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Abstract. This paper introduces a multi-scale theory of piecewise image modelling, called the scale-sets theory,
and which can be regarded as a region-oriented scale-space theory. The first part of the paper studies the general
structure of a geometrically unbiased region-oriented multi-scale image description and introduces the scale-sets
representation, a representation which allows to handle such a description exactly. The second part of the paper deals
with the way scale-sets image analyses can be built according to an energy minimization principle. We consider a
rather general formulation of the partitioning problem which involves minimizing a two-term-based energy, of the
form λC + D, where D is a goodness-of-fit term and C is a regularization term. We describe the way such energies
arise from basic principles of approximate modelling and we relate them to operational rate/distorsion problems
involved in lossy compression problems. We then show that an important subset of these energies constitutes a class
of multi-scale energies in that the minimal cut of a hierarchy gets coarser and coarser as parameter λ increases.
This allows us to devise a fast dynamic-programming procedure to find the complete scale-sets representation of
this family of minimal cuts. Considering then the construction of the hierarchy from which the minimal cuts are
extracted, we end up with an exact and parameter-free algorithm to build scale-sets image descriptions whose
sections constitute a monotone sequence of upward global minima of a multi-scale energy, which is called the
“scale climbing” algorithm. This algorithm can be viewed as a continuation method along the scale dimension or
as a minimum pursuit along the operational rate/distorsion curve. Furthermore, the solution verifies a linear scale
invariance property which allows to completely postpone the tuning of the scale parameter to a subsequent stage.
For computational reasons, the scale climbing algorithm is approximated by a pair-wise region merging scheme:
however the principal properties of the solutions are kept. Some results obtained with Mumford-Shah’s piece-wise
constant model and a variant are provided and different applications of the proposed multi-scale analyses are finally
sketched.
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1. Introduction

1.1. The Need for Multi-Scale Low Level Image
Descriptions

Following David Marr’s computational theory of vi-
sion (Marr, 1982), a number of image analysis systems
are based on a bottom-up architecture, made up of two
global stages. A low level analysis of the incoming sig-
nal is first performed, which builds a low level descrip-
tion of the data in terms of primitive structures (charac-
teristic points, contours, regions, optical flow, disparity
map. . .). Based on this low level description, high level
vision tasks are then issued (object recognition, scene
modelling, interpretation. . .). In its most general—and
radical—form, Marr’s theory assumes a complete inde-
pendence between the low and the high level stages of
vision. The low level processes are supposed to output
a general-purpose description of the image that is a de-
scription independent from any specific high level task.

Now, the structures which can be useful to high level
reasoning can be located at arbitrary positions in an im-
age, can have any orientation and can be of any size.
Also, useful structures can have arbitrary image con-
trasts, that is they can be very salient as well as very
poorly contrasted. Hence, a low level image description
should be uncommitted in terms of position, orienta-
tion, size and contrast (Lindeberg, 1994). Size refers
to the characteristic spatial extension of a phenomenon
while contrast refers to its characteristic extension in
the image’s values space. Size and contrast can thus be
thought of as two different measures of the “scale” of
a structure along the two basic dimensions of an im-
age: the spatial dimension and the values dimension.
Hence, low-level image analyses should be multi-scale
analyses both in the spatial and in the value sense.

1.2. From Scale-Space. . .

Marr proposed to start image analyses with the elabo-
ration of a low level description of the image in terms
of contours—the raw primal sketch—and put forward
the idea to look for transitions of different spatial ex-
tensions. Indeed, a progressive transition in an image
content becomes more and more local as the distance
of observation or as the size of an analyzing tool in-
creases. “The critical observation” by Marr (1982) (p.
69) “is that, at their own scale, these things [the transi-
tions in some image features] can all be thought of as
spatially localized”. The raw primal sketch was based

on convolving the image with the Laplacian of Gaus-
sian kernels of different spatial extensions (variances),
detecting the zero crossings and looking for the coin-
cidence of responses for different scales (2 or 3).

Gaussian filtering does nothing else than blurring
the image: it deletes the finest structures first but it
also progressively ‘blurrs’ the shapes, coarsening their
geometrical description. To cope with this problem,
Witkin (1983) proposed to consider the family of con-
volutions results with gaussians of different size as a
whole, a multi-scale representation of the signal called
the scale space. The original idea of Witkin was to de-
tect global contours at large scales and to track them
downward along the scale dimension in order to get
a fine geometrical description. The scale-space theory
then greatly developed to become a fully coherent the-
ory of multi-scale low-level image processing.

Important milestones in this development include
Koenderink’s work (Koenderink, 1984), who formal-
ized the Gaussian scale-space theory in Rn , introduc-
ing a fundamental principle of multi-scale analysis, the
causality principle, which formalizes a very common-
sensical idea: details can only disappear by zooming
out. To act as a multi-scale analysis, a sequence of
descriptions—or models—of a datum must not create
information when scale increases. In other words, the
scale axis is fundamentally oriented. Koenderink also
related Gaussian convolutions with the solutions of the
heat equation and thus transposed the scale-space the-
ory from the filtering domain to the domain of contin-
uous evolution modelling by partial differential equa-
tions (PDE). Badaud et al. (1986) then showed that the
gaussian scale-space is the unique linear scale-space.
Subsequent scale-space models, such as Perona and
Malik anisotropic diffusion scheme (Perona and Malik,
1990) or the affine morphological scale-space (Sapiro
and Tannenbaum, 1993; Alvarez et al., 2001), involved
non linear PDE. Alvarez et al. (2001) finally derived
axiomatically a complete catalogue of all the possible
PDE generated scale-spaces, the nature of the anal-
ysis depending on the set of the invariances obeyed.
Another important family of scale-spaces are gener-
ated by morphological operators (Jackay and Deriche,
1987; Salembier and Serra, 1995; Park and Lee, 1996;
Bosworth and Acton, 2003).

1.3. . . . To Scale-Sets

While low-level contour extraction and region delin-
eation are very close problems, region-oriented image
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analysis, i.e. image segmentation, has followed a rather
different development than edge detection. Following
Leclerc, the image segmentation problem can be in-
formally defined as the problem “to delineate regions
that have, to a certain degree, coherent attributes in
the image”. Indeed, “it is an important problem as, on
the whole, objects or coherent physical processes in
the scene project into regions with coherent image at-
tributes” (Leclerc, 1989).

Now in general, “coherent” regions can be found at
different scales in an image: global structures which are
perceived as “coherent” wholes at a large scale of anal-
ysis are made up of subparts which appear “coherent”
at a lower scale of analysis, and which in turn decom-
pose into coherent subparts. . . The existence of nested
“coherent” structures in an image is obvious in the case
of the texton/texture relationship; however it is much
more general. For instance, a region which is “homoge-
nous” to a certain degree, if it is not strictly constant, is
then made up of more “homogenous” subparts. Hence,
it can be argued that the general organization of the
“coherent” regions of an image is a hierarchical orga-
nization, modelling the existence of nested meaningful
structures in an image.

Despite this obvious remark, the image segmenta-
tion problem has been traditionally defined as a par-
titioning problem: decompose the image into disjoint
regions (Haralick and Shapiro, 1991), that is produce
a single scale, ‘flat’, analysis of the image. A reason
for this might be that contrarily to edge detection, re-
gion extraction is not always clearly conceived as a low
level process (Marr, 1982). Indeed, as semantic units
of a scene get mapped into regional units in an image,
there is a possible confusion between the low-level task
of primitive structure extraction from images and the
high-level task of object recognition and delineation.
Furthermore, even a very classical segmentation algo-
rithm, say a simple region growing method, is able
to delineate structures which correspond to certain se-
mantic units, when its parameters are appropriately
tuned. Hence the temptation to use a low-level seg-
mentation tool as an object recognition tool.

However, automatic parameter tuning is a hard prob-
lem which greatly affects the practical operationality of
most segmentation algorithms. If the images a system
has to analyze have a little variability, then it is dubious
that a single parameter setting will allow to correctly
segment all the images: the target objects will be over-
segmented in some images, under-segmented in some
other or even over-segmented in some parts of a given

image and under-segmented in other parts of the same
image. The reason for this is that the parameters of
a segmentation algorithm are related to low-level cri-
teria, such as homogeneity or geometrical regularity,
which are not in general robust criteria in terms of ob-
ject discrimination, except in very constrained imag-
ing conditions (e.g. industrial inspection). Moreover,
homogeneity or goodness-of-fit terms are dependent
on the image dynamics; hence, if the image contrast
changes, the parameters have to be adapted in order to
keep a satisfactory result. This point is of course closely
related to the fundamental role of invariance in vision
and to the fact that vision algorithms should in gen-
eral be independent of the viewing conditions (pose,
distance, lighting. . .).

Like Morel and Solimini, we think that “the only ba-
sis parameter in computer vision is ’scale’” (Morel and
Solimini, 1995), that is the fineness of analysis, and
that in general, the useful scale of analysis for a given
task cannot be chosen a priori, that is before viewing
the image. The task of selecting the useful scale(s) for
a given application is inherently a high level recog-
nition task which cannot be robustly solved based on
the low level criteria embedded in segmentation algo-
rithms. Hence, a low level segmentation tool should
remain scale uncommitted and output a multi-scale de-
scription of the image in which higher level processes
can navigate freely in order to find their objects of inter-
est. We claim that devising multi-scale low-level anal-
yses is the only way to get robust computer vision sys-
tems, and in particular to solve the difficult problems
of parameter tuning and of the respect of fundamental
invariances.

Those different ideas have led us to develop a multi-
scale approach of low level region-oriented image anal-
ysis, which we have called the scale-sets theory be-
cause, as we shall see, it can be regarded as a region-
oriented scale-space theory.

1.4. Organization of the Paper

The organization of the paper is as follows: In the spirit
of the scale-space theory, the first part of the paper
(Section 2) derives the general structure of geometri-
cally unbiased multi-scale region-oriented image de-
scriptions from a few basic axioms. It then introduces
the scale-sets representation, an implicit representation
which fully captures the structure of such descriptions.
Its general properties are studied and our proposal is
compared to related work.
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The second part of the paper (Section 3) studies the
way scale-sets image descriptions can be built accord-
ing to an energy-minimization principle. In a much
classical way now, the single-scale segmentation prob-
lem is put as the problem of finding a piece-wise de-
fined model minimizing a two-term based energy, of
the form λC + D where D is a goodness-of-fit term and
C is a regularization term. We show that under broad as-
sumptions, such energies induce monotone sequences
of minimal cuts in a hierarchy when λ browses R+

and we design an efficient algorithm to compute the
complete scale-sets representation of these sequences
exactly. In a kind of feedback loop, this allows us to
design a locally optimal algorithm to build the hierar-
chy from which the minimal cuts are extracted. The
principle is to progressively regularize the energy by
increasing λ and to follow the energy minimum along
a monotone sequence of partitions. This strategy leads
to a parameter-free region grouping criterion which we
implement within a pair-wise region merging scheme.
The scale-sets descriptions obtained are linearly scale
invariant, which implies that the scale parameter λ is
completely removed from the low-level segmentation
stage. This property also allows to confer other invari-
ance properties to the solution.

Before concluding, Section 4 presents some exper-
imental results. Appendix A recalls some usual defi-
nitions on partitions and hierarchies and takes up the
global notations of the paper. Appendices B and C pro-
vide the proofs applicable to Theorems 8 and 10.

2. Unbiased Multi-Scale Segmentations and their
Scale-Sets Representation

2.1. Multi-Scale Segmentations

Let P be a partitioning algorithm depending on a posi-
tive real parameter λ. Given an image I defined over a
domain D and a value of λ, P outputs a partition Pλ of
D. Intuitively, λ behaves as a scale parameter if increas-
ing λ systematically coarsens the partition produced by
P, in the sense of the fineness relationship between par-
titions (see Appendix A). Certainly because it is very
intuitive, this definition has been adopted as a starting
point for multi-scale segmentation by various authors,
such as (Koepfler et al., 1994; Serra and Salembier,
1993). We show here that it can be derived from two
fundamental principles of multi-scale analysis : causal-
ity and absence of boundary delocalization.

Let P = (Pλ)λ∈R+ be the complete family of the
partitions produced by P on I when λ browses R+.
P can be thought of as a mapping from R+ to P(D)
or equivalently as a point of P(D)R+

. Assume that D

is a part of a topological space and that the algorithm
P only produces partitions into connected regions. A
partition Pλ is then fully determined by the set of its
boundaries, which we denote by δPλ.

The causality principle is certainly the most funda-
mental principle of multi-scale analysis (Koenderink,
1984). From this principle, for any couple of scales
λ2 > λ1, the “structures” found at scale λ2 should find
a “cause” at scale λ1. Following Witkin’s original idea
(Witkin, 1983), we apply this principle to the edges
produced by algorithm P. In this case, the parameter
λ behaves as a scale parameter if and only if for all
λ2 > λ1, the boundaries of partition Pλ2

are in a one-
to-one mapping with a subset of the boundaries of Pλ1

(their “cause”). Now, to be topologically meaningful,
the mapping which relates δPλ2

to a subset of δPλ1

must be continuous. We thus propose the following
definition:

Definition 1 (causal structure). We say that a se-
quence (Pλ)λ∈R+ ∈ P(D)R+

has a causal structure
if ∀(λ1, λ2) ∈ R+2 such that λ2 ≥ λ1 there is a diffeo-
morphism φ of D such that φ(δPλ2

) ⊆ δPλ1
.

In terms of partitions, P has a causal structure if
for all λ2 > λ1, Pλ2

can be morphed to an under-
partition of Pλ1

, that is can be obtained by first ap-
plying a continuous deformation to Pλ1

and then delet-
ing some of its boundaries, that is merging some of its
regions.

In general, the morphism φ is dependent on λ1 and
λ2. We thus write it down φ(λ1, λ2). Now, in order
to discard sudden displacements of boundaries when
scale increases it is natural to require φ’s continuity
with respect to λ. Let I d denote the identical mapping
on D. As setting φ(λ, λ) = I d for all λ is the natural
solution for φ(λ, λ), one is naturally led to the defini-
tion:

Definition 2 (continuous causal structure). We say
that a sequence (Pλ)λ∈R+ ∈ P(D)R+

has a continu-
ous causal structure if it has a causal structure and the
family of diffeomorphisms φ verifies

∀λ ∈ R+ lim
ε→0

φ(λ, λ + ε) = I d.
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Finally, if one assumes that the best localization of a
structure can be achieved at the finest scale of analysis,
one should always keep the geometrical information
gathered at the finest scale and thus discard any bound-
ary deformation when scale increases. This can only be
reached by setting φ(λ1, λ2) = I d for all scales. This
additional condition then leads to a structure in which
δPλ2

is always a subset of δPλ1
, and thus to a structure

in which Pλ2
is always an under-partition of Pλ1

. Hence
the definition:

Definition 3 (unbiased multi-scale segmentation). A
sequence (Pλ)λ∈R+ ∈ P(D)R+

is called an unbiased
multi-scale segmentation if and only if the application
λ → Pλ is increasing, that is if and only if

∀(λ1, λ2) ∈ R+2
λ2 ≥ λ1 ⇒ Pλ2

≥ Pλ1
. (1)

As a conclusion, if one considers an analysis into
connected regions, then the intuitive structure of a
multi-scale segmentation—a monotone mapping from
R+ to P(D)—follows from two basic principles ap-
plied to the boundaries of the partitions: (i) the causal-
ity principle, which is a topological/structural princi-
ple and (ii) a principle of geometrical accuracy. The
scale parameter λ then controls a process which does
topological/structural caricature of information but no
geometrical caricature. These two conditions obviously
meet the intuitive requirements for an ideal “multi-scale
analyzer: an analyzer which delineates the global struc-
tures of an image together with a fine, or local, geome-
try. This property is called “strong causality” in Morel
and Solimini (1995). Note that a partitioning algorithm
P whose results on an image verify the relation 1 can
also be regarded as a geometrically unbiased multi-
scale edge detector which produces closed contours.
We shall get back to the issue of region/contour duality
in Section 2.3 below.

2.2. The Scale-Sets Representation

As was argued in introduction, a low-level segmenta-
tion algorithm should not focus on a specific scale but
should output a multi-scale description of an image;
and as we just saw, in a region-oriented approach, this
description should be what we have called an unbiased
multi-scale segmentation (Definition 3). However, this
poses a representational problem: an unbiased multi-
scale segmentation P is an increasing mapping from

R+ to P(D), and as this mapping starts from the con-
tinuous real line, it cannot be directly represented on a
computer.

Of course, one can always approximate the multi-
scale structure by sampling the scale axis, i.e. by set-
ting a series (λ1, λ2 . . . λk) of increasing scales and col-
lecting the associated partitions, ending with a pyra-
mid of segmentations (Pλ1

≤· · · ≤ Pλk ). However, the
sampling points are necessarily arbitrary: they must be
chosen before seeing the image. Such a strategy is thus
scale-committed. Instead, we would like to get a com-
plete representation of P which would allow to browse
the multi-scale structure of an image freely, e.g. which
would allow to set any value of λ a posteriori, and
retrieve the corresponding partition Pλ. This can be
achieved by what we call the scale-sets representation
of P , as we explain now.

Rather than focusing on the partitions Pλ, consider
the set of all the regions which compose them. For-
mally, consider H = ⋃

λ∈R+ Pλ. Obviously, as P is
a sequence of monotone partitions, the regions which
belong to H are either disjoint or nested. Thus, if P0

is the absolute over-partition and if for a sufficiently
large scale L , PL is the absolute under-partition {D},
then H is a hierarchy on D (see Appendix A). For
a digital image defined on a domain D of N pix-
els, H is finite and contains at most 2N − 1 ele-
ments, a bound which is reached when H is a binary
hierarchy.

Also consider for each region x of H the set �(x) of
the scales for which x belongs to Pλ:

�(x) � {λ | x ∈ Pλ}.

One can easily verify that the relation 1 implies that
�(x) is an interval, which can be written

�(x) = [λ+(x), λ−(x)[.

Definition 4. �(x) is called the interval of persis-
tence of the set x . λ+(x) is its scale of appearance
in P and λ−(x) is its scale of disappearance in the
sequence P .

λ+(x) and λ−(x) are the equivalent of the so-called
inner and outer scales of x in scale-space theory
(Lindeberg, 1994). One then immediately verifies that
a set x ∈ H disappears when its father in H appears,
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that is

∀x ∈ H λ−(x) = λ+(F(x)). (2)

Hence, the couple S = (H, λ+), where H provides
the sets which compose the partitions of the sequence
P and λ+ gives access to the range of scales over which
they “live”, captures the complete structure of P . We
thus propose the following definition :

Definition 5 (scale-sets representation). If P =
(Pλ)λ∈R+ is an unbiased multi-scale segmentation then
the structure S(P) � (H, λ+) where

H �
⋃

λ∈R+
Pλ

λ+ �
{

H 	→ R+

x → min{λ ∈ R+ | x ∈ Pλ}

is called the scale-sets representation of P .

From Eq. (2), λ+ is an increasing function with re-
spect to the set-inclusion partial order:

x ⊂ y ⇒ λ+(x) < λ+(y).

In the domain of hierarchical classification, such a
function is called an index on H and the couple (H, λ+)
is called an indexed hierarchy or a stratified hierarchy.
In our context, H represents a family of regions of the
image’s domain and λ+ maps them onto a 1D “scale”
axis, hence the scale-sets terminology. The whole struc-
ture completely represents a volume of partitions, yet
in an implicit manner. Any partition Pλ can then be
immediately retrieved by sectioning the scale-sets
structure:

Definition 6 (sections of a scale-sets). Let S =
(H, λ+) be a scale-sets on D. Let Bλ be the family
of boolean predicates on H :

Bλ(x) is true ⇔ λ+(x) ≤ λ

then the coarsest cut of H whose elements verify Bλ is
called S’ section of scale λ, or S’ λ-section. We denote
it by Sλ(S).

Sλ(S) is the partition made up of the largest regions
of H which have a scale of appearance lower than λ.

Obviously, thanks to the increasingness of λ+, this par-
tition exists and is unique for all λ ≥ 0. Furthermore,
if P is an unbiased multi-scale segmentation, then

∀λ ∈ R+ Pλ = Sλ(S(P)).

Hence the family (Pλ)λ∈R+ is the family of the sec-
tions of S(P).

In practice, a scale-sets S can be stored in a computer
as a real-valued tree. It can be graphically represented
by a dendrogram in which the y axis represents the
scale axis. Each horizontal cut in this diagram then
corresponds to a section of S (see Fig. 1).

2.3. Discussion

2.3.1. Related Work. As regards the image segmen-
tation problem, the idea of obtaining partitions as cuts
in hierarchies of regions goes back to the famous split
and merge algorithm by Horowitz and Pavlidis (1976).
However, the authors considered regular hierarchies
(quad-trees) and only looked for a single cut, using
a homogeneity predicate-based formulation of the par-
titioning problem.

Later, different authors have proposed to return a
stack of monotone partitions - fine to coarse - as a
segmentation result, also called a pyramid of segmen-
tations, either based on a structural/graph-based ap-
proach (Montanvert et al., 1991; Jolion and Montan-
vert, 1992), on an energy minimization-based approach
(Koepfler et al., 1994; Ballester et al., 1994; Fuchs and
Le Men, 1999) or on a morphological approach (Serra
and Salembier, 1993; Salembier and Serra, 1995)

Other authors consider returning a tree of regions, or
hierarchy, built by a classical region merging algorithm
(Salembier and Garrido, 2000a) or by a recursive divi-
sive approach based on binary Markov Random Fields
(Poggi and Ragozini, 1999).

In all these works, different levels of details are pro-
posed; however either the levels are not related to the
values of a scale parameter, or the scale axis is sampled.

As we have seen, in order to obtain a complete
representation of a sequence of monotone partitions
with respect to a real parameter, one needs to consider
an implicit representation of the partitions, as the
family of the sections of a stratified hierarchy. A
monotone mapping λ → Pλ is fully characterized by
a set of critical events: namely the appearance of new
regions at some specific scales, which are the unions of
some regions existing at lower scales. By nature, these
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Figure 1. A scale-sets image description and some of its sections. This scale-sets was obtained by the scale climbing algorithm from a watershed

over-segmentation of the image (see below).

merging events are discrete and in the case of an image
defined on a discrete domain, they are in finite number.
A complete representation can thus be obtained by
making explicit these critical events and the scales at
which they occur. It corresponds to a reverse point
of view from the pyramidal approach which gives
an approximate description of the mapping λ → Pλ.
The pyramidal approach amounts to setting some
specific scales and asking: which sets are present at
that scales? From the scale-sets point of view, the
key-point is: at which scale does a specific set appear
1? Answering this question will be a key-point in
the energy minimization-based approach to build
scale-sets descriptions presented below.

2.3.2. Ultrametric Distances and the Region/Contour
Duality. It is well known that the datum of a strati-
fied hierarchy on D is equivalent to that of an ultra-
metric distance δ on D, that is of a distance which
verifies

∀(x, y, z) ∈ D3 δ(x, z) ≤ max{δ(x, y), δ(y, z)}.

The closed balls of an ultrametric space (D, δ) con-
stitute a hierarchy H and the diameter of the balls is
an index on H . Conversely, a couple (H, λ+) induces
an ultrametrics λ−

� on D: λ−
� (x, y) is the smallest scale

for which x and y are grouped, i.e. belong to a same
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Figure 2. The contour disappearance map associated with the scale-

sets of Fig. 1 (logarithmic scale).

region. Formally

λ−
� (x, y) � λ+({x} ∨ {y})

where ∨ denotes the supremum operator in the sup-
semi-lattice (H, ⊆). The elements of the section of
scale λ of (H, λ+) are the maximal balls of (D, λ−

� )
which have a diameter lower than λ.

Now, if D is a domain of a topological space and if
the regions of H are connected then the ultrametrics is
fully determined by its values for the couples of neigh-
bouring points in D. λ−

� (x, y) then represents the scale
at which the boundary between x and y disappears. As
a consequence, an unbiased multi-scale segmentation
into connected regions can be equivalently represented
by a contour disappearance map (see Fig. 2). This
contour map has this particular property that thresh-
olding it always leads to closed contours, hence to a
partition of the image’s domain.

For practical uses, this contour-oriented representa-
tion can be further simplified. Let G = (D, N) denote
the region adjacency graph of P0, i.e. of the base of H .
Value its edges by λ−

� and consider a minimum span-
ning tree (MST) T of (G, λ−

� ). Removing the k edges of
T which have a lower scale than λ then splits the tree
into k + 1 connected components which correspond
to the regions of the section of scale λ of (H, λ+).2

The scale-sets representation, by an indexed inclu-
sion tree, and the indexed spanning tree representa-
tion are two dual representations of an unbiased multi-
scale segmentation, in the sense of the duality between
connected region-based and closed contour-based
descriptions.

Fernand Meyer’s morphological multi-scale seg-
mentation approach is based on the spanning tree rep-
resentation (Meyer, 1999a,b, 2001). Meyer proposes
to start from a watershed transform of the magni-
tude of a gradient of the image, build the region ad-
jacency graph of the catchment basins and value its
edges by a measure of dissimilarity. A multi-scale seg-
mentation is then obtained by considering the MST of
this graph. Meyer proposes different measures of dis-
similarity which amount to simulating different syn-
chronous flooding processes of the gradient magni-
tude. The scale parameter only depends on the con-
trast, the surface or the volume (contrast×surface) of
the regions.

In Guigues et al. (2003) we proposed another way to
obtain multi-scale segmentations from a dissimilarity-
based grouping approach. We defined a cocoon of a val-
ued graph as a connected set of nodes whose maximal
internal dissimilarity is lower than the minimal dissim-
ilarity with the exterior nodes. We proved that the set of
the cocoons of a graph is a hierarchy and released an as-
sociated ultrametrics. The hierarchy of the cocoons of
a graph is related to complete-linkage clustering while
the MST of a graph is related to single-linkage clus-
tering, see (Lance and Williams, 1967; Guigues et al.,
2003).

However, dissimilarity-based approaches do not al-
low to introduce geometrical criteria in the segmenta-
tion process. In contrast, the multi-scale analyses which
we propose here are based on optimizing two-term-
based energies, one term being a geometrical regular-
ization term. We now turn to the energy-minimization
part of our approach.

3. Scale-Sets Generation from a Variational
Principle

The first part of the paper has discussed the general
structure of unbiased multi-scale segmentations and
the way they can be represented exactly, considering a
scale-sets representation. We shall now show that one
can build scale-sets whose sections approximate the
solutions of a general energy minimization problem
which embeds most optimization-based formulations
of the segmentation problem (variational, Markovian,
minimal encoding). The energies involved have two
global terms whose relative weight is controlled by a
real parameter which, as we shall see, generally be-
haves as a scale parameter.
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3.1. Scale as an Inherent Parameter of Approximate
Modelling Problems

In a very classical way now, we put the single-scale
segmentation problem as an optimal piece-wise image
modelling problem (Mumford and Shah, 1989; Geman
and Geman, 1984). Let I be the set of the images one
is interested in and M be a set of possible “models” of
these images. In deterministic approaches of segmen-
tation, a model is a piece-wise defined image: piece-
wise constant or smooth (Mumford and Shah, 1989),
polynomial (Leclerc, 1989; Kanungo et al., 1995). . . In
probabilistic approaches, a model is a piece-wise de-
fined stochastic process whose realizations are images:
piece-wise i.i.d. Gaussian process. . . In what follows,
we focus on deterministic models; however a strictly
parallel reasoning can be followed for probabilistic
models.

Given an image I ∈ I, the objective is to pick in
M the “best model” of I . By a “comparison principle”
(Koepfler et al., 1994), this can always be formalized
as the problem of finding M ∈ M which minimizes a
certain energy E : I × M 	→ R+. Such an approach
contains three aspects: the definition of M, the defini-
tion of E, and the optimization itself.

In a deterministic framework, a model of an image is
also an image. Hence, one can at once choose a distance
D between models and images and define the “best
model” M of I as the one which minimizes D(I, M).
However, the solution for this type of problem is in
general not satisfactory: most of the time the model set
contains the image set, so that there is always a trivial
solution M = I which achieves D(I, M) = 0. For in-
stance, if one looks for a piece-wise constant model of
an image, then there is always an exact solution which
consists in tessellating the image into as many regions
as pixels. In practice, one looks for regions which cor-
respond to coherent phenomena which are larger than
a pixel. Hence, one does not look for the absolutely
flat zones of an image but looks for regions over which
the image is approximately constant. A precision of
approximation then needs to be introduced.

If I is an image and ε is a positive number, let us
say that a model M ∈ M such that D(I, M) ≤ ε is an
ε-approximation of I . For a given ε, there are a priori
numerous ε-approximations of I . The way to choose
one of them must then be principled, a task which can
again be formalized as an energy-minimization prob-
lem: assume that one is capable of defining an energy
C : M 	→ R+ which fully captures his preferences a

priori for the different models; the problem of the ε-
approximation of an image I can then be expressed as
a constrained optimization problem which we denote
by Pε(I ):

Find M ∈ M which minimizes C(M)

subject to D(I, M) ≤ ε. (3)

The energy C can be of different kinds. It can trans-
late objective knowledge on the data or be based on
relatively subjective criteria and aim to favour a spe-
cific interpretation. However, this constrained problem
takes a particular meaning when C can be interpreted
as a measure of the complexity of a model (objective
or subjective). In this case, the problem Pε(I ) formal-
izes the idea that between two models that equally fit
the data, the simpler of the two should be preferred. It
thus can be viewed as an expression of Occam’s Ra-
zor principle. Now, Occam’s Razor principle has a dual
formulation : between two equally complex models, the
closer to the data of the two should be preferred, which
corresponds to a dual minimization problem P�

γ (I ):

Find M ∈ M which minimizes D(I, M)

subject to C(M) ≤ γ. (4)

These two problems are well known in informa-
tion theory where they formalize lossy compression
issues (Shannon, 1959). In this context, the energy
C represents the communication rate or the number
of bits needed to encode the model and D measures
the distortion of the data caused by the compression-
decompression process. Given a certain quota of losses,
the problem is to obtain the best compression ratio or
dually, given a certain compression ratio, the problem
is to minimize the losses. Classically, the minimization
of a constrained problem is obtained by minimizing its
associated Lagrangian. The Lagrangians associated to
Pε(I ) and P�

γ (I ) respectively read:

Eμ(I, M) = C(M) + μD(I, M) (5)

E�
λ(I, M) = λC(M) + D(I, M) (6)

where μ and λ are the Lagrange multipliers.
Under large assumptions, one proves that there is a

bijection between the solutions of Pε(I ) (resp. P�
γ (I ))

and the minima of Eμ(I, M) (resp. E�
λ(I, M)). Every

(single) value of ε (resp. γ ) corresponds to a particular
value of μ (resp. λ) for which the minimum of the
Lagrangian is identical to the solution of the problem
under constraint.
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With the lagrangian expressions, one finds again the
usual energies used in image analysis. E�

λ(I, M) corre-
sponds for instance to the general expression of a regu-
larized ill-posed variational problem. D is then usually
called a “goodness-of-fit” term and C a “regulariza-
tion” term. For segmentation purposes, the archetype
of this kind of formulation is given by Mumford and
Shah’s functional (Mumford and Shah, 1989). Within
the framework of Bayesian inference, E�

λ(I, M)) can
also be interpreted as the Gibbs potential associated to
a conditional probability of the model given the data,
or posterior probability (Geman and Geman, 1984). In
this case, exp(−D(I, M)) corresponds to the probabil-
ity of the data knowing the model, or likelihood, and
exp(−λC(M)) corresponds to the prior probability of
the model. Minimizing E�

λ(I, M) is equivalent to max-
imizing exp(−E�

λ(I, M)) which is proportional to the
posterior probability of M .

Now, viewing an energy Eμ(I, M) as the lagrangian
of a constrained minimization problem allows to in-
terpret its minimization as the resolution of a prob-
lem of optimal ε-approximation of an image and thus
puts in light the role of the parameter μ. μ controls
the precision ε of the approximation found and thus
can be thought of as a scale parameter along the im-
age’s values dimension: the distance between the op-
timal model and the image monotonously decreases
as μ increases. Besides, the minima of Eμ(I, M) and
E�

λ(I, M) are identical when λ = 1/μ. Consequently,
the families of solutions for the two dual constrained
optimization problems coincide. Every precision ε cor-
responds to a bound of “complexity” γ (ε). Looking for
an ε-approximation of minimal complexity is equiva-
lent to looking for the closest approximation whose
complexity is lower than γ (ε). The precision and the
complexity of an optimal model thus vary altogether
and the Lagrangian parameter is the bridge between
them. As we will see, when the complexity is a notion
of spatial complexity and the problem is put in a hier-
archical framework then the Lagrangian parameter λ is
a scale parameter both in the spatial sense and in the
values sense.

3.2. Statement of the Problem and the Strategy
Adopted

We have described above two different notions of scale
associated with piece-wise image description prob-
lems: from a structural/ensemblistic point of view,
a “scale parameter” allows to browse a sequence of

nested spatial partitions and thus controls the “struc-
tural” fineness of a description. From an optimal mod-
elling point of view, a “scale parameter” controls
both the approximation’s fidelity and the approxima-
tion’s complexity. One would naturally like to see
both notions of scale coincide, i.e. to see the mod-
elling/optimization multi-scale framework match the
structural/ensemblistic multi-scale framework.

However, in general, the partitions minimizing an
energy of the form 6 are not monotone, mainly
because boundary displacements occur when λ in-
creases. An example involving Mumford-Shah’s func-
tional for piecewise constant image approximation is
provided in Guigues (2003). Furthermore, it is well
known that even the simplest energy-minimization
problems on discrete partitions are NP-hard (see e.g.
(Boykov et al., 1999) for a proof of it involving Potts
energy).

As the minima of usual two term-based energies on
partitions are not nested, we propose to enforce this
structure and put the multi-scale segmentation prob-
lem as the one to find a scale-sets description of an
image whose sections are as close as possible to the
partitions minimizing a two term-based energy of
the form 6. As we shall see, imposing a hierarchical
structure to the solution will lead us to a fast approxi-
mation scheme of the solutions.

The way we address this problem is driven by the
structure of the scale-sets representation. Two distinct
components are needed to fully determine a multi-scale
segmentation: a hierarchy of regions H and a mapping
λ+ of these regions onto a one-dimensional axis, the
‘scale’ axis. H provides the sets but only induces a
partial order on them through the inclusion relation.
λ+ then defines a total order on the structure, which
implicitly defines a family of monotone cuts of H . We
shall study the construction of these two components
independently and in reverse order:

(1) In Section 3.3 we assume that we already know the
structural part of the solution, i.e. the hierarchy H ,
and we prove that for an important class of two term-
based energies, the family of the minimal cuts of H
is a multi-scale analysis. Hence, for this class of
energies, knowing H fully determines λ+. Further-
more, we show that λ+ can be efficiently computed
by a dynamic programming-based algorithm.

(2) In Section 3.4 we get back to the construction of the
hierarchy itself. The results of Section 3.3 lead us to
a natural principle to build a scale-sets whose sec-
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tions track the energy’s minima, which is called the
scale climbing principle. The method is parameter-
free and leads to scale-sets which verify important
properties.

3.3. Multi-Scale Minimal Cuts of a Hierarchy

This section develops the first part of the strategy de-
scribed above. From there on, we shall restrict the type
of energies considered to what we call affine separa-
ble energies (ASE), which are the energies which can
be written for a partition P

Eλ(P) =
∑
R∈P

λC(R) + D(R) (7)

Most energies usually considered for image segmenta-
tion can be separated. Examples of it are the Mumford-
Shah functional (Mumford and Shah, 1989), Potts’
priors for Markov Random Fields (Geman and Geman,
1984), and most description length criteria such as the
one proposed by Leclerc (1989). From a probabilistic
point of view, the separability of Eλ amounts to an
independence assumption between the processes that
generated the different regions of an image.

The datum of an ASE Eλ on the partitions of a do-
main D is equivalent to the datum of a couple (C, D)
of energies on the parts of D. We can thus also write
Eλ = (C, D).

3.3.1. Hierarchical Minimization of Separable Ener-
gies. Forget for a while the scale parameter and sim-
ply consider a separable energy E(P) = ∑

R∈P E(R).
If H is a hierarchy then H ’s cut which minimizes
E can be easily computed by dynamic programming
(DP):

∀x ∈ H , let C∗(H (x)) be the minimal cut of H ’s par-
tial hierarchy rooted at x . Let E∗(H (x)) be the energy
of this cut. As the union of two cuts of two disjoint
hierarchies is a cut of their union, and as the energy
E is separable, then ∀x ∈ H the following Bellman’s
dynamic programming equations hold:

E∗(H (x)) = min

{
E(x),

∑
s∈S(x)

E∗(H (s))

}
(8)

C∗(H (x)) =

⎧⎪⎪⎨⎪⎪⎩
{x} if E(x) ≤

∑
s∈S(x)

E∗(H (s))⋃
s∈S(x)

C∗(H (s)) otherwise
(9)

One can thus optimize E starting from the leaves of
H by applying Eqs. (8) and (9) successively to all the
nodes of H in hierarchical order. C∗(H ) and E∗(H )
then provide the minimal cut of H and its energy. The
overall procedure has a linear complexity with respect
to H ’s size.

This procedure has been used for classification pur-
poses in the CART algorithm (Breiman et al., 1984) and
for wavelet bases construction in the Best-basis algo-
rithm (Donoho, 1997). In these applications, the hier-
archies involved are quad-trees. Salembier and Garrido
also used this minimal cut algorithm to build optimal
image thumbnails in a rate/distorsion sense (Salembier
and Garrido, 2000a). The cut is extracted from a hier-
archy of regions obtained by classical region-merging
technique which has no particular affinity with the min-
imization problem. We also employed this method in
an image segmentation algorithm based on minimizing
a Minimum Description Length (MDL) criterion in a
hierarchy of cocoons (Guigues et al., 2003, 2001).

The dynamic programming procedure allows to ex-
tract a single optimal partition from a hierarchy. Given
an affine separable energy Eλ, we shall now study the
behavior of H ’s minimal cut with respect to λ.

3.3.2. Multi-Scale Minimal Cuts Let H be a hierar-
chy and Eλ be an ASE. For each λ ∈ R+, we call λ-cut
the cut of H which minimizes Eλ. We denote this cut
by C∗

λ(H ). A region x ∈ H which belongs to C∗
λ(H ) is

called λ-optimal.
Examining the structure of the dynamic program-

ming Eq. (8), one can easily verify that

Proposition 7. A set x ∈ H is λ-optimal if and only
if the following two properties hold:

(i) x is partially optimal, i.e. ∀Y ∈ C(H (x)) Eλ({x}) ≤
Eλ(Y ).

(ii) x is maximal in H for the property (i), that is no
y ∈ H such that x ⊂ y is also partially optimal.

In what follows P∗
λ (H ) will denote the set of all

partially λ-optimal nodes of H , that is the set of the
nodes which verify the property (i) of Proposition 7.
Our approach then rests on the following Theorem:

Theorem 8 (Multi-scale minimal cuts). Let Eλ =
(C, D) be an affine separable energy. If either term C or
term D is monotone with respect to the fineness partial
order relation on the partitions of D, then for any hier-
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archy H on D, the sequence (C∗
λ(H ))λ∈R of the minimal

cuts of H for Eλ is a multi-scale segmentation.
More precisely, if C is decreasing in P(D), that is if

∀(P, Q) ∈ P2(D) Q ≥ P ⇒ C(Q) ≤ C(P) (10)

or if D is increasing in P(D) then (C∗
λ(H ))λ∈R is an

increasing sequence of partitions. If C is increasing
or D is decreasing then (C∗

λ(H ))λ∈R is a decreasing
sequence.

The proof is provided in Appendix B.

From there on, we shall focus on the energies which
lead to increasing sequences of solutions, fine to coarse
when λ increases, hence to ASES built either on a de-
creasing regularizer C or on an increasing goodness-
of-fit term D. Such energies shall be called multi-scale
ASES (MASEs).

Note that the decreasingness of a separable energy
in the partition lattice is equivalent to the subadditivity
of the corresponding energy on the set lattice. More
precisely, one easily shows that a separable energy
C(P) = ∑

R∈P C(R) verifies 10 if and only if

∀(R, S) ∈ P2(D)

R ∩ S = ∅ ⇒ C(R ∪ S) ≤ C(R) + C(S). (11)

Usual regularizing energies are decreasing. Quanti-
fying the complexity of a segmentation by its number
of regions gives a decreasing regularizer. Also, sum-
ming up any positive quantity (length, curvature, ...)
along the boundaries of the partition leads to a decreas-
ing regularizer: deleting a boundary by merging some
adjacent regions systematically reduces the energy. In-
deed, the decreasingness condition matches Occam’s
idea that entities should not be multiplied without ne-
cessity. Starting from this idea, the regions of a solution
should only be multiplied if it increases the model’s
goodness-of-fit. Hence among two ordered solutions
one should a priori prefer the coarser of the two.

On the contrary, usual goodness-of-fit energies are
increasing. Assume for example that one models the
image within a region by a certain parametric model
(e.g. constant, polynomial) and measures the model-
image distance in the L p norm. Indeed, the overall en-
ergy (the sum of the residuals of an L p regression) is
always larger when one fits a single model to the union
of two regions rather than two separate models to each
region. In other words, in the context of fixed order

parametric modelling in the L p norm, increasing the
number of model pieces always improves the model’s
fidelity.

As a conclusion, the energies which naturally arise
in image segmentation lead to multi-scale solutions in
a hierarchical framework. We shall now proceed with
the consequences of the Theorem 8.

3.3.3. Appearance, Disappearance and Persistence of
Regions. Indeed, if (C∗

λ(H ))λ∈R is a multi-scale seg-
mentation, it can be represented by a scale-sets struc-
ture. Moreover, this scale-sets can be computed exactly
and efficiently by generalizing the above dynamic pro-
gramming procedure. We shall first explain the rela-
tionship between partial optimality and maximality in
H and the scales of appearance and disappearance of
H ’s sets.

For each region x of the hierarchy, let

�∗(x) � {λ | x ∈ C∗
λ(H )}

be the set of the scales for which x belongs to the λ-
minimal cut of H . Also define

�∗
↑(x) � {λ | x ∈ P∗

λ (H )}

which is the set of the scales for which x is partially
λ-optimal.

When Eλ is a MASE, if a given region x is partially
optimal for a scale λ then so is it for any larger scale
λ′ > λ. Thus, ∀x ∈ H , the set �∗

↑(x) is an interval of
the form [a, +∞[. Now, from the maximality condition
(ii) in Proposition 7, x is globally optimal at scale λ

if and only if no upper node on its branch to the top
of the hierarchy is also partially λ-optimal. We thus
define

�∗
↓(x) �

⋃
y∈H, x⊂y

�∗
↑(y)

which represents the set of the scales for which x cannot
be maximal and thus cannot be globally optimal. As
�∗

↓(x) is a union of intervals of the form [a, +∞[, it is
also an interval of this form.

Finally, the two conditions of global optimality of
a node provided by Proposition 7 can be summarized
by

�∗(x) = �∗
↑(x)\�∗

↓(x).

We thus conclude that
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Proposition 9. If H is a hierarchy and Eλ is a MASE
then ∀x ∈ H the set �∗(x) is an interval of the form
�∗(x) = [λ+(x), λ−(x)[, where

λ+(x) = inf �∗
↑(x) (12)

λ−(x) = inf �∗
↓(x) = min

y∈H, x⊂y
λ+(y) (13)

The rightmost part of Eq. (13) shows that, know-
ing λ+(x) for each element x of H , λ− can be easily
computed by a top-down traversal of H . We shall now
explain how λ+ can be efficiently computed by gen-
eralizing the dynamic programming method described
above.

3.3.4. Functional Dynamic Programming and Per-
sistent Hierarchies. In the single-scale DP method,
each node x ∈ H is attributed by a single energy value.
We now consider attributing each node x ∈ H by a
function of λ which represents its energetic behaviour
with respect to scale.

∀x ∈ H , Eλ(x) represents the energy of x at scale λ.
Now rewrite it as a function of λ:

Ex : λ → Ex (λ) = λC(x) + D(x).

and call it the self-energy of x . Ex is an affine function
of λ which has a positive slope and y-intercept.

For each partial hierarchy H (x), also rewrite the en-
ergy of its minimal cuts as a function of λ:

E∗
x : λ → E∗

x (λ) = E∗
λ(H (x)).

and call it the partial energy of x .
Clearly, for any base node of H (whose partial hierar-

chy reduces to a single set) these two energy functions
coincide, that is ∀b ∈ H : E∗

b = Eb.
Now, as addition and infimum operations on func-

tions are constructed from the point-wise operations,
for any node x ∈ H , the dynamic programming Eq.
(8) can be rewritten as a functional equation:

E∗
x = inf

{
Ex ,

∑
s∈S(x)

E∗
s

}
(14)

We then have the

Proposition 10 (Functional dynamic programming).
Let H be a hierarchy and Eλ = (C, D) a multi-scale
affine separable energy, then ∀x ∈ H

(i) E∗
x is a piece-wise affine, non decreasing, contin-

uous and concave function.

(ii) ∀λ ∈ R+

E∗
x (λ) =

⎧⎨⎩
∑

s∈S(x)

E∗
s (λ) if λ < λ+(x)

Ex (λ) otherwise

(15)

(iii) If C is strictly decreasing or D is strictly increasing
then λ+(x) is real and is the unique solution of

Ex (λ) =
∑

s∈S(x)

E∗
s (λ).

The proof is provided in Appendix C.
The function E∗

x which provides the energies of the
optimal cuts of H (x) with respect to λ is thus a rather
simple piece-wise affine function (see Fig. 3(b)). It can
be explicitly stored for each node of H , typically by
the list of the endpoints of its affine pieces. Then, for

Figure 3. Computation of the partial energy function E∗
c and

of the scale of appearance λ+(c) of a node c knowing E∗ for

its sons. (a) Case of a first level node having two sons. (b)

General case.
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each node x , computing E∗
x only requires two oper-

ations on piece-wise affine functions, a sum and an
intersection with an affine function, which can be both
computed exactly (see Fig. 3). If the driving energy
(C or D) is strictly monotone, then by the proposition
10 (iii), the intersection between

∑
s∈S(x) E∗

s and Ex is
unique and provides λ+(x). Note that when the driving
energy is (even casually) additive, the intersection may
exist and be unique, but it also may not exist, in which
case λ+(x) = +∞, or span all over R, in which case
λ+(x) = −∞. At last, knowing λ+(x), E∗

x is then pro-
vided by Eq. (15). This functional dynamic program-
ming (FDP) method thus allows to compute λ+ and E∗

for each region of H by a single bottom-up traversal of
H . Afterwards, λ−(x) can be computed by a top-down
traversal of H using Eq. (13).

After implementing two traversals of the hierarchy,
bottom-up then top-down, one gets three quantities on
each node: its partial energy function and its scales of

Figure 4. Typical energy curves associated to the minimal cuts of a hierarchy.

appearance and disappearance. In particular, the partial
energy E∗

Ĥ
of the top of the hierarchy gives the energy

of each λ-minimal cut C∗
λ(H ) of H . We simply denote

it by E∗. Let also C∗(λ) = C(C∗
λ(H )) denote the com-

plexity of C∗
λ(H ), that is in a compression context the

rate function, and D∗(λ) = D(C∗
λ(H )) its distance to

the image, or distortion function. Knowing E∗, these
functions are given by:⎧⎪⎨⎪⎩

C∗(λ) = ∂E∗

∂λ
(λ)

D∗(λ) = E∗(λ) − λ
∂E∗

∂λ
(λ).

C∗(λ) is decreasing and D∗(λ) is increasing, hence
the operational rate/distorsion function (C∗ as a func-
tion of D∗) is well defined and is decreasing (see Fig. 4).
This result, which holds in a particular operational con-
text, matches the general rate/distorsion monotonicity
result of Shannon (1959).
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After FDP, some nodes might have an empty range
of persistence, whenever λ+(x) ≤ λ−(x), which means
that they never enter an optimal cut of H . These non
persistent nodes do not belong to the scale-sets which
represent H ’s minimal cuts for Eλ. They may thus be
deleted from the initial hierarchy. Hence the definition:

Definition 11 (Persistent hierarchy and scale-sets asso-
ciated to (H, Eλ)). Let H be a hierarchy and Eλ be a

Figure 5. Multi-scale optimization in a hierarchy. (a) An initial binary hierarchy H drawn with a vertical axis corresponding to the levels of

the regions in the hierarchy. After a bottom-up traversal of H , each region is attributed a scale of appearance in an optimal solution for the

multi-scale energy considered. (b) represents the hierarchy H with a vertical axis corresponding to the scale axis. In this representation, the non

persistent nodes, which never appear in an optimal solution, are upper than some of their ancestors. A top-down traversal of H then allows to

compute the scales of disappearance of the regions, which reveal these non persistent nodes. (c) and (d) Represent the persistent hierarchy H∗
obtained after removing the non persistent regions. Remark that deleting some intermediate stages leads to n-ary hierarchies. (d) illustrates that

the scale of appearance is an increasing function in H∗.

MASE, then the hierarchy H∗ ⊂ H defined by

H∗ � H \{x ∈ H | λ+(x) ≤ λ−(x)}
is called the persistent hierarchy associated with H and
Eλ. (H∗, λ+) is the scale-sets representation of the min-
imal cuts of H for Eλ.

Figure 5 illustrates the different steps of the compu-
tation of this scale-sets and Fig. 6 shows the effect of
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Figure 6. The scale-sets representation maps the family of the minimal cuts of a hierarchy into a family of horizontal cuts, or sections. (a)

a 30 × 30 image. (b) The persistent hierarchy indexed by the level of its nodes. (c) The mininal cuts of the hierarchy (b) drawn in the same

coordinate system than in (b). (d) The partition obtained by sectioning the scale-sets at half the scale of appearance of the top of the hierarchy. (e)

The persistent hierarchy indexed by the scale of appearance of its nodes. C is the section corresponding to the partition in (d). (f) The minimal

cuts of the hierarchy (b) drawn in the same coordinate system than in (e). The hierarchy was obtained by the scale-climbing algorithm using the

Mumford-Shah functional (see below). The scale-sets exhibits two distinct clusters, revealing the global binary structure of the image.

the scale-sets representation on the family of minimal
cuts of a hierarchy.

3.3.5. Discussion

Negative scales? As one might have noticed, nothing
above constraints the scale parameter to be positive. In
particular, all the base regions a priori have a scale of
appearance of −∞, and the top of the hierarchy has
a scale of disappearance of +∞. These two cases are
side effects due to the relativity of the optimality cri-
terion: the appearance depends on the energy of the
sub-structures of a region and the disappearance de-

pends on the energy of some super-structures which
are undefined at the bounds of the sets lattice. The infi-
nite ranges of persistence of both the base and the top
are thus meaningless.

Apart from the extrema, it can be noted that, if the en-
ergy D also decreases (this may only happen casually),
some regions which do not belong to the base might
also get a negative scale of appearance. The idea of
obtaining negative scales is somewhat unnatural: what
does a negative regularization mean? If no regulariza-
tion at all is needed to prefer a region described as a
whole rather than described by its parts, it means that
the “goodness-of-fit” energy D itself embeds a regular-
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izing term. A negative scale of appearance can then be
interpreted as an “anti-regularization” factor needed to
compensate the internal regularization of D, in order to
. . . split the region ! Note that if D is always decreasing
then the top of H appears at a negative scale: the op-
timal cut immediately jumps to the top and the whole
image is merged for all positive scales.

Conversely, it can be shown that if D increases
then all the scales of appearance are positive (this ap-
pears as a consequence of proposition 14 below). Thus,
“true” opponent energy schemes—involving a decreas-
ing prior and an increasing goodness-of-fit term—lead
to intuitive solutions, belonging to the positive scales
domain. Other reasons might be invoked to restrict the
range of solutions to positive scales. For example, in
minimum encoding frameworks negative scales corre-
spond to negative code lengths, which are meaningless.
In practice, we only used “true” or nearly “true” oppo-
nent energies and we restricted the final solution to the
positive scales domain.

Multi-dimensional extension. One can easily check
that the optimization technique can be extended
to multi-dimensional regularizers by considering a
vector-valued “scale-parameter”λ ∈ Rn and also a vec-
tor of regularizing energies C : P(X ) → Rn . If < ·, · >

denotes the inner product of Rn , one can then consider
an energy of the form Eλ(R) =< λ, C(R) > +D(R).
If all the components of C are sub-additive then all the
framework is still valid. The partial energy functions
are then piece-wise affine hyperplanes of Rn+1.

3.4. The Scale Climbing Principle

The previous section has explained how for a given
hierarchy of regions, the full sequence of its optimal
cuts for a multi-scale energy Eλ could be computed
and represented exactly. The methodology is general-
purpose: it can be used after any process which builds a
hierarchy. One could for example use it on a quad-tree
or on a hierarchy obtained by recursively splitting the
image using Shi and Malik’s normalized cut criterion
(Shi and Malik, 2000). However, the results obtained
so far put forward a natural way to build a hierarchy
whose minimal cuts seek the global minima of the en-
ergy considered.

As we have seen, given a hierarchy H and a multi-
scale energy Eλ, H ’s λ-cut climbs the hierarchy when
λ increases. It jumps to a higher region x each time
λ reaches a specific scale namely λ+(x). Increasing

λ amounts to regularizing the solution by strengthen-
ing the constraint on the model’s complexity or—by
duality—by softening the constraint on the model’s
goodness-of-fit. Thus consider starting from the finest
solution—the one which involves the slightest reg-
ularization (λ = 0+)—and simulating a continuous
increase of λ. For most classes of models, the 0+-
regularization solution is straightforward, e.g. for a
piece-wise constant model it is made up of the flat
zones of the image. Call this initial partition C0. Now
check among all the under-partitions of C0 which one
would be reached first during a continuous increase of
λ. Assume it is reached at λ1 and call it Cλ1

. Collect
it in the scale-sets as its λ1-section and repeat the pro-
cess: increase λ until a different partition is reached,
say at λ2, collect it in the scale-sets, and so on. As
we shall now explain, such a continuous simplification
process can be handled exactly within our hierarchical
framework.

3.4.1. “Pure” Scale Climbing. We first define what
we call the “pure” scale climbing strategy to build the
hierarchy. Assume we want to build H by a greedy tech-
nique: starting from the empty hierarchy and adding
sets one by one to the solution. Let H0 be the min-
imal hierarchy on D, that is the one which does not
contain any other set than the singletons and D it-
self. Let Hk be the hierarchy obtained after k sets
have been added to H0. Let Rk be the set of the re-
gions that can be added to Hk without breaking the
hierarchical structure of the solution: Rk = {R ∈
P(D)|R /∈ Hk and Hk ∪ {R} is a hierarchy}. In-
deed, at each step k, the scale of appearance of any
R ∈ Rk in a minimal cut of the hierarchy Hk ∪ {R}
is well defined. The “pure” scale climbing algorithm
is then

Definition 12 (Pure scale climbing). Starting from the
empty hierarchy H0, recursively add to Hk the region
R of Rk which would have the smallest scale of appear-
ance in Hk ∪ {R}. Stop when Rk = ∅. The final hi-
erarchy is called the scale climbing hierarchy (SCH)
associated with Eλ.

As shows the next proposition, the pure scale climb-
ing algorithm follows a sequence of upward global
minima of Eλ when scale increases:

Theorem 13. Let Hk be the hierarchy obtained after
k steps of the scale climbing strategy for the multi-
scale energy Eλ and let H∗ be the hierarchy obtained
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after the scale climbing procedure is completed. Let
Cu

k be the coarsest cut of Hk which is not the triv-
ial cut {D}. Let R∗ = argminR∈Rk λ

+(R) be the
next region to be added to Hk by scale climbing and
S∗ = argminR∈Rk\R∗λ+(R) be the region of Rk which
has the second smallest scale of appearance after R∗.
Then, for all λ ∈ [λ+(R∗), λ+(S∗)[, H∗’s λ-minimal
cut minimizes Eλ in the set of all the under-partitions
of Cu

k .

Sketch of the Proof: Obviously, the set Rk of the re-
gions which can be added to the solution gets smaller
and smaller, namely whatever region is added at each
step: Rk+1 ⊂ Rk . Furthermore, one shows that the
scales of appearance of the sets which remain in Rk+1

after a completion step always increase, that is ∀R ∈
Rk+1: λ+(R) in Hk+1∪{R} is always greater than λ+(R)
in Hk ∪ {R} (see Guigues, 2003). Hence, adding R∗ to
Hk ensures that it will persist in the final scale-sets
at least over the range [λ+(R∗), λ+(S∗)[. Moreover, as
adding sets of Rk to Hk allows to build any under-
partition of Cu

k , the partition built is optimal among all
the under-partitions of Cu

k . �
Hence, the pure scale climbing strategy tracks a

global minimum among all the under-partitions of the
current solution along the scale dimension.

The point is then that adding the sets in the order of
their scale of appearance always leads to adding some
supersets of the sets previously added. Indeed, as the
scales of appearance of the completion hypotheses al-
ways increase after a completion step, no reversal of
order can occur. As a consequence, all sets of a pure
scale climbing hierarchy are persistent. This bottom-up
direction of construction matches the direction of the
dynamic programming method to compute λ+, thus
if the dynamic programming computation has already
been made on the partial solution Hk , then the value
of λ+(R) for any R ∈ Rk can be obtained by a sin-
gle dynamic programming step. The whole framework
thus points out a privileged way to build the hierarchy,
namely the causal way.

Please note that, whereas scale climbing is a discrete
procedure, it properly simulates a continuous increase
of λ. The point is that the procedure explicitly computes
the scales at which a simplification of model would oc-
cur. It thus can be viewed as a graduated non-convexity
(Blake and Zisserman, 1987) or a continuation mini-
mization method (Leclerc, 1989) constrained to pro-
duce ordered partitions. Indeed, the “scale” parameter
λ provides a natural embedding of the energy. The fol-

lowing proposition gives a rate/distortion interpretation
of this continuation:

Proposition 14. The scale climbing strategy amounts
to choosing at each completion step the region R ∈ Rk

which minimizes

−
D


C
= −D({R}) − D(P)

C({R}) − C(P)

where P is the coarsest minimal cut of the partial hi-
erarchy Hk+1(R) which is not {R}.

Proof: λ+(R) represents the scale for which the en-
ergy of {R} becomes equal to the energy of the coarsest
minimal cut P of Hk+1(R) which is not {R}. Hence:

λ+(R) = λ such that

λC({R}) + D({R}) = λC(P) + D(P)

= −D({R}) − D(P)

C({R}) − C(P)
.

The expression 
D

C

is the discrete form of the deriva-
tive of the distortion D with respect to the rate C.
The scale climbing strategy can thus be interpreted
as a steepest descent strategy along the operational
rate/distortion curve of the problem.

Moreover, the scale climbing algorithm produces hi-
erarchies which are robust to linear transforms of the
energies:

Theorem 15 (Linear invariance of SCH). If (H∗, λ+)
is the SCH associated with the energy Eλ = (C, D), then
the SCH associated with E′

λ = (μC, νD) is (H∗, ν
μ
λ+).

Sketch of the Proof: The proof can be made by induc-
tion on the dynamic programming step of the compu-
tation of λ+, on the basis that if f(a,b)(x) = ax + b is
an affine function and Ix ( f, g) denotes the intersection
abscissa of two affine functions f and g then

Ix
(

f(μa,νb), f(μa′,νb′)
) = ν

μ
Ix

(
f(a,b), f(a′,b′)

)
.

This relation remains valid for sum and infimum op-
erations on piece-wise affine functions. Hence, as all
scales of appearance are multiplied by ν/μ, the scale
climbing order is unchanged by linear transforms of
the energies. �

This invariance property has very important conse-
quences.
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The structure of a SCH is invariant by any linear
transform on C or D. Adjusting the relative weight of
the initial energies just stretches the scale axis of the
final scale-sets proportionally. The energies used can
thus be stated up to a multiplicative term and the right
balance between complexity and goodness-of-fit of
a model can always be set a posteriori. This allows

Figure 7. Dichotomies of some scale-sets obtained by scale climbing from the image pixels using Mumford-Shah’s piece-wise constant model.

k is the order of the dichotomy (see text). The bottom row represents the original images.

us to achieve our initial goal, which was to extricate
the scale parameter from the low level segmentation
stage. It then becomes a real “potentiometer” allowing
to explore the scale dimension.

This linear invariance also allows for the transfer
of invariance properties from the energies to the final
description. For instance, if the goodness-of-fit term is
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only scaled when the image values are scaled then so
is the SCH. For example, one can easily verify that the
solutions obtained with the Mumford and Shah’s piece-
wise constant model are invariant to linear transforms
of the image values and to homotheties of the image
domain.

3.4.2. Binary Scale Climbing. Of course, the pure
scale climbing strategy is computationally intractable:
if |D| = N then the set R0 of the initial possible com-
pletions has almost 2N elements. In order to get a prac-
tical algorithm, we thus restrict the search space to a
local search space. As before, we denote by Cu

k the
coarsest cut of Hk which is not the whole domain. In-
stead of considering all the connected supersets of the
regions of Cu

k , we only consider the supersets which
can be obtained by merging pairs of adjacent regions
of Cu

k . The algorithm obtained works as follows:

Definition 16 (Binary scale climbing). Let Eλ be a
multi-scale energy and P0 a fine segmentation of D.
Set P ← P0 and H ← P0. While |P| �= 1 merge
the pair {R, S} of adjacent regions of P whose scale
of appearance λ+(R ∪ S) is minimal and add R ∪ S to
H . The final hierarchy H is called the Binary Scale
Climbing Hierarchy (BSCH) associated with Eλ and
P0.

Figure 8. Scale-sets corresponding to the images of Fig. 7. The scale axis is logarithmic with a precision p of 256 (see Eq. (17)).

The construction of a BSCH is parameter-free, given
an over-segmentation and a couple of antagonist ener-
gies on the regions of an image. It is based on a classi-
cal priority queue region merging algorithm which can
be efficiently implemented using a region adjacency
graph and a heap structure to manage the queue of
merging hypotheses (Kurita, 1995; Haris et al., 1998).
The bottom-up dynamic programming optimization is
realized simultaneously to the construction of the hier-
archy. Each time a pair of regions is merged, a DP step
allows to compute the scale of appearance of the union
of the new region with its neighbors. After the hierarchy
is completed, a top-down propagation finally provides
the scales of disappearance of the regions which al-
low to prune the hierarchy in order to get the persistent
hierarchy. Note that the initial binary hierarchy then
becomes n-ary. We show in Guigues (2003) that the
whole procedure can be implemented with a worst case
complexity in O(N 2 log N ), where N is the size of the
initial over-segmentation. For usual images, building a
BSCH takes almost linear time.

While the search space is reduced, the major proper-
ties of the “pure” scale climbing strategy remain valid.
The global minimum is only tracked locally, among
the immediate under-partitions of the current solu-
tion. However, the local step is still chosen by steep-
est descent along the rate/distorsion curve and the fi-
nal structure is also linearly invariant. Furthermore, the
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persistent hierarchies obtained are almost binary hier-
archies (see below), which indicates that most of the
time the “pure” scale climbing completion step would
certainly have been chosen among the immediate su-
persets of the current upper sets, like in binary scale
climbing.

4. Experimental Results

We shall now proceed with some experimental results.
We first consider Mumford and Shah’s classi-

cal piece-wise constant approximation (Mumford and
Shah, 1989). The discrete version of this model assigns
the following energies to a region R:

C(R) = |δR|
D(R) =

∑
x∈R

||I (x) − IR||2. (16)

C(R) is the length of the boundary of R, and D is the
sum of the quadratic deviations from the mean value of
the image within the region. This second term is valid
for any number of channels in the image.

Remark that a particular scale arises after the com-
putation of a scale-sets, namely the scale of appearance
of the top of the hierarchy, λ+(D) which represents the
minimum regularization strength needed to get the im-
age modeled by a single region. This scale depends
on the image content, contrast and size. However re-
call that with the Mumford-Shah functional, the scales

Figure 9. Contour disparition maps (ultrametrics) corresponding to the images in Fig. 7. Logarithmic scale axis of precision p = 256. Null

log-scales are mapped to white and the log-scale of appearance of the whole domain is mapped to black.

Figure 10. The same image segmented into 15 regions with a)

a boundary length-based regularizer (Mumford-Shah), and b) a

number-of-regions-based regularizer.

of appearance are linearly covariant with respect to the
image dynamics and size. Hence sectioning a scale-sets
at a scale which is defined relatively to λ+(D) leads to
an analysis which is invariant to linear transforms of
the image values and to homotheties of the image do-
main. In particular, in order to present a visual result, we
consider the pyramid of N segmentations obtained by
sectioning a scale-sets at scales λ+(D)/2k , k = 1 . . . N .
We call this pyramid the dichotomy of the scale-sets.

Figure 7 shows the dichotomies of the scale-sets
obtained with Mumford and Shah’s energy for six dif-
ferent images. Grouping started from the image pixels
hence the algorithm is absolutely parameter-free. With
our implementation, the average computation time is
42 seconds on a 1, 2 GHz computer for a 256 × 256
image. Of course, starting from a coarser segmentation
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than the pixel-wise tesselation greatly reduces the
computation time. With the same energy, starting from
a watershed segmentation (Beucher and Meyer, 1993)
reduced the computation time to 2 to 3 seconds (the
average size of the catchment basins ranged from 15 to
20 pixels).

Figure 11. An aerial image.

Figure 8 shows the scale-sets corresponding to the
images of Fig. 7. The scale axis is represented with a
logarithmic scale, which is the natural representation
for intensive units as it maps ratios into differences. As
log(x) < 0 when x < 1, an origin of the representation
has to be chosen in order to get a representation
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belonging to R+. Again, a mapping relative to λ+(D)
is natural:

λ →
⎧⎨⎩log

(
λp

λ+(D)

)
if λ ≥ λ+(D)/p

0 otherwise

(17)

where p is a parameter called the “precision” of the rep-
resentation. In the examples, p = 28, hence matching
the dichotomies in Fig. 7. The same mapping was used
for the contour-oriented representation (ultrametrics)
of Fig. 9.

Figure 7 clearly illustrates that meaningful objects
appear at different scales in an image. The MR image
of a head in Fig. 7(a) is a good example of it. Large
scale values allow to separate the whole head from its
background. Decreasing the scale parameter then pro-
gressively adds details to the description: the brain and
the skull are first described as wholes and then internal
details appear. Note that the scale-sets 8 (a) is clearly bi-
modal, revealing the object/background structure of the
image. The right hand side of the hierarchy corresponds
to the head while the left hand side corresponds to the
background. The partial hierarchy which corresponds
to the background is characteristic of an unstructured
region: no large persistent region, no particular stage
during the grouping. Also note that the contours corre-
sponding to a scale-sets are based on global information
and not on local intensity. Hence, the poorly contrasted
contour of the top of the head in Fig. 7(a) gets the same
“saliency” than the lower contour of the head which is
very contrasted: both are equally meaningful because
they participate in the boundary of the same globally
coherent zone.

In order to illustrate the importance of geometrical
regularization in segmentation we consider the seg-
mentation of the same image with (i) the Mumford and
Shah’s energy and (ii) the Mumford and Shah’s en-
ergy in which the energy C was replaced by C(R) = 1.
Hence in the second energy, the “complexity” of a par-
tition is simply measured by the number of regions,
independently of their geometry. Figure 10 shows the
same image segmented into 15 regions with these two
energies. The improvement of using a boundary length-
based regularizer is clear.

Figures 11 and 12 show results obtained with a
more sophisticated geometrical model than the simple
length-based energy of Mumford and Shah.

Let L = (m1, m2, . . . mk) be a sequence of k 2D
points defining a closed 2D polygonal line. If vi =
mi+1 − mi denotes the displacement vector associated

with the segment [i, i + 1], we say that the quantity

S(L) =
k∑

i=1

|v̂i , vi+1|

where â, b denotes the angle made up by vectors a and
b, is the concavity energy of polyline L .

The name “concavity” comes from the fact that this
energy has a value of 2π for all convex polygons and

Figure 12. Group photograph.
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increases as the total curvature of the concavities of
a polygon increases. To measure the concavity of a
discrete region, we first perform a slight polygonal ap-
proximation of its boundary with a classical algorithm
in order to suppress the pixelic artefacts.

In Examples 11 and 12, the initial over-partition was
obtained by a watershed algorithm based on the magni-
tude of a Canny-Deriche edge detector tuned to α = 2
(Deriche, 1987). As before, we considered piece-wise
constant image modelling and employed the L2 norm
as a fidelity criterion (Eq. (16)). The difference with
the Mumford-Shah functional is that the regularizing
energy is the concavity energy.

We observed on several experiments that this energy
produces more meaningful regions than Mumford-
Shah’s energy (the scale-sets of Fig. 1 was also com-
puted with this energy). A point which might appear
surprising for a piece-wise constant model is that this
energy allows to find the right delineation for very tex-
tured units at large scales, such as the village in Fig. 11.
The point is that energy minimization criteria are rela-
tive criteria: even if a very textured region is absolutely
not constant, if it is different enough from its envi-
ronment then for a low precision, the best piece-wise
constant model is a model which separates the region
from its background.

5. Conclusion and Future Work

A general methodology for multi-scale region-oriented
image analysis has been presented. It can be viewed as a
synthesis between structural—hierarchical grouping—
approaches and energy minimization based approaches
or as a region-oriented counterpart to the scale-space
theory. The main result of the paper is that usual
piece-wise modelling problems expressed in a varia-
tional way intrinsically contain a free parameter which
behaves as a scale parameter. We then developed a
methodology which provides an approximation of the
full structure of the solutions with respect to scale,
which we called a scale-sets description in reference to
the scale-space theory. The scale-climbing algorithm
is absolutely parameter-free given a multi-scale energy
and a base segmentation which can be the pixel-wise
tessellation of the image. The fundamental property
of the structure obtained is its linear scale invariance
which ensures that scale tuning is totally deferred to a
subsequent stage.

The final hierarchical representations allow the dy-
namical browsing of the complete set of the multi-scale

solutions. The useful scale of description for a specific
application can thus be tuned a posteriori, either in-
teractively or automatically (e.g. by actively searching
for specific objects). Also, partitions made up of ob-
jects living at different scales may be composed, which
correspond to non horizontal cuts in the hierarchy.

While we only present segmentation results on natu-
ral images, the multi-scale modelling framework is not
dedicated to a specific kind of image, nor is it to the
partitioning of image data. In Taillandier et al. (2003),
the scale-climbing algorithm method is used to perform
multi-scale piece-wise plane descriptions of range im-
ages obtained from a classical stereovision algorithm.

Different applications of the proposed framework
have already been developed by different authors.
Chehata et al. (2003) proposed a stereovision algo-
rithm based on matching the regions of two scale-sets
descriptions of a stereo pair. The robustness of the algo-
rithm comes from the fact that regions of different lev-
els of the hierarchies can be matched, hence avoiding
the classical problem of differences in level of segmen-
tation in region-oriented stereo-matching. We observed
that, due to its robustness, the scale-climbing algorithm
often segments in much the same way the matching
regions of a stereo-pair, however not necessarily at
the same scale. Roger and Marc (2004) also used the
contour-based representation of a scale-sets (the ultra-
metrics) to register a cadaster graph onto an aerial im-
age segmented with the scale-climbing algorithm.

Salembier and Garrido and co-workers have devel-
oped a number of image processing techniques based
on hierarchies of regions. They have shown how such
structures could be used for a large number of pro-
cessing goals such as object detection and recognition,
visual browsing and region-oriented image compres-
sion, filtering, image data-base indexing and similarity
based retrieval. All these techniques can naturally rely
on scale climbing hierarchies. We refer the reader to
the authors’ papers (Salembier et al., 1998; Garrido
and Salembier, 1999; Salembier and Garrido, 2000a;
Salembier and Garrido, 2000b) for detailed descrip-
tions. Part of our future work will be centered on the
development of such applications using SCHs.

Meyer (1999b); Marcotegui et al. (1999); Zanoguera
et al. (1999) have proposed interactive segmentation
systems based on the multi-scale approach of Meyer
Meyer (1999a). Again, these interactive tools could be
based on SCHs.

In the scale-space theory, the evolution diagram
(when scale increases) of the features for which the
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analysis is causal (e.g. the image maxima) is known as
the scale-space fingerprint of an image (Jackay et al.,
1994). The scale-sets itself, that is the stratified hierar-
chy structure, is the fingerprint associated with a multi-
scale segmentation. Like a scale-space fingerprint, it
could for example be used in content-based image re-
trieval problems.

Obviously, the persistence of the regions of a SCH is
a very meaningful information. The range of scales over
which a region lives is a measure of its stability, in the
sense of (Leclerc, 1989). It represents the efforts needed
to merge it with its neighborhood and thus quantifies the
region’s saliency. Starting from a point in the image and
climbing the associated branch of the hierarchy, a chain
of nested regions is browsed. When the “growing” re-
gion reaches a maximal coherent part of an image, a
peak of persistence can be observed, which generally
means that the region delineated corresponds to a mean-
ingful object of the scene. The issue of exploiting the
persistences (and also energetical variations related to
merging operations) in order to extract salient objects
of an image will be part of our future work.

To conclude, we would like to get back to some
methodological aspects of the approach.

First and back with David Marr, we’d like to stress
the “duality” between the “representation and the pro-
cessing of information” (Marr, 1982, first sentences,
p. 3). The present paper clearly shows that the investi-
gation of how the solutions to a problem can be repre-
sented can lead to important hints on the way to solve
it. Also, our methodology relies on addressing an in-
tractable problem into a subspace of the space of its
solutions (the cuts of a hierarchy rather than the whole
partitions lattice), in which it can be exactly solved.
As we have seen, finding exact resolution methods in
structured subspaces can then, in a kind of feedback
loop, lead to privileged ways to build the subspaces
and thus to fine approximation methods. Finally, we
would like to go back over the functional dynamic pro-
gramming principle. It amounts to handling the explicit
form of a parametric energy towards its parameters and
considering the inverse problem of finding the values
of the parameters for which an element of the search
space is optimal. When such an approach is successful,
it turns a parameter into a real “potentiometer” which
allows flexible algorithm tuning. It also allows to quan-
tify the stability of a solution, a point which is certainly
as important as obtaining one. This “inverse paramet-
ric” approach is certainly worth being investigated for
other computer vision or pattern recognition problems.

Appendices

A. Definitions and Notations

This section recalls some general definitions and puts
the global notations of the paper.

• Given a set D, a subset S ⊂ P(D), where P(D)
denotes the set of the parts of D, is called a set system
on D.

• A set system made up of non overlapping sets cov-
ering D is a partition of D. We denote by P(D) the
set of the partitions of D. Recall that a partition P
is finer than a partition Q, P ≤ Q, if and only if
∀p ∈ P ∃q ∈ Q : p ⊆ q. The inclusion relation,
⊆, is a partial order on P(D) and the fineness rela-
tion, ≤, is a partial order on P(D). ⊆ and ≤ induce
complete lattice structures on P(D) and P(D).

• A set system H of D is a hierarchy on D if and only
if

(i) ∅ �∈ H
(ii) D ∈ H

(iii) ∀x ∈ D : {x} ∈ H
(iv) ∀(X, Y ) ∈ H 2 : X ∩ Y ∈ {∅, X, Y }

(X and Y are either disjoint or nested)

The set D is called the top of H and we denote it by
Ĥ . The subset {{x}, x ∈ D} of H is called its base
(or bottom) and we denote it by H . For image seg-
mentation problems, D is the domain of the image
under scope, and H ’s base represents the finest par-
tition considered: either the absolute over-partition
of D, into individual pixels, or a coarser one, such
as its tessellation into flat zones (Serra and Salem-
bier, 1993) or into the catchment basins of an image
gradient (Beucher and Lantuejoul, 1979).

Figure 13. A hierarchy H represented as a tree. H (x) is the

partial hierarchy rooted at x . C1 and C2 are two cuts, resp.

made up of circled and diamond-shaped nodes.
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• A hierarchy H can be represented as a rooted tree
T = (H, S) (see Fig. 13). The nodes of T repre-
sent the regions of H (the root is the top of H ), and
the edges S of T represent the covering relation be-
tween the elements of H , i.e. (x, y) ∈ S ⇔ x ⊂
y and �z ∈ H |x ⊂ z ⊂ y. For any edge (x, y) ∈ S,
y is called x’s father and x is one of y’s sons. We
denote the father of a node x by F(x) and the set of
the sons of a set y by S(y).

• ∀x ∈ H , the subset of H defined by H (x) � {y ∈
H, y ⊆ x} is a hierarchy on x which we call H ’s
partial hierarchy induced by x . The associated tree
is the complete subtree rooted at x (see Fig. 13).

• A cut C of a hierarchy H is a subset of H which
intersects any path from the base to the top of H
exactly once. Equivalently, the cuts of a hierarchy H
on a set D are the partitions of D that can be obtained
by picking sets in H . A cut C can be graphically
represented by a curve which divides the tree into
two sets of nodes: the ones which remain connected
to the top and the ones which remain connected to
the bottom (see Fig. 13). The elements of the cut
itself are the upper nodes remaining connected to
the bottom. We denote by C(H ) the set of all the
possible cuts of a hierarchy H . Please note that:

i) Two cuts C1 and C2 of a hierarchy are in general
unordered (C1 is neither coarser nor finer than C2).
For example, the two cuts in Fig. 13 are unordered,
which can be checked because their representative
curves intersect.

ii) The number of possible cuts of a hierarchy is in
general very large. One easily shows that if H is a
balanced binary tree built on a set of size N then

|C(H )| >
√

2
N

(we provide a precise approxima-
tion of this cardinal in Guigues (2003)). It is in-
teresting to compare this bound to the number of
partitions of a planar domain in connected regions,
which is lower than 4N (Wang, 1998).

B. Proof of Theorem 8

We focus on the case of a decreasing energy C.
The increasing case is symmetrical and the case of a
monotony condition on D is obtained by the fact that
the minimum of λC + D is the same as the minimum
of C + 1

λ
D. The inversion in λ explains the change of

direction of monotony in the solutions.
Let λ1 ∈ R. Expanding the partial λ1-optimality

property (proposition 7-i) for all x in P∗
λ1

(H ) then gives:

∀x ∈ P∗
λ1

(H ) ∀Y ∈ C(H (x)) :

λ1C(x) + D(x) ≤
∑
y∈Y

λ1C(y) + D(y)

⇔ λ1

(
C(x) −

∑
y∈Y

C(y)

)
≤

∑
y∈Y

D(y) − D(x)

As C is decreasing, and by definition Y is a partition
of x , we get


C = C(x) −
∑
y∈Y

C(y)

= C

( ⋃
y∈Y

y

)
−

∑
y∈Y

C(y).

Hence, if C is a sub-additive function on sets then 
C ≤
0, which implies that ∀λ2 ∈ R

λ2 ≥ λ1 ⇒ λ2
C ≤ λ1
C ≤
∑
y∈Y

D(y) − D(x)

which expresses the partial λ2-optimality of x . We thus
obtain a “partial causality” property:

∀(λ1, λ2) ∈ R2 λ2 ≥ λ1 ⇒ (∀x ∈ H x ∈ P∗
λ1

(H )

⇒ x ∈ P∗
λ2

(H )) (18)

Let’s now examine the conditions of global optimal-
ity of a node x . The condition i) of Proposition 7 can
be rewritten

∀λ1 ∈ R
(∀x ∈ H x ∈ C∗

λ1
(H ) ⇒ x ∈ P∗

λ1
(H )

)
.

So, using the “partial causality” Eq. (18) we obtain
∀(λ1, λ2) ∈ R2

λ2 ≥ λ1 ⇒ (∀x ∈ H x ∈ C∗
λ1

(H ) ⇒ x ∈ P∗
λ2

(H )
)
.

Now, if x ∈ P∗
λ2

(H ) then no partially λ2-optimal node
y such that y ⊂ x may be maximal (verify Proposition
7ii) ). As y is λ2-optimal if and only if it is a maximal
partially λ2-optimal node, we conclude that ∀(λ1, λ2) ∈
R2

λ2 ≥ λ1 ⇒ ∀x ∈ C∗
λ1

(H )

∀ y ∈ C∗
λ2

(H ) x ∩ y �= ∅ ⇒ x ⊆ y
⇔ λ2 ≥ λ1 ⇒ C∗

λ2
(H ) ≥ C∗

λ1
(H ).
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C. Proof of Proposition 10

(i) The proof is made by induction on the dynamic
programming step in H .
Indeed, ∀x ∈ H , its self-energy Ex = λC(x) +
D(x) is affine with C(x) ≥ 0 and is thus a piece-
wise affine, non decreasing, continuous and con-
cave function (NDCC). In particular, as ∀b ∈ H
E∗

b = Eb, the partial energies of the base nodes
are NDCC. Now take x ∈ H and assume that
∀s ∈ S(x), E∗

s is NDCC. As finite sums and in-
fima of NDCC functions are also NDCC, then
according to Eq. (14), E∗

x is also NDCC.
(ii) Let E∗

S(x) = ∑
s∈S(x) E∗

s . By the dynamic pro-
gramming principle the range �∗

↑(x) of partial
λ-optimality of a node x reads

�∗
↑(x) = {λ|Ex (λ) ≤ E∗

S(x)(λ)}.

According to proposition 9, this range is given by

�∗
↑(x) = [λ+(x), +∞[.

Thus,

Ex (λ) ≤ E∗
S(x)(λ) ⇔ λ ≥ λ+(x)

which means that E∗
x has the piece-wise form

given by Eq. (15).
(iii) As all the functions involved are continuous

λ+(x) = min{λ|Ex (λ) = E∗
S(x)(λ)}.

Thus consider 
 = Ex − E∗
S(x) and look for its zero

crossings. ∀λ ∈ R, E∗
S(x)(λ) represents the energy of a

cut P(λ) of H (x) which is a strict over-partition of {x},
hence

E∗
S(x)(λ) = λ

∑
R∈P(λ)

C(R) +
∑

R∈P(λ)

D(R)

and ∀λ ∈ R

∂E∗
S(x)

∂λ
(λ) =

∑
R∈P(λ)

C(R).

We thus get

∂


∂λ
(λ) = ∂Ex

∂λ
(λ) − ∂E∗

S(x)

∂λ
(λ)

= C(x) −
∑

R∈P(λ)

C(R).

So, if C is strictly subadditive, then ∀λ ∈ R : ∂

∂λ

(λ) <

0. 
 is thus strictly decreasing and crosses zero for a
unique λ ∈ R which is λ+(x).

Notes

1. This reversal of point of view can be made mathematically pre-

cise: if P is viewed as a multivalued function of λ returning sets,

then �(x) can be written �(x) = P−1(x).

2. This comes from the fact that the MST of a graph (G, d), where d
is a dissimilarity function, is a graph-based representation of the

maximal ultrametrics δ bounded above by d. When d is already

an ultrametrics then δ = d.
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