with the method object.

=print-self Instance method
prints the content of the method: name, documentation, code, etc.

=summary Instance method
returns the name of the method.

3.8 Methods Associates with Counters

=get-instances Own method
get all instances of counters by extracting them from the $SVL property of *moss-system*. Depre-

cated.

=increment Instance method
increases the value of the specific counter by 1.

=new Own method
creates a new counter (e.g. $CTR.37) with an initial value of 0.

=summary Instance method
returns the value of the counter.

3.9 Methods Associated with Systems

=find entry &optional prop-ref concept-ref Instance method
Extracts entities from KB knowing entry point prop name and concept name.

=get-all-objects Instance method
gets all objects present in the system and makes a list of them.

=load-application application-name Instance method
loads a list of objects from a file-name ((<key> . <value>)*) and reinstalls them. Application objects
are first, then we load saved moss objects. Some of the saved moss objects may contain application
references (i.e. entry points). Thus, we must merge such objects with the already installed system
objects.

=new-classless-key Instance method
creates a new key for classless objects

=new-version aaa Instance method
Adding a new version to the system. Takes the last version of the version-graph adds 1, and forks

from current version unless there is an option

:from old-branching-context

or

:from list-of-branching-contexts

Jean-Paul A. Barthès©UTC, 2008 N223/Page 28

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

in which cases contexts are checked for validity before anything is done.

=save-application &optional (application-name *application-name*) Instance method
Save all the objects of an application including system objects into a file whose name is <application
name>.mos
System objects are saved last.

=summary Instance method
returns the name of the system.

3.10 Methods Associated with Specific Objects

3.10.1 Metaclass

=get-classes &rest option-list Own method
get all instances of classes by extracting them from the $ENLS property of *moss-system*, own

method of $ENT considered as a metaclass.

=set-instances &rest option-list Own method
Identical to =get-classes.

=get-user-classes &rest option-list Own method
Deprecated.

=get-user-concepts &rest option-list Own method
gets all instances of classes by extracting them from the $ENLS property of *moss-system*. All

classes in the moss package are removed from the list.

3.10.2 Property: Concept Name

=make-entry data Own method
is an own-method of the property HAS-CONCEPT-NAME. It is used to create entries for the names
of new classes.

3.10.3 Property: Property Name

=make-entry data Own method
is an own-method of the property HAS-PROPERTY-NAME. It is used to create entries for the names
of new properties.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 29

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

4 Kernel Methods (Reference)

The rest of the document contains the list of MOSS Kernel methods, detailing the syntax, arguments,
giving examples of use, possible errors.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 30

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=add (attribute)

=add obj-id value-list &rest option-list Instance method

Add the list value-list of new values to the object whose identity is obj-id. Values can be inserted
in a given position by using a :before option. Otherwise, values are added at the end of the current
list.

Each value is normalized through the =format-value method, and the =if-added method is executed.
Whenever they fail the corresponding value is not added. Cardinality constraints are checked for
maximal value. If too many values are specified, then a warning is issued but they are NOT discarded.
Minimal cardinality is also checked and a warning is eventually issued.

We allow duplicate values.
If the property has a method computing entry points, then the corresponding entry points are

produced using the =make-entry method.

Option-list:
(:before value)

When this option is used, then value is normalized using the =xi method. The resulting data is
compared with the list of data associated with the current property, and the additional values are
added in front of the value specified by the :before option.
(:before-nth nth)

When this option is used the additional successors are added at the nth position in the list.

Examples:

? (setq _jim (defindividual PERSON ("NAME" "Jim")))

$E-PERSON.4

? (defindividual PERSON (HAS-NAME "Tom")(:var _tom))

$E-PERSON.5

...

? (send ’$T-PERSON-NAME ’=add _jim "Julius")

(...($T-PERSON-NAME (0 "Jim" "Julius"))...)

...

? (send ’$T-PERSON-NAME ’=add _jim "George" (list :before "Julius"))

(...($T-PERSON-NAME (0 "Jim" "George" "Julius"))...)

Error or warning messages:

• the value we try to add has not the proper format. This can only be checked when a =format-

value method has been associated with the terminal property. The default =format-value method
does not check anything.

(send ’$T-PERSON-NAME ’=add _jim ’(34))

; Warning: Data 34 has not the right format when trying to associate it with property HAS-NAME

; While executing: MOSS::$EPT=I=0=ADD

• note that if we did not define a =format-value method and use a number, the system will declare
a severe error, since it cannot build an entry point from a number.

• we try to add too many values, in which case MOSS let the user add the values but issues a
warning (remember in our approach the user has the privilege to overrule the system).

(send ’$T-PERSON-NAME ’=add _Jim ’(<many values>))

; Warning: Too many values ? we add them anyway...to $E-PERSON.4 for $T-PERSON-NAME

; While executing: MOSS::$EPT=I=0=ADD

Jean-Paul A. Barthès©UTC, 2008 N223/Page 31

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

• The name associated with the :var option should be a variable name:

? (defindividual PERSON (HAS-NAME "Tommy")(:var tommy))

; Warning: TOMMY is not a valid variable name. We ignore it.

; While executing: MOSS::%%MAKE-INSTANCE-FROM-CLASS-ID

$E-PERSON.5

Note:

• This method is essentially used internally by the two universal methods =add-attribute-values

and =add-attribute-values-using-id. It is not normally for the user.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 32

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=add (relation)

=add obj-id suc-list &rest option-list Instance method

Add the list suc-list of successors to the object whose identity is obj-id. Successors can be inserted
in a given position by using a :before option. Otherwise, they are added at the end of the current list.
Duplicates are discarded.

Each successor is checked through the =filter method, and the =if-added method is executed (dae-
mon). Whenever they fail (i.e. they return nil) the corresponding successor is not added. Cardinality
constraints are checked for maximal value. If too many values are specified, then a warning is issued
but they are not discarded. Minimal cardinality is also checked and a warning is eventually issued.

Option-list:
(:before suc-id)

When this option is used the additional successors are added in front of the successor whose id
suc-id is specified by the :before option.
(:before-nth nth)

When this option is used the additional successors are added at the nth position in the list.

Examples:

? (setq _jim (defindividual PERSON ("NAME" "Jim")))

$E-PERSON.4

? (defindividual PERSON (HAS-NAME "Tom")(:var _tom))

$E-PERSON.5

? (defindividual PERSON (HAS-NAME "George")(:var _george))

$E-PERSON.6

...

? (send ’$S-PERSON-BROTHER ’=add _jim _tom)

(......)

...

? (send ’$S-PERSON-BROTHER ’=add _jim _george (list :before _tom))

(...($S-PERSON-BROTHER (0 $E-PERSON.6 $E-PERSON.5))...)

Error or warning messages:

• the successor is not a PDM object:

? (send ’$S-PERSON-BROTHER ’=add _jim ’(34))

; Warning: object 34 is not a PDM object when trying to link it to object $E-PERSON.2

with property BROTHER

; While executing: MOSS::$EPS=I=0=ADD

• we try to add too many values, in which case MOSS let the user add the values but issues a
warning (remember in our approach the user has the privilege to overrule the system).

(send brother ’=add jpb ’(<many values>))

; Warning: we are adding more successors than allowed by the cardinality constraint...

to $E-PERSON.2 for property $S-BROTHER

; While executing: MOSS::$EPS=I=0=ADD

Note:

• This function is essentially used internally by the two universal methods =add-related-objects

and =add-related-objects-using-id. It is not normally for the user.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 33

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=add-attribute-default (concept)

=add-attribute-default attribute-reference value Instance method

Adds a default value for a given attribute of a class. The default is added to the ideal, replacing
whatever value was present.

If called a second time the default value is replaced with the new one.

Examples:

? (send _person ’=add-attribute-default "sex" "unknown")

((MOSS::$TYPE (0 $E-PERSON)) ($T-PERSON-SEX (0 "unknown")))

? (send _tom ’=get ’has-sex)

("unknown")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 34

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=add-attribute-values (universal)

=add-attribute-values attribute-name value-list &rest option-list Universal method

Adds values associated with an attribute to the object receiving the message. If the attribute
has a method building entry points, then all entry points are created accordingly. Checks that the
property belongs to the model of the object. If not, then a warning is issued but the property is added
nevertheless.

The number of values must be less than the maximal number specified in the attribute HAS-
MAXIMAL-CARDINALITY of the property. A warning is issued if the number of values exceeds the
maximal number. However all values are added. It is assumed that the user knows what she is doing.

Options:
(:before value)

When this option is used, then value is normalized using the =xi method. The resulting data is
compared with the list of data associated with the current property, and the additional values are
added in front of the value specified by the :before option.

Example:

? (setq _jim (defindividual PERSON (HAS-NAME "Jim")))

$E-PERSON.7

? (send _jim ’=add-attribute-values ’HAS-NAME ’("john" "joe"))

((moss::$TYPE (0 $E-PERSON)) ($T-PERSON-NAME (0 "Jim" "john" "joe")))

MOSS also created the corresponding entry-points JOHN and JOE as names of the person whose
internal identifier, $E-PERSON.4, is kept in the variable jim.

Error messages:

• if the property cannot be found, then a message is issued:

? (send _jim ’=add-attribute-values ’HAS-MONEY ’(20000))

; Warning: Terminal Property HAS-MONEY cannot be found when processing object

$E-PERSON.7

; While executing: MOSS::*0=ADD-ATTRIBUTE-VALUES

NIL

• similarly if the name of the property is ambiguous (i.e. the internal function %extract returns
more than 1 value), then an error message is issued and the addition is not done:

? (send _jim ’=add-attribute-values ’HAS-XXX (list _george))

;***Error: Terminal Property HAS-XXX is an ambiguous name when trying to add values

to object $E-PERSON.7

Warning messages:

• if a value is specified with the :before-value option, then it is first normalized with the =xi

method if any. If the normalization fails, then a warning is issued and the option is ignored.

? (send _jim ’=add-tp ’HAS-XXX ’("skying") ’421)

;***Warning: Value 421 has not the proper format for property HAS-XXX of object

$E-PERSON.7 and is ignored

Jean-Paul A. Barthès©UTC, 2008 N223/Page 35

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

• when the specified property does not belong to the properties specified for the model of the
object or to the already recorded properties for an orphan (in both cases obtained by sending a
message =get-properties to the object), then a warning message is issued:

? (send jim ’=add-tp ’HAS-XXX ’("skying"))

;***Warning: Attribute HAS-XXX does not belong to allowed properties for $E-PERSON.7.

But we add the value anyway

Note:
After all the checks on the property name the method =add-attribute-values-using-id is called with

essentially the same arguments but with the internal name for the attribute.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 36

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=add-attribute-values-using-id (universal)

=add-attribute-values-using-id attribute-id value-list &rest option-list Universal method

Equivalent to =add-attribute-values but uses the internal property identifier directly.

Options:
(:before value)

When this option is used, then value is normalized using the =xi method. The resulting data is
compared with the list of data associated with the current property, and the additional values are
added in front of the value specified by the :before option.

Example:

? (defattribute SEX (:class PERSON)(:unique))

$T-PERSON-SEX

? (send _jim ’=add-attribute-values-using-id ’$T-PERSON-SEX "male")

...

This is faster than:

? (send _jim ’=add-attribute-values ’HAS-SEX "male")

but the result is the same.

Note:
=add-attribute-values-using-id delegates the work to the property by sending the message

(send <att-id> ’=add *self* value-list {option-list})

Jean-Paul A. Barthès©UTC, 2008 N223/Page 37

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=add-related-objects (universal)

=add-related-objects relation-ref successor-list &rest option-list Universal method

Links successors to a the object receiving the message.
The number of successors must be less than the maximal number specified in the attribute HAS-

MAXIMAL-CARDINALITY of the structural property. A warning is issued if the number of values
exceeds the maximal number. However all values are added. It is assumed that the user knows what
she is doing.

Option:
(:before suc-id)

When this option is used the additional successors are added in front of the successor whose id
suc-id is specified by the :before option.

Examples:

? (setq _jim (defindividual PERSON (HAS-NAME "Jim")))

$E-PERSON.4

? (defindividual PERSON (HAS-NAME "Tom")(:name _tom))

$E-PERSN.5

? (defindividual PERSON (HAS-NAME "George")(:name _george))

$E-PERSON.6

...

? (send _jim ’=add-related-objects ’HAS-BROTHER _tom)

(...($S-PERSON-BROTHER (0 $E-PERSON.5))...)

...

? (send jim ’=add-related-objects ’HAS-BROTHER _george (list :before _tom))

(...($S-PERSON-BROTHER (0 $E-PERSON.6 $E-PERSON.5))...)

Of course the inverse link is added to tom to allow navigation from tom to jim and from george to
jim. However such a link has no semantic meaning and cannot bear constraints.

It is possible to link objects with properties that do not belong to the model of the first object.
MOSS complies reluctantly, sending a warning.

? (send _jim ’=add-related-objects ’HAS-COUSIN _tom)

; Warning: Relation COUSIN does not belong to model of $E-PERSON.4. But we link it anyway...

; While executing: MOSS::*0=ADD-RELATED-OBJECTS

Note: After all the checks on the property name the method =add-related-objects-using-id is called with
essentially the same arguments but with the internal name of the relation..

Jean-Paul A. Barthès©UTC, 2008 N223/Page 38

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=add-related-objects-using-id (universal)

=add-related-objects-using-id relation-id successor-list &rest option-list Universal method

Links successors to a given object.
Equivalent to previous method =add-related-objects but does less checking and uses the internal

property identifier directly. In practice =add-related-objects calls =add-related-objects-using-id.
The number of successors must be less than the maximal number specified in the attribute HAS-

MAXIMAL-CARDINALITY of the structural property. A warning is issued if the number of values
exceeds the maximal number. However all values are added. It is assumed that the user knows what
she is doing.

Option:
(:before suc-id)

When this option is used the additional successors are added in front of the successor whose id
suc-id is specified by the :before option.

It can be used in sequences like in the following example.

Example:

? (setq mother (defrelation MOTHER PERSON PERSON (:unique)))

$S-MOTHER

? (defindividual PERSON (HAS-NAME "Judy")(:var _judy))

$E-PERSON.6

(send _jim ’=add-related-objects-using-id mother _judy)

>...

This is faster than

(send _jim ’=add-related-objects-using-id mother _judy)

>...

since no check is done on the name of the relation; but the result is the same.

Error messages:

? (send _jim ’=add-related-objects-using-id mother "judy")

; Warning: object judy is not a PDM object when trying to link it to object $E-PERSON.2

with property MOTHER

; While executing: MOSS::$EPS=I=0=ADD

Note: =add-related-objects-using-id delegates the work to the property by sending the message

(send <sp-id> ’=add *self* successor-list {option-list})

Jean-Paul A. Barthès©UTC, 2008 N223/Page 39

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=basic-new (universal)

=basic-new &rest option-list Universal method

Creates a skeleton of object containing only the $TYPE property in the current context. If object
is a class creates an instance otherwise creates an orphan.

Options:
(:ideal)

we want to create an ideal instance (with sequence number 0)

Example:

? _person

$E-PERSON

? (send _person ’=basic-new)

$E-PERSON.1

? $E-PERSON

(($TYPE (0 $ENT)) ($ID (0 $E-PERSON)) ($ENAM (0 (:EN "Person")))

($RDX (0 $E-PERSON)) ($ENLS.OF (0 $MOSSSYS)) ($CTRS (0 $E-PERSON.CTR))

($PT (0 $T-PERSON-NAME $T-PERSON-AGE $T-PERSON-FIRST-NAME $T-PERSON-SISTER))

($PS (0 $S-PERSON-BROTHER)) ($SUC.OF (0 $S-PERSON-BROTHER $S-BOOK-OWNER))

($IS-A.OF (0 $E-STUDENT $E-TEACHER $E-BUTCHER $E-RESEARCHER)))

? $E-PERSON.CTR

(($TYPE (0 $CTR)) ($VALT (0 2)) ($CTRS.OF (0 $E-PERSON)) ($SVL.OF (0 $MOSSSYS)))

? $E-PERSON.1

(($TYPE (0 $E-PERSON)) ($ID (0 $E-PERSON.1)))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 40

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=change-class (universal)

=change-class new-class-ref &key include-inverse-links Universal method

Takes an object and sets its class to new-class. Copies all properties and values, using generic
properties to adapt properties to the class. Copies all values, which may result in constraint violation.
The change is done by creating an instance of the new class and transferrring all data and relations
to the new instance. If the include-inverse-links (key) is true, then relinks inverse links.

The method returns a new id for the object, corresponding to the new class.

Note: Uses =change-class-id

Jean-Paul A. Barthès©UTC, 2008 N223/Page 41

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=change-class (universal)

=change-class new-class-id &key include-inverse-links Universal method

Takes an object and sets its class to new-class. Copies all properties and values, using generic
properties to adapt properties to the class. Copies all values, which may result in constraint violation.
The change is done by creating an instance of the new class and transferring all data and relations to
the new instance. If the include-inverse-links (key) is true, then relinks inverse links.

The method returns a new id for the object, corresponding to the new class.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 42

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=check (attribute)

=check successor-list Universal method

Check that the value list attached to the attribute in object obeys the various restrictions attached
to the attribute.

Prints eventual errors using mformat.

Example:

? (send ’$T-PERSON-NAME ’=check ’("Jim" "George" "Julius" "34" "john" "joe"))

;warning: too many values (6) for attribute $T-PERSON-NAME, max is 3.

;values: ("Jim" "George" "Julius" "34" "john" "joe")

NIL

showing that everything is fine.

Note: =check does not check for missing entry points.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 43

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=check (relation)

=check successor-list Universal method

Checks consistency for a structural property of a given object. Sends a message when the inverse
link is not present when it should be there.

Example:

? (send _jim ’=check)

? (send _jim ’=print-history)

$E-PERSON.2

TYPE: t0: $E-PERSON

IDENTIFIER: t0: $E-PERSON.2

----- Attributes

NAME: t0: "Jim", "George", "Julius", 34, "john", "joe"

SEX: t0: "male"

----- Relations

BROTHER: t0: $E-PERSON.4, $E-PERSON.3

MOTHER: t0: $E-PERSON.8

-----Inv-Links

:DONE

? (send $S-PERSON-BROTHER ’=check ?($E-PERSON.4 $E-PERSON.3))

($E-PERSON.4 $E-PERSON.3)

showing that everything is fine.

Note: =check does not check for missing inverse links.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 44

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=check-cardinality-constraints (universal)

=check-cardinality-constraints Universal method

Sent to an object returns the list of all properties for which the number of values violates one of
the cardinality constraints; I.e., some values are missing, or they are too many.

Sort of uninteresting method. Use rather =check on the object.

Example:
The following example shows two violations: one with too many names and the other one with a

missing value for sex.

? (send _jim ’=print-history)

$E-PERSON.2

TYPE: t0: $E-PERSON

IDENTIFIER: t0: $E-PERSON.2

----- Attributes

NAME: t0: "Jim", "George", "Julius", 34, "john", "joe"

SEX: t0: "male"

----- Relations

BROTHER: t0: $E-PERSON.4, $E-PERSON.3

MOTHER: t0: $E-PERSON.8

-----Inv-Links

:DONE

? (send jim ’=check-cardinality-constraints)

($T-PERSON-NAME)

? (send ’$T-PERSON-NAME ’=print-self)

----- $T-PERSON-NAME

INVERSE: IS-NAME-OF

PROPERTY-NAME: NAME

MINIMAL-CARDINALITY: 1

MAXIMAL-CARDINALITY: 3

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 45

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=clone (universal)

=clone Universal method

Makes a copy of any object. The copy is an instance of the same class for instances, or else is an
orphan (classless object) if the original object was an orphan.

All properties and values in the current context are copied into the new object.
Finally, all entry points are modified to reflect the existence of the new object. Hence a clone has

the same entry points as the cloned object.

Example:

? (send _dp ’=print-history)

$E-PERSON.1

HAS-TYPE: t0: $E-PERSON

HAS-NAME: t0: Dupond, Dupuis

HAS-FOOD: t0: $E-BANANA.1

HAS-OWN-METHOD: t0: $FN.78, $FN.79, $FN.80

HAS-BROTHER: t0: $E-STUDENT.1

-----Inv-Links

:DONE

? (send dp ’=clone)

$E-PERSON.6

? (send ’$E-PERSON.6 ’=print-history)

$E-PERSON.6

HAS-TYPE: t0: $E-PERSON

HAS-NAME: t0: Dupond, Dupuis

HAS-FOOD: t0: $E-BANANA.1

HAS-OWN-METHOD: t0: $FN.78, $FN.79, $FN.80

HAS-BROTHER: t0: $E-STUDENT.1

-----Inv-Links

:DONE

? (send ’DUPOND ’=print-object)

----- DUPOND

HAS-TYPE: $EP

IS-NAME-OF: $E-PERSON.1, $E-PERSON.6

IS-ENTRY-POINT-LIST-OF: MOSS

NIL

? cloning an orphan:

? (send _O2 ’=print-history)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 46

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

$0.2

TYPE: t0: *NONE*

IDENTIFIER: t0: $0.2

SHAPE: t0: Square

COLOR: t0: Red

NAME: t0: my orange

-----Inv-Links

:DONE

? (send _O2 ’=clone)

$0.4

? (send ’$0.4 ’=print-history)

$0.4

TYPE: t0: *NONE*

IDENTIFIER: t0: $0.4

SHAPE: t0: Square

COLOR: t0: Red

NAME: t0: my orange

-----Inv-Links

:DONE

? (send ’MY.ORANGE ’=print-self)

----- $0.2

TYPE: *NONE*

SHAPE: Square

COLOR: Red

NAME: my orange

----- $0.4

TYPE: *NONE*

SHAPE: Square

COLOR: Red

NAME: my orange

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 47

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete (attribute)

=delete object-id value Universal method

Deletes a value corresponding to a terminal property of an object, removing the entry points if
any.

Before being removed value is transformed into its internal format by invoking the =xi method.
Invokes the =if-removed method on the current property, to do whatever bookkeeping must be

done.

Example:

? (send ’$T-PERSON-NAME ’=delete pete "Petrus")

; Warning: The number of values for $T-NAME in $E-PERSON.11 is now less

than the allowed minimum of 1

; While executing: MOSS::$EPT=I=0=DELETE

((MOSS::$TYPE (0 $E-PERSON)) ($T-PERSON-NAME (0)) ($S-PERSON-SISTER (0)))

? (send pete ’=print-self)

----- $E-PERSON.11

:DONE

Error messages: When there is a =xi formatting method and the value has not the proper format an error
message is printed:

? (send ’XXX ’=delete jim 45)

;***Error: Trying to erase value 45 from object $E-PERSON.12 for property XXX.

Value has a wrong format

Jean-Paul A. Barthès©UTC, 2008 N223/Page 48

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete (inverse-link)

=delete object-id suc-id Instance method

Deletes a link between an object and its predecessor. Same as the =delete method for relations,
but applies to inverse links (i.e., inverse relations).

Jean-Paul A. Barthès©UTC, 2008 N223/Page 49

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete (relation)

=delete object-id suc-id Universal method

Deletes a link between an object and its successor.
Invokes the =if-removed method on the direct property for each predecessor, to do whatever book-

keeping must be done.

Example:

? (defindividual PERSON (HAS-NAME "Mary")(:var _sis))

$E-PERSON.10

? (defrelation SISTER PERSON PERSON)

$S-PERSON-SISTER

? (defindividual PERSON (HAS-NAME "Petrus")(:var _pete)(HAS-SISTER _sis))

$E-PERSON.11

? (send _pete ’=print-self)

----- $E-PERSON.11

NAME: Petrus

SEX: unknown

SISTER: $E-PERSON.10

:DONE

? (send ’$S-PERSON-SISTER ’=delete _pete _sis)

((MOSS::$TYPE (0 $E-PERSON)) (MOSS::$ID (0 $E-PERSON.11))

($T-PERSON-NAME (0 "Petrus")) ($S-PERSON-SISTER (0)))

? (send _pete ’=print-self)

----- $E-PERSON.11

NAME: Petrus

SEX: unknown

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 50

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete (universal)

=delete Universal method

When sent to an object, deletes the current version of the object from memory, removing the
eventual entry-points and cleaning the inverse links. Since the object cannot be physically removed
because of the versioning mechanism, we add a tombstone to indicate its death in the current context.

Example:

? $E-PERSON.2

(($TYPE (0 $E-PERSON)) ($T-NAME (0 "Jim" "john" "joe"))

($S-BROTHER (0 $E-PERSON.4 $E-PERSON.3)) ($S-MOTHER (0 $E-PERSON.5)))

? (send jim ’=delete)

(($TYPE (0 $E-PERSON)) ($T-NAME (0)) ($S-BROTHER (0)) ($S-MOTHER (0)) ($TMBT (0 T)))

One cannot use =print-history here since the object has been erased. We cheat by using an internal
moss function.

? (moss::%pep _jim)

$E-PERSON.2

TYPE: t0: $E-PERSON

IDENTIFIER: t0: $E-PERSON.2

----- Attributes

NAME: t0:

SEX: t0:

TOMBSTONE: t0: T

----- Relations

BROTHER: t0:

MOTHER: t0:

-----Inv-Links

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 51

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-all (attribute)

=delete-all object-id Instance method

Deletes all values corresponding to attributes of an object, removing the entry points if any.
Invokes the =if-removed method on the current property for each value, to do whatever bookkeeping

must be done.

Note: This method is equivalent to doing a loop with the =delete method on the property but is faster.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 52

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-all (inverse link)

=delete-all object-id Instance method

Deletes all links corresponding to an inverse link of an object.
Invokes the =if-removed method on the direct property for each predecessor, to do whatever book-

keeping must be done.
Does not check for minimal cardinality constraints.

Note: This method is equivalent to doing a loop with the =delete method on the property but is faster.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 53

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-all (relation)

=delete-all object-id Instance method

Deletes all links corresponding to relations of an object, removing the inverse links.
Invokes the =if-removed method on the current property for each successor, to do whatever book-

keeping must be done.

Note: This method is equivalent to doing a loop with the =delete method on the property but is faster.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 54

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-all-successors (universal)

=delete-all-successors rel-ref Universal method

Deletes all successors to a given entity. Issues a warning when the number of related objects falls
below the min cardinality level.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 55

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-attribute (universal)

=delete-attribute attribute-reference Universal method

Delete all values associated with a particular attribute and removes the attribute from the object,
making it locally unknown rather than empty. Uses the =delete-all method for the bookkeeping.

Error messages: Same as =delete-all.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 56

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-attribute-values (universal)

=delete-attribute-values attribute-reference value-list Universal method

Delete some values associated with an attribute. If a value is not present is done and no message
is sent..

Delegates the work to the =delete method associated with the specified property. See =delete for
more explanations and error messages.

Error messages:

Attribute HAS-AGE cannot be found.

Attribute HAS-AGE is an ambiguous name.

Something wrong with attribute HAS-AGE while trying to delete 23 from $E-PERSON.2.

Warning messages:

The number of values for HAS-NAME in $E-PERSON.4 is now less the allowed minimum of 1.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 57

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-attribute-values-using-id (universal)

=delete-attribute-values-using-id attribute-id value-list Universal method

Basically the same thing as =delete-attribute-values, but uses id rather than reference.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 58

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-related-objects (universal)

=delete-related-objects relation-reference successor-list Universal method

Deletes a list of successors from an object

Error messages:

Relation HAS-NIECE cannot be found

Relation HAS-NIECE is an ambiguous name

Something wrong with relation HAS-NIECE while trying to delete $E-PERSON.6

from $E-PERSON.10

Note: Delegates the work to the =delete method once the internal id of the specified property has been
established. See =delete for more explanations and error messages.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 59

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=delete-related-objects-using-id (universal)

=delete-related-objects-using-id relation-id successor-list Universal method

Same as =delete-related-objects but uses property id rather than reference.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 60

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=filter (relation)

=filter successor-id object-id Own method

A method normally defined by the user to filter a successor to an object. Criteria are left to the
user. The method is applied by =add-related-objects-using-id just before doing the actual link. It is a
semi-predicate returning the successor-id if OK, NIL otherwise.

The default method does not do anything and returns the value as it.
Two arguments must be given: the id of the successor that is a candidate to being linked, and

the id of the object it should be linked to. The method can thus access the two objects if some fancy
reasoning is required.

Example: The =filter method could be used to check for the sex of a successor of a person for the brother
value. Moreover a full expert system could be called to decide whether an object can be effectively
linked to another one using the corresponding structural property.

Let us show a simple case checking the sex of a person before allowing to make a link with the
brother property. If the sex is not specified, we assume that the link can be made.

(defownmethod =filter ’$S-PERSON-BROTHER (suc-id obj-id)

"Filter persons with sex other than male when specified"

(let ((sex (car (HAS-SEX suc-id))))

(if (or (null sex)

(equal sex "m"))

suc-id

(progn

(warn

"successor ~A is not male (~A) and cannot be

declared a brother of object ~A"

suc-id sex obj-id)

nil))))

$FN.81

? (send ’$E-PERSON.6 ’=print-self)

----- $E-PERSON.6

NAME: Mary

SEX: F

:DONE

? (send ’$S-PERSON-BROTHER ’=filter ’$E-PERSON.6 _dp)

; Warning: successor $E-PERSON.6 is not male (F) and cannot be declared a brother of

object $E-PERSON.1

; While executing: MOSS::$S-BROTHER=O=0=FILTER

NIL

Jean-Paul A. Barthès©UTC, 2008 N223/Page 61

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=find (system)

=find entry &optional property-reference concept-reference Instance method

Extract entities from KB knowing entry point, and eventually prop name and concept name.
This is a low-level method and is not really meant to replace a query system.

Example:

? (defindividual PERSON (HAS-NAME "Durand") (HAS-FIRST-NAME "Jean")(:var _jd))

$E-PERSON.9

? (defindividual PERSON (HAS-NAME "Dubois" "Durand") (HAS-FIRST-NAME "Albert")(:var _add))

$E-PERSON.10

? (defindividual STUDENT (HAS-NAME "Durand" "Rufus") (HAS-FIRST-NAME "Jérôme")(:var _jdr))

$E-STUDENT.2

? (send *system* ’=find ’durand)

($E-PERSON.9 $E-PERSON.10 $E-STUDENT.2)

? (send moss::*moss-system* ’=find ’durand "name")

($E-PERSON.13 $E-PERSON.14 $E-STUDENT.5)

? (send moss::*moss-system* ’=find ’durand "name" "student")

$E-STUDENT.5

Jean-Paul A. Barthès©UTC, 2008 N223/Page 62

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=format-value (attribute)

=format-value value Own method

A method normally defined by the user to format a field of data in a special way (i.e., to express
a date as an integer). The default method does not do anything and returns the value as it. The
method acts as a demon and is called by =add-attribute-values-using-id. It can be used to check the
input type of the object and to request a correction from the user for interactive sessions.

In the default method, when value is a multilingual name, we extract national canonical part
otherwise we return the value unchanged.

The method is called by the system each time a value associated with a terminal property is added
to the system.

Example:

(defownmethod =format-value _has-sex (value)

"Checks the format of the value for sex: allowed values are f, female, m, male ~

expressed as strings. They are normalized to the short form f or m."

(cond

((member value ’("f" "female") :test #’equal)

"f")

((member value ’("m" "male") :test #’equal)

"m")

(t (warn

"value for sex must be f or m expressed as strings.") nil)))

? (send _has-sex ’=format-value "female")

"f"

? (send _has-sex ’=format-value "m")

"m"

? (send _has-sex ’=format-value "g")

; Warning: value for sex must be f or m expressed as strings.

; While executing: MOSS::$T-SEX=O=0=FORMAT-VALUE

NIL

Jean-Paul A. Barthès©UTC, 2008 N223/Page 63

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get (universal)

=get property-reference Universal method

Obtains a value for the specified property in the current context. Returns the value-list associated
with the current property or inherited from a prototype, or from a default value.

Always return a list of values since all properties are multi-valued.

Example:

? (send _dp ’=get ’HAS-NAME)

("Dupond" "Dupuis")

Error messages:

• Error occurs when the specified property is not part of the object, in which case an empty list
is returned.

? (send _dp ’=get ’HAS-MONEY)

; Warning: in =get HAS-MONEY is not a property of object ($E-PERSON.1) in context 0

; While executing: MOSS::*0=GET

NIL

Note: Uses the =get-id method once the id of the property id has been established.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 64

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-all-objects (moss-system)

=get-all-objects Instance method

gets all objects present in the system and makes a list of them.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 65

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-classes (concept)

=get-classes property-reference Own method

Gets all instances of classes by extracting them from the $ENLS property of *moss-system*, own
method of $ENT considered as a metaclass.

Example:

? (send ’moss::$ENT ’=get-classes)

(MOSS::$CTR MOSS::$FN MOSS::$UNI MOSS::$SYS MOSS::$ENT MOSS::$EPR MOSS::$EPS

MOSS::$EPT MOSS::$EP MOSS::$EIL MOSS::*NONE* MOSS::*ANY* MOSS::$DOCE

MOSS::$ENDCE MOSS::$FRDCE MOSS::$CNFG MOSS::$USR MOSS::$QHDR MOSS::$QRY

MOSS::$QSTE MOSS::$QFSTE MOSS::$QSSTE MOSS::$QCXT MOSS::$SCXTE MOSS::$QHDE

MOSS::$CVSE MOSS::$ARGEMOSS::$OBRGE MOSS::$ACTE MOSS::$MARGE MOSS::$HAPE

MOSS::$PAPE MOSS::$WAPE $E-ORANGE $E-FRUIT $E-APPLE $E-BANANA $E-PERSON

$E-STUDENT $E-TOWN $E-TEACHER)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 66

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-default (universal)

=get-default prop-id Universal method

The method is used by =get-id to try to obtain a default value when it could not be obtained from
the object itself or from its prototypes. The way to do it is to ask all the classes of the object, then
the property itself. Default so far are only attached to attributes. Defaults cannot be inherited.

Example:

? (send ’$e-person.1 ’=get-default ’$T-person-sex)

("unknown")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 67

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-documentation (universal)

=get-documentation &key no-summary (lead ””) final-new-line Universal method

Get an object documentation as a string or sorry message.

Optional key arguments:

no-summary (key): if t doest not print a leading summary of the object

lead (key): string, if there prints it before printing doc (default null string)

final-new-line (key): if t add a new line at the end of the string.

Returns a string.

Example:

? (send ’moss::$ent ’=get-documentation)

"

CONCEPT : *sorry no documentation available*"

Jean-Paul A. Barthès©UTC, 2008 N223/Page 68

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-id (universal)

=get-id property-id Universal method

Obtains a value for the specified property in the current context. Returns the value-list associated
with the current property or inherited from a prototype, or from a default value.

Always return a list of values since all properties are multi-valued.Algorithm:

1. quits if property-id is nil

2. tries to get a value locally by using the internal

3. If no ancestors for the object tries to get a default value by sending the message:

(send prop-id ’=get-id ’$DEFT)

unless property is $DEFT (to avoid infinite loops).

4. when there are ancestors, tries to get a value depth first.

5. if there were ancestors, but we could not find a value, we try the default value as in case 3.

Example:

? (send dp ’=get-id ’$T-PERSON-NAME)

("Dupond" "Dupuis")

In practice HAS-NAME is declared implicitly as an accessor function that plays the same role.

? (HAS-NAME _dp)

("Dupond" "Dupuis")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 69

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (attribute)

=get-instances prop-id Own method

Gets all instances of attributes by extracting them from the $ETLS property of *moss-system*.

Example:

? (send ’moss::$EPT ’=get-instances)

(MOSS::$VALT MOSS::$CNAM MOSS::$XNB MOSS::$TMBT MOSS::$DOCT MOSS::$ARG MOSS::$REST

MOSS::$CODT MOSS::$FNAM MOSS::$MNAM MOSS::$UNAM MOSS::$SNAM MOSS::$PRFX MOSS::$SVL

MOSS::$CRET MOSS::$DTCT MOSS::$VERT MOSS::$ENAM MOSS::$LBLT MOSS::$RDX MOSS::$ONEOF

MOSS::$PNAM MOSS::$MINT MOSS::$MAXT MOSS::$VRT MOSS::$SEL MOSS::$OPR MOSS::$TPRT

MOSS::$NTPR MOSS::$INAM MOSS::$TYPE MOSS::$DEFT MOSS::$OBJNAM MOSS::$TIT

MOSS::$VNBT MOSS::$CFNM MOSS::$USRNAM MOSS::$ACRT MOSS::$CVRS MOSS::$REF MOSS::$ID

MOSS::$QNAM MOSS::$QXPT MOSS::$QUXT MOSS::$QANT MOSS::$STNAM MOSS::$XPLT

MOSS::$SOBT MOSS::$DATT MOSS::$DOMT MOSS::$GOLT MOSS::$QT MOSS::$ACT MOSS::$PRMT

MOSS::$MSGT MOSS::$ANST MOSS::$RSLT MOSS::$QRYT MOSS::$WLT MOSS::$OWS MOSS::$IWS

MOSS::$TDO MOSS::$AGT MOSS::$FLT MOSS::$ARNAM MOSS::$ARKT MOSS::$ARVT MOSS::$ARQT

MOSS::$CREFT MOSS::$ANAM MOSS::$OPRT MOSS::$T-MOSS-OBJECT-ARGUMENT-ARG-KEY

MOSS::$T-HOW-ACTION-OPERATOR MOSS::$T-PRINT-ACTION-OPERATOR

MOSS::$T-WHAT-ACTION-OPERATOR $T-COLOR $T-SHAPE $T-DATE $T-ORANGE-COLOR

$T-ORANGE-SHAPE $T-FRUIT-COLOR $T-TASTE $T-FRUIT-TASTE $T-APPLE-DATE $T-BANANA-DATE

$T-NAME $T-PERSON-NAME $T-FIRST-NAME $T-PERSON-FIRST-NAME $T-SIZE $T-TOWN-SIZE

$T-SEX $T-PERSON-SEX)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 70

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (concept)

=get-instances &key min max ideal Instance method

Gets a list of instances of the corresponding class. Uses the counter to build the instance names
(including the ideal on option).

Example:

? (send _person ’=get-instances)

($E-PERSON.1 $E-PERSON.2 $E-PERSON.3 $E-PERSON.4 $E-PERSON.5 $E-PERSON.6 $E-PERSON.7

$E-PERSON.8 $E-PERSON.9 $E-PERSON.10 $E-PERSON.11 $E-PERSON.12 $E-PERSON.13

$E-PERSON.14)

? (send _person ’=get-instances :min 3 :max 9)

($E-PERSON.3 $E-PERSON.4 $E-PERSON.5 $E-PERSON.6 $E-PERSON.7 $E-PERSON.8 $E-PERSON.9)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 71

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (concept)

=get-instances Own method

Gets all instances of concepts by extracting them from the $ENLS property of *moss-system*.

Example:

? (send ’moss::$ent ’=get-instances)

(MOSS::$CTR MOSS::$FN MOSS::$UNI MOSS::$SYS MOSS::$ENT MOSS::$EPR MOSS::$EPS

MOSS::$EPT MOSS::$EP MOSS::$EIL MOSS::*NONE* MOSS::*ANY* MOSS::$DOCE MOSS::$ENDCE

MOSS::$FRDCE MOSS::$CNFG MOSS::$USR MOSS::$QHDR MOSS::$QRY MOSS::$QSTE MOSS::$QFSTE

MOSS::$QSSTE MOSS::$QCXT MOSS::$SCXTE MOSS::$QHDE MOSS::$CVSE MOSS::$ARGE

MOSS::$OBRGE MOSS::$ACTE MOSS::$MARGE MOSS::$HAPE MOSS::$PAPE MOSS::$WAPE $E-ORANGE

$E-FRUIT $E-APPLE $E-BANANA $E-PERSON $E-STUDENT $E-TOWN $E-TEACHER)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 72

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (counter)

=get-instances Own method

Gets all instances of concepts by extracting them from the $ETLS property of *moss-system*.
Deprecated.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 73

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (entry point)

=get-instances Own method

Get all instances of entry-points by extracting them from the $EPLS property of *moss-system*.

Example:

? (send ’$EP ’=get-instances)

(MOSS COUNTER HAS-VALUE IS-VALUE-OF HAS-COUNTER-NAME IS-COUNTER-NAME-OF

HAS-TRANSACTION-NUMBER IS-TRANSACTION-NUMBER-OF HAS-TOMBSTONE IS-TOMBSTONE-OF

METHOD HAS-METHOD-NAME IS-METHOD-NAME-OF HAS-DOCUMENTATION IS-DOCUMENTATION-OF

...

ALBERT BUTCHER BUTCHER-TRAINEE RED ZOE BOOK LIVRE HAS-TITRE HAS-OWNER IS-OWNER-OF

SMITH MEDICAL-DOCTOR RESEARCHER BARTHES\;.LABROUSSE HAS-SISTER IS-SISTER-OF)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 74

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (inverse-link)

=get-instances Own method

Gets all instances of concepts by extracting them from the $EILS property of *moss-system*.

Example:

? (send ’moss::$EIL ’=get-instances)

(MOSS::$VALT.OF MOSS::$CNAM.OF MOSS::$XNB.OF MOSS::$TMBT.OF MOSS::$DOCT.OF

MOSS::$ARG.OF MOSS::$REST.OF MOSS::$CODT.OF MOSS::$FNAM.OF MOSS::$MNAM.OF

MOSS::$UNAM.OF MOSS::$SNAM.OF MOSS::$PRFX.OF MOSS::$SVL.OF MOSS::$CRET.OF

MOSS::$DTCT.OF MOSS::$VERT.OF MOSS::$ENAM.OF MOSS::$LBLT.OF MOSS::$RDX.OF

MOSS::$ONEOF.OF MOSS::$PNAM.OF MOSS::$MINT.OF MOSS::$MAXT.OF MOSS::$VRT.OF

MOSS::$SEL.OF MOSS::$OPR.OF MOSS::$TPRT.OF MOSS::$NTPR.OF MOSS::$INAM.OF

MOSS::$TYPE.OF MOSS::$DEFT.OF MOSS::$OBJNAM.OF MOSS::$TIT.OF MOSS::$DOCS.OF

MOSS::$PT.OF MOSS::$PS.OF MOSS::$IS-A.OF MOSS::$OMS.OF MOSS::$IMS.OF MOSS::$CTRS.OF

MOSS::$SYSS.OF MOSS::$REQS.OF MOSS::$EPLS.OF MOSS::$FNLS.OF MOSS::$ESLS.OF

MOSS::$EILS.OF MOSS::$ETLS.OF MOSS::$ENLS.OF MOSS::$CLCS.OF MOSS::$INV.OF

MOSS::$SUC.OF MOSS::$ONESUCOF.OF MOSS::$SUCV.OF MOSS::$NSUC.OF MOSS::$VNBT.OF

MOSS::$CFNM.OF MOSS::$USRNAM.OF MOSS::$ACRT.OF MOSS::$CVRS.OF MOSS::$CFGS.OF

MOSS::$USRS.OF MOSS::$REF.OF MOSS::$ID.OF MOSS::$QNAM.OF MOSS::$QXPT.OF

MOSS::$QUXT.OF MOSS::$QANT.OF MOSS::$STNAM.OF MOSS::$XPLT.OF MOSS::$SOBT.OF

MOSS::$DATT.OF MOSS::$DOMT.OF MOSS::$GOLT.OF MOSS::$QT.OF MOSS::$ACT.OF

MOSS::$PRMT.OF MOSS::$MSGT.OF MOSS::$ANST.OF MOSS::$RSLT.OF MOSS::$NSTS.OF

MOSS::$QRYT.OF MOSS::$WLT.OF MOSS::$ESTS.OF MOSS::$STS.OF MOSS::$ISTS.OF

MOSS::$CTXS.OF MOSS::$DHDRS.OF MOSS::$OWS.OF MOSS::$IWS.OF MOSS::$TDO.OF

MOSS::$AGT.OF MOSS::$FLT.OF MOSS::$ARNAM.OF MOSS::$ARKT.OF MOSS::$ARVT.OF

MOSS::$ARQT.OF MOSS::$CREFT.OF MOSS::$ANAM.OF MOSS::$OPRT.OF MOSS::$ARGS.OF

MOSS::$ACTS.OF MOSS::$GLS.OF MOSS::$T-MOSS-OBJECT-ARGUMENT-ARG-KEY.OF

MOSS::$T-HOW-ACTION-OPERATOR.OF MOSS::$S-HOW-ACTION-OPERATOR-ARGUMENTS.OF

MOSS::$T-PRINT-ACTION-OPERATOR.OF MOSS::$S-PRINT-ACTION-OPERATOR-ARGUMENTS.OF

MOSS::$T-WHAT-ACTION-OPERATOR.OF MOSS::$S-WHAT-ACTION-OPERATOR-ARGUMENTS.OF

$T-COLOR.OF $T-SHAPE.OF $T-DATE.OF $T-ORANGE-COLOR.OF $T-ORANGE-SHAPE.OF

$T-FRUIT-COLOR.OF $T-TASTE.OF $T-FRUIT-TASTE.OF $T-APPLE-DATE.OF $T-BANANA-DATE.OF

$T-NAME.OF $T-PERSON-NAME.OF $T-FIRST-NAME.OF $T-PERSON-FIRST-NAME.OF $S-FOOD.OF

$S-PERSON-FOOD.OF $S-BROTHER.OF $S-PERSON-BROTHER.OF $T-SIZE.OF $T-TOWN-SIZE.OF

$S-MOTHER.OF $S-PERSON-MOTHER.OF $T-SEX.OF $T-PERSON-SEX.OF $S-SISTER.OF

$S-PERSON-SISTER.OF)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 75

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (method)

=get-instances Own method

Get all instances of methods by extracting them from the $EILS property of *moss-system*.

Example:

? (send ’$FN ’=get-instances)

($FN.0 $FN.1 $FN.2 $FN.3 $FN.4 $UNI.0 $UNI.1 $UNI.2 $FN.5 $UNI.3 $UNI.4 $UNI.5

$UNI.6 $UNI.7 $UNI.8 $UNI.9 $FN.6 $FN.7 $FN.8 $FN.9 $FN.10 $FN.11 $UNI.10 $UNI.11

$UNI.12 $UNI.13 $FN.12 $FN.13 $FN.14 $FN.15 $UNI.14 $FN.16 $UNI.15 $UNI.16 $FN.17

$FN.18 $FN.19 $FN.20 $FN.21 $FN.22 $FN.23 $FN.24 $UNI.17 $FN.25 $UNI.18 $UNI.19

$UNI.20 $UNI.21 $UNI.22 $FN.26 $FN.27 $FN.28 $FN.29 $FN.30 $FN.31 $FN.32 $UNI.23

$UNI.24 $UNI.25 $FN.33 $FN.34 $FN.35 $FN.36 $FN.37 $FN.38 $FN.39 $FN.40 $FN.41

$FN.42 $FN.43 $UNI.26 $FN.44 $FN.45 $FN.46 $FN.47 $FN.48 $FN.49 $FN.50 $UNI.27

$FN.51 $FN.52 $FN.53 $FN.54 $FN.55 $FN.56 $UNI.28 $FN.57 $FN.58 $FN.59 $FN.60

$UNI.29 $UNI.30 $FN.61 $UNI.31 $UNI.32 $FN.62 $UNI.33 $UNI.34 $FN.63 $FN.64 $UNI.35

$FN.65 $FN.66 $FN.67 $FN.68 $UNI.36 $UNI.37 $FN.69 $UNI.38 $UNI.39 $UNI.40 $UNI.41

$FN.70 $FN.71 $FN.72 $FN.73 $FN.74 $FN.75 $FN.76 $FN.77 $UNI.42 $FN.78 $FN.79

$UNI.43 $FN.80 $FN.81 $FN.82 $FN.83 $FN.84 $UNI.44 $FN.85 $FN.86 $FN.87 $FN.88

$FN.89 $FN.90 $FN.91 $FN.92 $FN.93 $FN.94 $FN.95)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 76

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-instances (relation)

=get-instances Own method

Gets all instances of concepts by extracting them from the $ESLS property of *moss-system*.

Example:

? (send ’moss::$EPS ’=get-instances)

(MOSS::$DOCS MOSS::$PT MOSS::$PS MOSS::$IS-A MOSS::$OMS MOSS::$IMS MOSS::$CTRS

MOSS::$SYSS MOSS::$REQS MOSS::$EPLS MOSS::$FNLS MOSS::$ESLS MOSS::$EILS MOSS::$ETLS

MOSS::$ENLS MOSS::$CLCS MOSS::$INV MOSS::$SUC MOSS::$ONESUCOF MOSS::$SUCV

MOSS::$NSUC MOSS::$CFGS MOSS::$USRS MOSS::$NSTS MOSS::$ESTS MOSS::$STS MOSS::$ISTS

MOSS::$CTXS MOSS::$DHDRS MOSS::$ARGS MOSS::$ACTS MOSS::$GLS

MOSS::$S-HOW-ACTION-OPERATOR-ARGUMENTS MOSS::$S-PRINT-ACTION-OPERATOR-ARGUMENTS

MOSS::$S-WHAT-ACTION-OPERATOR-ARGUMENTS $S-FOOD $S-PERSON-FOOD $S-BROTHER

$S-PERSON-BROTHER $S-MOTHER $S-PERSON-MOTHER $S-SISTER $S-PERSON-SISTER)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 77

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-name (attribute)

=get-name Instance method

Returns the name of an instance of attribute.

Example:

? (send ‘$enam ’=get-name)

("CONCEPT-NAME")

? (send ’$T-PERSON-NAME ’=get-name)

("NAME")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 78

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-name (universal)

=get-name Instance method

Returns the name of an object using =instance-name. Same as =instance-name.

Example:

? (send ‘$ent ’=get-name)

("CONCEPT")

? (send _person ’=get-name)

("Person")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 79

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-properties (universal)

=get-properties Universal method

Gets list of all attributes and relations if a given entity from its model. If it is a classless object
then returns the list in a random order.

Example:

• for a person

? (send _dp ’=get-properties)

($T-NAME $T-FIRST-NAME $T-SEX $S-FOOD $S-BROTHER $S-MOTHER $S-SISTER)

• for a property

? (send ’$T-NAME ’=get-properties)

($INV $PNAM $MINT $MAXT $XNB $TMBT)

• for a concept

? (send ’$FN ’=get-properties)

($ENAM $RDX $XNB $TMBT $PT $PS $IS-A $OMS $IMS $CTRS $SYSS)

• for the meta-class

? (send ’moss::$ENT ’=get-properties)

($ENAM $RDX $XNB $TMBT $PT $PS $IS-A $OMS $IMS $CTRS $SYSS)

• for an orphan

? (send _o2 ’=get-properties)

($TYPE $T-SHAPE $T-COLOR)

• for an entry-point (yes, entry-points are objects!)

? (send ’=get-properties ’=get-properties)

($XNB $TMBT)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 80

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-user-classes (concept)

=get-user-classes Own method

Gets all instances of classes by extracting them from the $ENLS property of *moss-system*. All
classes in the moss package are removed from the list.

Example:

? (send ’moss::$ent ’=get-user-classes)

($E-ORANGE $E-FRUIT $E-APPLE $E-BANANA $E-PERSON $E-STUDENT $E-TOWN $E-TEACHER)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 81

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=get-user-concepts (concept)

=get-user-concepts Own method

Same as =get-user-classes.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 82

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=has-inverse-properties (universal)

=has-inverse-properties Universal method

When applied to any object returns the list of all inverse property ids. This is used in particular
in connection with processing entry points.

Example:

? (send ’mary ’=has-inverse-properties)

($T-NAME.OF $EPLT.OF)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 83

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=has-properties (universal)

=has-properties Universal method

When sent to an object, the method returns the list of all properties actually present in the object,
with the exception of the property $TYPE, $ID and the inverse properties.

Example:

? (send _dp ’=has-properties)

($T-PERSON-NAME $S-PERSON-FOOD MOSS::$OMS)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 84

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=has-value (universal)

=has-value property-name Universal method

Example: The following example shows the difference between =get and =has-value. In that case 25 is a
default value which is not recognized by =has-value.

(defattribute AGE (:default 25)(:class person))

$T-PERSON-AGE

? (defindividual PERSON (HAS-NAME "Dumond")(:var _du))

$E-PERSON.9

? (send _du ’=get’has-age)

(25) ; default value

? (send _du ’=has-value ’has-age)

NIL

Error messages:

• An error occurs when the property does not exists:

? (send _du ’=has-value ’has-money)

> Error: in =has-value HAS-MONEY is not a property of object ($E-PERSON.9) in context 0

> While executing: MOSS::*0=HAS-VALUE

> Type Command-. to abort.

See the Restarts? menu item for further choices.

1 >

Note: =has-value uses =has-value-id once the identity of the property has been established.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 85

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=has-value-id (universal)

=has-value-id property-id Universal method

Same as the previous one but uses internal id of property for faster response.

Example:

? (send du ’=has-value-id _has-name)

("Dumond")

Note: The method uses the %get-value internal function in the current (default) context.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 86

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=id (entry point)

=id property class Instance method

Recovers the internal id of an object from its entry point, the associated property, and the class
to which it belongs.

The result is either an object or a list of objects if more than one is found.

Examples:

? (send ’DUPOND ’=id ’HAS-NAME ’PERSON)

$E-PERSON.1

? (m-definstance PERSON (HAS-NAME "Durand" "Dupond")(:var dd))

$E-PERSON.10

? (send ’DUPOND ’=id ’HAS-NAME ’PERSON)

($E-PERSON.10 $E-PERSON.1)

Note: The method uses the %extract internal function in the current (default) context.

(%extract *self* property class :context *context* :allow-multiple-values T)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 87

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=if-added (attribute)

=if-added value object-id Own method

Demon for doing some book keeping after values have been added. Is normally called by =add-

attribute-values-using-id.
The actual bookkeeping is left to the imagination of the user. It could be for example a redraw in

a window.

Example:

(defownmethod =if-added _has-position (suc-id obj-id)

"Redraws the diagram for showing the data"

(send *display-window* ’=redraw-object obj-id value))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 88

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=if-added (relation)

=if-added successor-id object-id Own method

Demon for doing some book keeping after values have been added. Is normally called by =add-

related-objects-using-id.
The actual bookkeeping is left to the imagination of the user. It could be for example a redraw in

a window.

Example:

(defownmethod =if-added _has-brother (suc-id obj-id)

"Redraws the diagram for showing the data"

(send *display-window* ’=redraw-link obj-id suc-id))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 89

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=if-removed (attribute)

=if-removed value object-id Own method

The method is a demon for doing some book keeping after values have been added. Is normally
called by =delete.

The actual bookkeeping is left to the imagination of the user.

Example:

(defownmethod =if-removed _has-position suc-id obj-id)

"Redraws the diagram for showing the change in data"

(send *display-window* ’=delete obj-id suc-id))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 90

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=if-removed (inverse link)

=if-removed &optional old-entity-id old-suc-id entity-id suc-id Own method

Daemon for doing book keeping after removing something. Default is to do nothing returning nil.

Optional arguments:

old-entity-id (opt): id of old entity

old-successor-id (opt): id of old successor

entity-id (opt): id of new (?) entity

successor-id (opt): id of new (?) successor

Jean-Paul A. Barthès©UTC, 2008 N223/Page 91

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=if-removed (relation)

=if-removed &optional old-entity-id old-suc-id entity-id suc-id Own method

The method is a demon for doing some book keeping after links have been added. Is normally
called by =delete.

The actual bookkeeping is left to the imagination of the user.

Optional arguments:

old-entity-id (opt): id of old entity

old-successor-id (opt): id of old successor

entity-id (opt): id of new (?) entity

successor-id (opt): id of new (?) successor

Example:

(defownmethod =if-removed _has-brother (suc-id obj-id)

"Redraws the diagram for showing the change in data"

(send *display-window* ’=undraw-link obj-id suc-id))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 92

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=increment (counter)

=increment Instance method

Increases value of counter by 1. Now does that in a special way since the counter must always
increase regardless of the version in which it has been created.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 93

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=inherit-instance (universal)

=inherit-instance method-name Universal method

is the default inheritance mechanism implementing a lexicographic search (depth first) in case
of multiple inheritance. The mechanism invoking this method is disabled in MOSS 7 rendering the
method useless. However advanced users can restore the complex inheritance mechanism, which is
however not detailed here.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 94

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=inherit-isa-instance (universal)

=inherit-isa-instance method-name Universal method

is the default inheritance mechanism when one tries to inherit an instance method starting with
an orphan, and following prototype links to see whther one of the prototypes in the list is an instance
of some class. The mechanism invoking this method is disabled in MOSS 7 rendering the method
useless. However advanced users can restore the complex inheritance mechanism, which is however
not detailed here

Jean-Paul A. Barthès©UTC, 2008 N223/Page 95

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=inherit-own (universal)

=inherit-own method-name Universal method

is the default inheritance mechanism (lexicographic depth first) when one looks into the list of
prototypes for a local method. The mechanism invoking this method is disabled in MOSS 7 rendering
the method useless. However advanced users can restore the complex inheritance mechanism, which
is however not detailed here.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 96

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=input-value (attribute)

=input-value stream &rest l-text Instance method

Examples: The last example shows that there is no connection between the =input-value method and the
=format-value method which is applied afterwards.

? (send _has-name ’=input-value)

HAS-NAME: Albert Jules Antoine

"Albert Jules Antoine"

? (send _has-name ’=input-value "Valeur du nom:")

Valeur du nom: Zoe

" Zoe "

? (m-defownmethod =format-value _has-age (string-value)

"age must be a number"

(let ((age (read-from-string string-value)))

(and (numberp age) age)))

AGE

$FN.81

? (send _has-age ’=input-value)

HAS-AGE: 45

45

Jean-Paul A. Barthès©UTC, 2008 N223/Page 97

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=instance-name (concept)

=instance-name Instance method

Returns the class name (as a list).

Example:

? (send _person ’=instance-name)

("PERSON")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 98

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=instance-name (inverse link)

=instance-name Instance method

Returns the inverse name qualifying the inverse link.

Example:

? (send (send _has-brother ’=inverse-id) ’=instance-name)

("IS-BROTHER-OF")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 99

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=instance-name (method)

=instance-name Instance method

Returns the name of the method that received the message.

Example:

? (send ’$FN.35 ’=instance-name)

=MAKE-ENTRY

Jean-Paul A. Barthès©UTC, 2008 N223/Page 100

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=instance-name (property)

=instance-name Instance method

Returns the name of the property.

Example:

? (send _has-first-name ’=instance-name)

("HAS-FIRST-NAME")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 101

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=instance-name (concept)

=instance-name entity-id Instance method

Returns a list summarizing entity to print - Default is first non nil terminal property - Maybe we
should consider required properties ...

Example:

? (send ‘moss::$ENT ’=instance-summary _person)

("Person")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 102

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=instance-name (relation)

=instance-name object-id Instance method

Returns a summary of a relation, namely its name.

Example:

? (send _has-brother ’=instance-summary _tom)

??

Jean-Paul A. Barthès©UTC, 2008 N223/Page 103

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=inverse-id (attribute)

=inverse-id Instance method

Returns the id of the inverse attribute. Used for build entry points.

Example:

? (send _has-name ’=inverse-id)

$T-NAME.OF

Jean-Paul A. Barthès©UTC, 2008 N223/Page 104

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=inverse-id (inverse-link)

=inverse-id Instance method

Returns the property corresponding whose inverse link is the inverse.
The three methods for properties all use the same internal function: %inverse-property-id.Example:

? (send ’$S-BROTHER.OF ’=inverse-id)

$S-BROTHER

Jean-Paul A. Barthès©UTC, 2008 N223/Page 105

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=inverse-id (relation)

=inverse-id Instance method

Returns the inverse internal id of the inverse relation. Needed to build inverse links.

Example:

? (send _has-brother ’=inverse-id)

$S-BROTHER.OF

Jean-Paul A. Barthès©UTC, 2008 N223/Page 106

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=kill-method (universal)

=kill-method method-name Universal method

Reaches all models following $IS-A.DE link - inverse of $IS-A - removing given method from prop-
list - =kill-method must be used each time a method is suppressed to remove the code from the various
p-lists onto which it was cached.

Warning: The method only acts on the p-list of the models that inherited the method. It cleans their
cache. It does not act on instances nor does it delete the method. On standard use the p-list is
deactivated (methods are not cached).

=kill-method is intended for advanced use.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 107

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=link (relation)

=link entity-id successor-id Instance method

Links two objects using the current relation. The link is semantically directed. Inverse links are
only a facility for navigating in the reverse direction.

Example:

? (send _dd ’=print-self)

----- $E-PERSON.10

NAME: Durand,Dupond

AGE: 25

:DONE

? (send _mm ’=print-self)

----- $E-PERSON.6

NAME: Mary

AGE: 25

:DONE

? (defrelation WIFE PERSON PERSON)

$S-PERSON-WIFE

? (send _has-wife ’=link _dd _mm)

:DONE

? (send _dd ’=print-self)

----- $E-PERSON.10

NAME: Durand,Dupond

AGE: 25

WIFE: $E-PERSON.6

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 108

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=make-entry (concept name)

=make-entry data-string Own method

is an own-method of the property CONCEPT-NAME. It is used to create entries for the names of
new concepts.

It uses the internal function make-entry-point.

Example:

? (send ’$ENAM ’=make-entry "A very sPecial property indeed")

(A-VERY-SPECIAL-PROPERTY-INDEED)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 109

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=make-entry (attribute name)

=make-entry data-string Own method

is an own-method of the property CONCEPT-NAME. It is used to create entries for the names of
new classes.

It uses the internal function make-entry-point.

Example:

? (send ’moss::$pnam ’=make-entry "albert est parti au boulot ; joseph l’épie")

(HAS-ALBERT-EST-PARTI-AU-BOULOT-\;-JOSEPH-L-EPIE)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 110

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=make-print-string (attribute)

=make-print-string value-list &key header no-value-flag Instance method

Produces a string with values associated to an attribute.

Arguments:

value-list: values associated to attribute

header (key): title to use instead of attribute name

no-value-flag (key): if t print even if value-list is nil

Example:

? (send _has-name ’=make-print-string ’("Albert" "Gérard"))

"name: Albert, Gérard"

Jean-Paul A. Barthès©UTC, 2008 N223/Page 111

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=make-print-string (relation)

=make-print-string suc-list &key header no-value-flag Instance method

Produces a string with a summary of all linked entities.

Arguments:

suc-list: list of successors

header (key): title to use instead of relation name

no-value-flag (key): if t print even if value-list is nil

Example:

? (send _has-mother ’=make-print-string ’($E-PERSON.1 $E-PERSON.2))

("mother" "Barthes: Jean-Paul" "Barthes Biesel, Barthes, Biesel: Dominique")

? (send ’moss::$PT ’=make-print-string ’($T-PERSON-NAME $T-PERSON-FIRST-NAME))

("ATTRIBUTE " "name" "first-name")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 112

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=make-print-string (universal)

=make-print-string &key (context *context*) Universal method

Produces a list of strings for printing an entity by-passing model.

Arguments:

context for printing object in the particular context

Example:

? *language*

:FR

? (send ’albert::$E-person ’=make-print-string)

("CONCEPT" ("CONCEPT-NAME" "personne") ("RADIX" ALBERT::$E-PERSON)

("ATTRIBUTE " "nom" "prénom")

("RELATION " "adresse domicile" "email" "page web" "epoux" "épouse" "mère")

("COUNTER" ("COUNTER" ("VALUE" 1))))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 113

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=make-standard-entry (attribute)

=make-standard-entry data-string Instance method

Builds a list of symbols using the make-entry primitive. Spaces are removed and periods are inserted
in between words. Argument may be a list or a string as shown in the examples.

Example:

? (send _has-name ’=make-standard-entry ?The red shark?)

(THE-RED-SHARK)

This method is replaced whenever necessary by a user defined ownmethod attached to the corre-
sponding attribute.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 114

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=modify-value (attribute)

=modify-value entity-id value Instance method

Modify current value - default is to ask for new value.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 115

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=new (attribute)

=new &rest option-list Own method

Defines the =new own-method for attributes for defining user models. Uses the same code as the
m-make-attribute function with the following options:

(m-make-tp name &rest option-list)

Syntax of options is:

(:class <class-name>) to attach to a class

(:class-id <class-id>) same as above, but with internal

class id

(:default <value>) default, not obeying PDM specs

(:is-a <class-id>*) for defining inheritance

(:min <number>) minimal cardinality

(:max <number>) maximal cardinality

(:var <var-name>) id.

(:unique) minimal and maximal cardinality are

both 1

(:entry {<function-descriptor>}) specify entry-point

if no arg uses make-entry,

otherwise uses specified function

where

<function-descriptor>::=<arg-list><doc><body>

e.g. (:entry (value-list) \"Entry for Company name\"

(intern (make-name value-list)))

Done as follows:

• check if property already exists - if so, then error

• build property.

Example:

? (send ’moss::$EPT ’=new ’nickname ’(:max 2)

’(:entry (value-list) "Entry for nickname"

(intern (moss::make-name value-list)))

’(:class person))

$T-NICKNAME

Jean-Paul A. Barthès©UTC, 2008 N223/Page 116

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=new (inverse link)

=new prop-id Own method

Creates a new instance of inverse-link e.g. $NAME.OF

Example:

? (send ’$EIL ’=new _has-name)

$T-NAME.OF

? (send ’$EIL ’=new ’$T-PERSON-NAME)

$T-NAME.OF

Jean-Paul A. Barthès©UTC, 2008 N223/Page 117

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=new (universal)

=new &rest option-list Universal method

Creates a new instance using the radix contained in the model e.g. $PERS.34. Uses =basic-new.

Example:

? (send _person ’=new)

$E-PERSON.2

? $E-PERSON.2

(($TYPE (0 $E-PERSON)) ($ID (0 $E-PERSON.2)))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 118

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=new-classless-key (moss system)

=new-classless-key Instance method

Creates a new key for classless objects.

Example:

? (send moss::*moss-system* ’=new-classless-key)

$0-5

Jean-Paul A. Barthès©UTC, 2008 N223/Page 119

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=new-key (universal)

=new-key &rest option-list Universal method

Deprecated.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 120

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=new-version (moss system)

=new-version &rest option-list Own method

Adding a new version to the system. Takes the last version of the version-graph adds 1, and forks
from current version unless there is an option.

Options:
(from old-branching-context)

See the document about versions for a detailed explanation of the versioning mechanism.
(from list-of-branching-contexts)

See the document about versions for a detailed explanation of the versioning mechanism.

Example:

? (send *moss-system* ’=new-version)

;***Warning: changing version and context from 0 to 1

1

Note: This method is intended for system use.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 121

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=normalize (attribute)

=normalize value Instance method

Normally normalizes data values - default is to do nothing.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 122

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print (attribute)

=print object-id Instance method

Deprecated.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 123

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-all (universal)

=print-all &key (stream *moss-output*) Universal method

Prints an object bypassing its print function if present. It uses the method =get-properties to print
the object content.

Uses the =print-value method for each property.

Example:

? (send _dp ’=print-all)

----- $E-PERSON.1

NAME: Dupond,Dupuis

FIRST-NAME:

SEX: unknown

AGE: 25

FOOD: $E-BANANA.1

BROTHER:

MOTHER:

SISTER:

WIFE:

:DONE

To be compared with:

? (send _dp ’=print-self)

----- $E-PERSON.1

NAME: Dupond,Dupuis

SEX: unknown

AGE: 25

FOOD: $E-BANANA.1

:DONE

or :

? (send _dp ’=print-object)

----- $E-PERSON.1

TYPE: $E-PERSON

identifier: $E-PERSON.1

NAME: Dupond,Dupuis

FOOD: $E-BANANA.1

OWN-METHOD: =HELLO OWN/ $E-PERSON.1, =HELLO-BIS OWN/ $E-PERSON.1,

=HELLO-TER OWN/ $E-PERSON.1

:DONE

or :

? (send _dp ’=print-history)

$E-PERSON.1

TYPE: t0: $E-PERSON

IDENTIFIER: t0: $E-PERSON.1

----- Attributes

NAME: t0: "Dupond", "Dupuis"

----- Relations

Jean-Paul A. Barthès©UTC, 2008 N223/Page 124

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

FOOD: t0: $E-BANANA.1

OWN-METHOD: t0: $FN.197, $FN.198, $FN.199

-----Inv-Links

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 125

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-all-instances (concept)

=print-all-instances &rest option-list Instance method

Prints all instances of a class. The default is to print them all, using the =summary method which
should have been defined (the default summary method prints the internal id of objects).

However one can print only a specific rance by using the :range option. One can also specify that
we want the =print-instance method by using the :full-print option.

Options:
(:range min max)

Print instances in between two counter numbers. ‘
(:full-print)

Uses the method =print-self for printing each instance.

Examples:

? (send _person ’=print-all-instances)

1 - $E-PERSON.1

2 - $E-PERSON.2

3 - $E-PERSON.3

4 - $E-PERSON.4

5 - $E-PERSON.5

6 - $E-PERSON.6

7 - $E-PERSON.7

"*done*"

? (definstmethod =summary PERSON () "returns first-name names"

(append (or (HAS-FIRST-NAME)(list "unknown first name"))

(or (HAS-NAME)(list "unknown name"))))

$FN.83

? (send _person ’=print-all-instances)

1 - "unknown first name" "Dupond" "Dupuis"

; Warning: object with id: $E-PERSON.2 has been erased in this context (0)when trying

to apply method:

; =SUMMARY, with arg-list: NIL

; While executing: SEND-NO-TRACE

2 - "unknown first name" "Dupond" "Dupuis"

3 - "unknown first name" "Tom"

4 - "unknown first name" "George"

5 - "unknown first name" "Tommy"

6 - "unknown first name" "unknown name"

7 - "unknown first name" "Tommy"

:DONE"

? (send _person ’=print-all-instances ’(:range 3 5) ’(:full-print))

NAME: Tom

SEX: unknown

AGE: 25

Jean-Paul A. Barthès©UTC, 2008 N223/Page 126

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

NAME: George

SEX: unknown

AGE: 25

NAME: Tommy

SEX: unknown

AGE: 25

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 127

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-as-method-for (entry point)

=print-as-method-for Instance method

Looks at an entry point for a possible name of a method. If so, for each object prints the instance
method and local method corresponding to the name if any.

Example:

? (send ’=get-name ’=print-as-method-for)

(=GET-NAME)

Returns the name of an instance $ENAM or $PNAM

Arguments: NIL

Function:

((SEND-NO-TRACE *SELF* ’=INSTANCE-NAME))

----- $UNI.25

UNIVERSAL-METHOD-NAME: =GET-NAME

DOCUMENTATION: Returns the name of an instance $ENAM or $PNAM

CODE: ((SEND-NO-TRACE *SELF* ’=INSTANCE-NAME))

FUNCTION-NAME: *0=GET-NAME

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 128

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-code (method)

=print-code &key (stream *moss-output*) Instance method

Prints Function code in pretty format.

Key argument:

stream (key): printing stream default t

Example:

? (send ’$FN.39 ’=print-code)

("Return a list summarizing entity to print - Default is first non nil terminal property

- Maybe we should consider required properties ...

Arguments:

entity-id: id of entity to print

Return:

A list summarizing entity"

(IF (%IS-MODEL? ENTITY-ID)

(SEND ENTITY-ID ’=INSTANCE-NAME)

(LET ((PROP-LIST (G==> ’HAS-TERMINAL-PROPERTY)))

(WHILE (AND PROP-LIST (NOT (SEND ENTITY-ID ’=GET-ID (POP PROP-LIST)))))

ANSWER)))

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 129

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-doc (method)

=print-doc &key (stream *moss-output*) Instance method

Prints Function name and associated documentation.

Key argument:

stream (key): printing stream default t

Example:

? (send ’$FN.39 ’=print-doc)

Return a list summarizing entity to print - Default is first non nil terminal property

- Maybe we should consider required properties ...

Arguments:

entity-id: id of entity to print

Return:

A list summarizing entity

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 130

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-documentation (universal)

=print-documentation &key (stream *moss-window*) no-summary (lead ””) final-
new-line erase &allow-other-keys

Universal method

Prints object documentation or sorry message.

Key argument:

stream (key): printing stream default t

erase (key): if t and stream is a pane, then erases the pane

no-summary (key): if t does not print a summary of the object

final-new-line (key): if t prints a final new line

lead (key): if t prints a leading header

Example:

? (send _person ’=print-documentation)

PERSON : Model of a physical person

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 131

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-error (universal)

=print-error Universal method

Deprecated.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 132

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-history (universal)

=print-history Universal method

Print the content of an object. For each property prints all values in all contexts from the root of
the version graph to the current context.

Uses the %pep internal function.

Example:

$E-PERSON

TYPE: t0: MOSS::$ENT

IDENTIFIER: t0: $E-PERSON

----- Attributes

CONCEPT-NAME: t0: (:EN "PERSON")

RADIX: t0: $E-PERSON

DOCUMENTATION: t0: (:EN "Model of a physical person")

----- Relations

COUNTER: t0: $E-PERSON.CTR

ATTRIBUTE: t0: $T-PERSON-NAME, $T-PERSON-FIRST-NAME,

$T-PERSON-NICK-NAME, $T-PERSON-AGE,

$T-PERSON-BIRTH-YEAR, $T-PERSON-SEX

RELATION: t0: $S-PERSON-BROTHER, $S-PERSON-SISTER,

$S-PERSON-HUSBAND, $S-PERSON-WIFE,

$S-PERSON-MOTHER, $S-PERSON-FATHER,

$S-PERSON-SON, $S-PERSON-DAUGHTER,

$S-PERSON-NEPHEW, $S-PERSON-NIECE,

$S-PERSON-UNCLE, $S-PERSON-AUNT,

$S-PERSON-GRAND-FATHER,

$S-PERSON-GRAND-MOTHER,

$S-PERSON-GRAND-CHILD, $S-PERSON-COUSIN

INSTANCE-METHOD: t0: $FN.198

-----Inv-Links

IS-ENTITY-LIST-OF: t0: MOSS::$SYS.1

IS-SUCCESSOR-OF: t0: $S-PERSON-BROTHER, $S-PERSON-SISTER,

$S-PERSON-HUSBAND, $S-PERSON-WIFE,

$S-PERSON-MOTHER, $S-PERSON-FATHER,

$S-PERSON-SON, $S-PERSON-DAUGHTER,

$S-PERSON-NEPHEW, $S-PERSON-NIECE,

$S-PERSON-UNCLE, $S-PERSON-AUNT,

$S-PERSON-GRAND-FATHER,

$S-PERSON-GRAND-MOTHER,

$S-PERSON-GRAND-CHILD, $S-PERSON-COUSIN,

$S-ORGANIZATION-EMPLOYEE

IS-IS-A-OF: t0: $E-STUDENT

:DONE

t0 indicates context 0.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 133

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-instance (concept)

=print-instance instance-id &key (stream *moss-output*) instance method

Print an instance using model to get list of properties.

Example:

? (send _person ’=print-instance _dp)

NAME: Dupond,Dupuis

SEX: unknown

AGE: 25

FOOD: $E-BANANA.1

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 134

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-local-methods (universal)

=print-local-methods &key (stream *moss-output*) Universal method

Prints all methods and documentation associated with the current object.

Example:

? (send _has-name ’=print-local-methods)

INHERITED OWN METHODS

=====================

=MAKE-ENTRY

Entry-point function for HAS-NAME

INSTANCE METHODS OBTAINED FROM CLASS

====================================

=ADD

Add a value or a list of new values. Duplicates are NOT discarded. Values

are normalized using the =xi method, then added at the end of the current list.

The =if-added method is checked. Whenever it fails, the corresponding

successor is not added. Cardinality constraints are checked for maximal

value. If too many values are specified, then some of them are discarded.

Minimal cardinality is not checked and a warning is not issued.

Arguments:

obj-id: ID of object to modify

value-list: list of data

option-list (opt):

(:before data) to insert list in front of the specific data which must be

in internal normalized format

(:before-nth nth) to insert list in the nth position (useful when there are

several identical values - that can happen with TPs).

Return:

the internal representation of the modified object.

=CHECK

Check that the value list attached to the attibute in object obeys the various r

estrictions attached to the attribute.

Prints eventual errors using mformat.

Arguments:

value-list: list of object identifiers (presumably attached to the attribute)

Return:

value-list if OK, nil otherwise.

=DELETE

Delete a value for a given object. The value is normalized using the =xi method

if any has been defined. Eventual entry points are removed.

Arguments:

entity-id: id of object

value: value to delete

Jean-Paul A. Barthès©UTC, 2008 N223/Page 135

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

option-list (opt):

(:nth position) the position of the value is given in case there are several

identical values for the attribute

Return:

internal representation of object.

=DELETE-ALL

Delete current values associated with the property of object. The result is a null

value associated with the property.

Arguments:

entity-id: id of object

Return:

internal representation of object.

=FORMAT-VALUE

Format single value associated to property. A property can use such a

function for a special formatting.

when value is a multilingual name, we extract national canonical part otherwise

we return the value unchanged.

Argument:

value: value to format

Return:

value reformatted if MLN, value otherwise.

=FORMAT-VALUE-LIST

Format a list of values, presumably attached to a property. We limit the

length of the string to 80 characters, to avoid problems with Pascal strings.

Arg1: value-list

=GET-NAME

Returns the name of an instance $ENAM or $PNAM

=IF-ADDED

Daemon for doing book keeping after adding something. Default is to do

nothing returning value. If error is detected then returning nil aborts data.

Arguments:

value: new value

entity-id: id of object (in case it is needed)

Return:

value if OK, nil otherwise.

=IF-REMOVED

Daemon for doing book keeping after removing something Default is to do

nothing returning nil.

Arguments:

value: value that was removed

entity-id: object-id

Return:

nil

=INPUT-VALUE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 136

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

Input value associated with a given terminal property.

Arguments:

stream: output channel or window pane

l-text: optional header for property (default property name

Return:

normed value from a read.

=INSTANCE-NAME

returns attribute name with associated class name if class keyword is true

Arguments:

class (key): t or nil

Return:

list of name and class name eventually, e.g. ("name") or ("name/person")

=INVERSE-ID

Returns the internal id of the inverse attribute. No args.

=MAKE-STANDARD-ENTRY

Makes standard entry points using make-entry. Returns a list of symbols that will

be used as ids for the entry points.

Arguments:

data: used to build the entry point (may be a list)

Return:

a list of symbols

=MODIFY-VALUE

Modify current value - default is to ask for new value.

Arguments:

entity-id: id of entity whose property must be modified

value: value to be modified

=NORMALIZE

Normally normalizes data values - default is to do nothing.

Arguments:

value: value to normalize

Return:

normalized value

=PRINT

Print a terminal-property - Arg1: entity-id

=PRINT-VALUE

Print values associated to property - A property can uses =print-value for a

special formatting.

Arguments:

value-list: values associated to attribute

stream (key): stream or pane (default t)

header (key): title to use instead of attribute name

no-value-flag (key): if t print even if value-list is nil

Returns:

nil

Jean-Paul A. Barthès©UTC, 2008 N223/Page 137

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=SUMMARY

Return the property name

=XI

Normally normalizes data values. Checks value restriction conditions associated

with the terminal property.

Arguments:

data: list of values to be checked.

Return:

data if OK, nil otherwise

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 138

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-methods (universal)

=print-methods &key (stream *moss-output*) Universal method

Prints all methods and documentation associated with instances of the current object which should
be a class. Methods redefined locally, i.e. at a particular instance level, are ignored.

Example:

? (send _person ’=print-methods)

LOCAL INSTANCE METHODS

======================

=SUMMARY

Extract first names and names from a person object

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 139

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-name (concept)

=print-name &key (stream *moss-output*) Instance method

Prints onto the current active output the name of the class.

Example:

? (send _person ’=print-name)

Person

"Person "

Jean-Paul A. Barthès©UTC, 2008 N223/Page 140

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-object (universal)

=print-object &key no-inverse (stream *moss-output*)) Universal method

Print the content of an object by sending a =print-value message to all its properties including
inverse properties except when the option specifies not to print inverse properties.

Options:
(:no-inverse)

Instruction not to print inverse properties.
(:stream stream)

Allows redirecting printing towards a specific stream

Example:

? (send _dp ’=print-object)

----- $E-PERSON.1

TYPE: $E-PERSON

identifier: $E-PERSON.1

NAME: Dupond,Dupuis

FOOD: $E-BANANA.1

OWN-METHOD: =HELLO OWN/ unknown first name Dupond Dupuis,

=HELLO-BIS OWN/ unknown first name Dupond Dupuis,

=HELLO-TER OWN/ unknown first name Dupond Dupuis

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 141

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-self (entry point)

=print-self &key (stream *moss-output*)) Instance method

Instead of printing the entry point itself, actually prints all objects associated with a given entry
point.

Example: Compare the result of using =print-self vs using =print-object:

? (send ’dupond ’=print-self)

----- $E-PERSON.1

NAME: Dupond,Dupuis

SEX: unknown

AGE: 25

FOOD: $E-BANANA.1

----- $E-STUDENT.3

NAME: Dubois,Dupond

----- $E-PERSON.9

SEX: unknown

AGE: 25

FOOD: $E-BANANA.1

:DONE

? (send ’dupond ’=print-object)

----- DUPOND

TYPE: $EP

identifier: DUPOND

IS-NAME-OF: unknown first name Dupond Dupuis, unknown first name Dubois Dupond,

unknown first name unknown name

IS-ENTRY-POINT-LIST-OF: MOSS

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 142

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-self (method)

=print-self &key (stream *moss-output*)) Instance method

Prints the content of the method: name, documentation, code, etc.

Example:

? (send ’$FN.63 ’=print-self)

(=PRINT-SELF)

Print objects corresponding to an entry point.

Arguments

stream (key): output stream or pane (default t)

Return:

:done

Arguments: (&KEY (STREAM T))

Function:

((LET ((PROP-LIST (DELETE-DUPLICATES (SEND *SELF* ’=HAS-INVERSE-PROPERTIES))))

(WHILE PROP-LIST

(WHEN (AND (%IS-INVERSE-PROPERTY? (CAR PROP-LIST))

(NOT (EQL (CAR PROP-LIST) (%INVERSE-PROPERTY-ID ’$EPLS))))

(BROADCAST (%GET-VALUE *SELF* (CAR PROP-LIST))

’=PRINT-SELF

:STREAM

STREAM))

(POP PROP-LIST))

:DONE))

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 143

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-self (universal)

=print-self &key (context *context*) (stream *moss-output*)) Universal method

Prints any object in a nicer format that =print-object.
Works for any object in a default fashion, unless the method was redefined.

Options:
(:context nn)

Printing context for the object.
(:stream stream)

Allows redirecting printing towards a specific stream.

Example:

• instance of person

? (send _dp ’=print-self)

----- $E-PERSON.1

NAME: Dupond,Dupuis

SEX: unknown

AGE: 25

FOOD: $E-BANANA.1

:DONE

• orphan

? (send _o2 ’=print-self)

----- $0-1

TYPE: *NONE*

identifier: $0-1

SHAPE: Square

COLOR: Red

:DONE

• class

? (send _person ’=print-self)

----- $E-PERSON

CONCEPT-NAME: PERSON

RADIX: $E-PERSON

DOCUMENTATION: Model of a physical person

ATTRIBUTE : NAME/PERSON, FIRST-NAME/PERSON, NICK-NAME/PERSON, AGE/PERSON,

BIRTH YEAR/PERSON, SEX/PERSON

RELATION : BROTHER/PERSON, SISTER/PERSON, HUSBAND/PERSON, WIFE/PERSON,

MOTHER/PERSON, FATHER/PERSON, SON/PERSON, DAUGHTER/PERSON, NEPHEW/PERSON,

NIECE/PERSON, UNCLE/PERSON, AUNT/PERSON, GRAND-FATHER/PERSON,

GRAND-MOTHER/PERSON, GRAND-CHILD/PERSON, COUSIN/PERSON

Jean-Paul A. Barthès©UTC, 2008 N223/Page 144

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

INSTANCE-METHOD: =SUMMARY INST/ PERSON

COUNTER: 22

:DONE

? (send _student ’=print-self)

----- $E-STUDENT

CONCEPT-NAME: STUDENT

RADIX: $E-STUDENT

DOCUMENTATION: A STUDENT is a person usually enrolled in higher education

ATTRIBUTE : NAME/PERSON, FIRST-NAME/PERSON, NICK-NAME/PERSON, AGE/PERSON,

BIRTH YEAR/PERSON, SEX/PERSON

RELATION : COURSES/STUDENT, BROTHER/PERSON, SISTER/PERSON, HUSBAND/PERSON,

WIFE/PERSON, MOTHER/PERSON, FATHER/PERSON, SON/PERSON, DAUGHTER/PERSON,

NEPHEW/PERSON, NIECE/PERSON, UNCLE/PERSON, AUNT/PERSON,

GRAND-FATHER/PERSON, GRAND-MOTHER/PERSON, GRAND-CHILD/PERSON,

COUSIN/PERSON

IS-A: PERSON

INSTANCE-METHOD: =SUMMARY INST/ PERSON

COUNTER: 7

:DONE

• methods
Methods are objects but have their own =print-self method.

? (send ’moss::$FN.22 ’=print-self)

----- =FILTER

Can be defined so as to filter successor of a given entity.

Default action is Don’t filter

Arguments:

suc-id: id of successor

entity-id: id of entity

Return:

suc-id if filtering predicate is satisfied, nil otherwise.

Function:

NIL

:DONE

One can see on this last example the properties inherited from the class PERSON.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 145

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-typical-instance (concept)

=print-typical-instance &key (stream *moss-output*)) Instance method

Prints a typical instance of a class, corresponding to its ideal, i.e., the instance bearing all the
default attributes.

Example:

? (send _person ’=print-typical-instance)

----- $E-PERSON.0

SEX: unknown

AGE: 25

:DONE

Jean-Paul A. Barthès©UTC, 2008 N223/Page 146

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-value (attribute)

=print-value value-list &key (stream *moss-output*) header no-value-flag) Instance method

Printing function attached to attributes. Value-list is the set of values to be printed.

Options:
(:stream stream)

if present specifies the output stream.
(:header header)

if present specifies text to be printed instead of the property name.
(:no-value-flag t/nil)

if true prints property even if it has no value.

Example:

? (send _has-name ’=print-value (HAS-NAME _dp))

NAME: Dupond, Dupuis

NIL

? (send _has-name ’=print-value (HAS-NAME _dp) :header "Nom")

Nom: Dupond, Dupuis

Jean-Paul A. Barthès©UTC, 2008 N223/Page 147

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-value (inverse link)

=print-value successor-list &rest option-list Instance method

Prints a summary of all linked objects.
Mainly used internally by the system.

Example:

? (send ’$S-BROTHER.OF ’=print-value (has-brother ’$E-PERSON.17))

IS-BROTHER-OF: unknown first name Dubois Dupond

NIL

Jean-Paul A. Barthès©UTC, 2008 N223/Page 148

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-value (relation)

=print-value successor-list &rest option-list Instance method

Printing function attached to structural properties. Successor-list is the set of successors to be
printed. The description printed for each successor is a list obtained by sending the message =summary

to each of them in turn.
Return the string corresponding to what was printed.

Options:
(:header header)

if present, text to be printed instead of the property name,

Example:

? (defrelation wife person person)

$S-WIFE

? (defindividual PERSON (HAS-NAME "Barthes" "Biesel")(HAS-FIRST-NAME "Dominique")

(:var _dbb))

$E-PERSON.8

? (defindividual PERSON (HAS-NAME "Barthes")(HAS-FIRST-NAME "Jean-Paul")(HAS-WIFE dbb)

(:var _jpb))

$E-PERSON.9

? (send _has-wife ’=print-value (HAS-WIFE _jpb))

WIFE: Dominique Barthes Biesel

NIL

? (send _has-wife ’=print-value (HAS-WIFE _jpb) :header "Epouse ")

Epouse : Dominique Barthes Biesel

NIL

Jean-Paul A. Barthès©UTC, 2008 N223/Page 149

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=print-warning (universal)

=print-warning message Universal method

Deprecated.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 150

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=replace (universal)

=replace property-ref value-list Universal method

Replaces the value list associated with a given property with the specified value list. Use the
methods =delete-all and =add associated with the specific property.

Example:

? (send _jpb ’=print-self)

----- $E-PERSON.21

NAME: Barthes

FIRST-NAME: Jean-Paul

SEX: unknown

AGE: 25

WIFE: Dominique Barthes Biesel

:DONE

? (send _jpb ’=replace "age" ’(61))

((MOSS::$TYPE (0 $E-PERSON)) (MOSS::$ID (0 $E-PERSON.21))

($T-PERSON-NAME (0 "Barthes")) ($T-PERSON-FIRST-NAME (0 "Jean-Paul"))

($S-PERSON-WIFE (0 $E-PERSON.19)) ($T-PERSON-AGE (0 61)))

? (send _jpb ’=print-self)

----- $E-PERSON.21

NAME: Barthes

FIRST-NAME: Jean-Paul

SEX: unknown

AGE: 61

WIFE: Dominique Barthes Biesel

:DONE

Note: =replace uses =delete-all and =add methods associated with the specific property.

Error message:

? (send _jpb ’=replace ’HAS-MONEY ’("Hector"))

"No known HAS-MONEY Property for object $E-PERSON.21"

Jean-Paul A. Barthès©UTC, 2008 N223/Page 151

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=save-application (moss-system)

=save-application &optional (application-name *application-name*) Universal method

Save all the objects of an application including system objects into a file whose name is <application

name>.mos

System objects are saved last.

Warning: This method is still experimental. It saves a copy of the core image of the application. However,
this disconnects the application from the text files containing the definitions. It can be considered as
a cheap way to implement persistency.

Example:

Messages:

;*** saving the world into #P"Odin:Users:barthes:MCL:MOSS:MOSS

v6.0.0aM:applications:test.mos"reference to $0-0 which does not exist in context 0

,Warning: unbound object: $UNI.55

,Warning: unbound object: $UNI.51

,Warning: unbound object: $UNI.50

Most warnings correspond to ghost objects that are created by the function making instance keys
from the class counter. This is especially true when the class is shared by the system and by the user
(e.g. methods).

Jean-Paul A. Barthès©UTC, 2008 N223/Page 152

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (attribute)

=summary Instance method

Returns the property name.

Example:

? (send _has-age ’=summary)

("Age/Person")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 153

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (concept)

=summary Instance method

Normally specified by the user; by default returns a list with the model name.

Example:

• classes

? (send _person ’=summary)

("Person")

• meta-classes

? (send ’moss::$ENT ’=summary)

("CONCEPT")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 154

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (counter)

=summary Instance method

Returns the value of the counter.

Example:

? (send ’moss::$CTR ’=new)

$CTR.2

? (send * ’=summary)

(0)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 155

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (inverse link)

=summary Instance method

Returns the inverse property name.

Example:

? (send ’$S-BROTHER.OF ’=summary)

((:EN "IS-BROTHER-OF"))

Jean-Paul A. Barthès©UTC, 2008 N223/Page 156

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (method)

=summary Instance method

Returns the name of the method and its type and associated class.

Example:

? (send ’moss::$FN.22 ’=summary)

(=FILTER MOSS::INST/ "RELATION")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 157

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (relation)

=summary Instance method

Returns the property name.

Example:

? (send _has-brother ’=summary)

("BROTHER/UNIVERSAL-CLASS")

Jean-Paul A. Barthès©UTC, 2008 N223/Page 158

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (moss system)

=summary Instance method

Example:

? (send moss::*moss-system* ’=summary)

(MOSS)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 159

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (universal)

=summary Universal method

is a default method for returning a list to be used as a summary of any object. The default
summary is the internal id of the object!

The method is there to be specialized for each class of objects. It is in particular called by printing
functions when they have to list successors of a given structural property.

Example:

? (defrelation course person course)

$S-COURSE

? (send ’ $E-STUDENT.1 ’=add-related-objects "course" _ia1)

((moss::$TYPE (0 $E-STUDENT)) ($T-NAME (0)) ($S-BROTHER.OF (0 $E-PERSON.1))

($S-COURSE (0 $E-COURSE.1)))

? (send ’$E-STUDENT.1 ’=print-self)

----- $E-STUDENT.1

COURSE: $E-COURSE.1

:DONE

? (definstmethod =summary COURSE () "retourne le code UV" (HAS-CODE-UV))

$FN.85

? (send ’$E-STUDENT.1 ’=print-self)

----- $E-STUDENT.1

COURSE: IA01

:DONE

This example shows how the =summary method is used when printing the content of a student object.
Without the method, MOSS prints the identifier of the course ($E-COURSE.1). When the method is
defined, then MOSS prints the code of the course.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 160

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=summary (universal method)

=summary instance method

Return the name of the universal method.

Example:

? (send ’moss::$UNI.22 ’=summary)

(=DELETE-SP-ID)

Jean-Paul A. Barthès©UTC, 2008 N223/Page 161

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=unknown-method (universal)

=unknown-method Universal method

is the default method for taking care of unknown methods. The default is to print a message
stating that the method is not available for the specific object and continuing execution.

Example:

? (definstmethod =unknown-method COURS (method-name)

"Special way of handling errors by throwing to the :unknown tag"

(throw :unknown (format nil "Unknown method: ~A" method-name)))

$FN.199

? (catch :unknown (send ’$E-COURSE.1 ’=zorch))

"Unknown method: =ZORCH"

Jean-Paul A. Barthès©UTC, 2008 N223/Page 162

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=unlink (inverse link)

=unlink object-id successor-id Instance method

Removes a link between the two objects (same as =delete).

Jean-Paul A. Barthès©UTC, 2008 N223/Page 163

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=unlink (relation)

=unlink object-id successor-id Instance method

Removes the links between two objects.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 164

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=what? (universal)

=what? Universal method

Gives a summary of the type of object we are considering, including documentation if available,
and the list of ancestors of the model.

Example:

? (send _person ’=what?)

The object is an instance of ENTITY

Sorry, no specific documentation available

T

? _dd

$E-STUDENT.1

? (send dd ’=what?)

The object is an instance of STUDENT

... has ancestors (depth first)

PERSON

Sorry, no specific documentation available

T

Jean-Paul A. Barthès©UTC, 2008 N223/Page 165

UTC/GI/DI/CNRS UMR HEUDIASYC MOSS 7 - Kernel Methods(July 2008)

=xi (attribute)

=xi data Instance method

Normally normalizes data values. Checks value restriction conditions associated with the attribute.
Uses the internal %validate-tp-value to check each possible restriction that could apply to the value.
Returns the value if OK, NIL otherwise.

It is the same method as =normalize.

Jean-Paul A. Barthès©UTC, 2008 N223/Page 166

