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Abstract

In this work we address the Anonymous Subgraph Problem (ASP).
The problem asks to decide whether a directed graph contains anony-
mous subgraphs of a given family. After introducing a formal description
of the problem and of an anonymity property for a generic family of sub-
graphs, we propose an algorithm to solve the ASP when only one arc of
the subgraphs is known and we show under some conditions its computa-
tional complexity is polynomial in the size of the graph, even if the family
contains an exponential number of subgraphs. We describe some applica-
tions (Secret Santa Problem, anonymous routing, robust paths) that can
be formulated as ASPs. For each application we made a test campaign
using randomly generated graphs and real-world instances.

1 Introduction

Given a directed graph G = (V,A), many problems can be modeled as the
search for a subgraph S ⊆ A with specific properties. There are applications in
which it is desirable to ensure S is anonymous, in the sense described below. In
this work we formalize an anonymity property for a generic family of subgraphs
and the corresponding decision problem. We devise an algorithm to solve a
particular case of the problem and we show that, under certain conditions, its
computational complexity is polynomial. We also examine in detail several
specific family of subgraphs.

This problem has not been previously studied in its general form, but other
anonymity-related problems have received great attention in the last years.

The rising popularity of online communities and social networks has moti-
vated the analysis of their structures. While this can explain interesting aspects
of human social behavior, it also creates privacy concerns. A social network
is usually modelled as a graph, where vertices represent individuals and edges
correspond to relationships between individuals. If such graph is released to
the public, we must guarantee the privacy of the users is preserved. The sim-
plest graph-anonymization technique consists in removing the identities of the
vertices, replacing them with random identification numbers. Recently Back-
strom et al. [1] have shown that this does not always guarantee privacy and
that there exist adversaries able to identify target individuals and the relation-
ships between them by solving a set of restricted graph isomorphism problems.
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Hay et al. [10] propose a definition of graph anonymity: a graph satisfies k-
candidate anonymity if every vertex shares the same neighborhood structure
with at least k − 1 other vertices. However, the authors concentrate on the
formulation of anonymity definitions and not on the design of algorithms that
guarantee to obtain a graph which satisfies them. Zhou and Pei [20] consider
the following definition of graph-anonymity: a graph is k-anonymous if for ev-
ery vertex there exist at least k − 1 other vertices that share isomorphic 1-
neighborhoods. They also consider the problem of minimum graph-modification
required to obtain a graph that satisfies the anonymity requirement. Zheleva
and Geetor [19] study the problem of protecting sensitive links between indi-
viduals in an anonymized social network and propose simple edge-deletion and
vertex-merging algorithms to reduce the risk of sensitive link disclosure. In [8]
Frikken and Golle study the problem of privately assembling a graph whose
pieces are owned by different parties. They propose a set of protocols that
allow to reconstruct the graph without revealing the identity of the vertices.
Feder et al. [7] introduce another definition of graph anonymity: a graph is
(k, l)-anonymous if for every vertex in the graph there exist at least k other
vertices that share at least l of its neighbors. The authors propose an algorithm
to compute the minimum number of edges to be added so that a given graph
becomes (k, l)-anonymous.

Another field of research is the development of techniques to measure the
level of anonymity provided by a system. Chaum [3] introduces the notion of
anonymity set, as the set of participants who are likely to be sender (or recipient)
of a message. The larger is the set, the stronger is the anonymity of its members.
Serjantov and Danezis [16] show that the size of the anonymity set is inadequate
for expressing instances where not all members are equally likely to have sent a
particular message and they propose an effective anonymity set size, based on
the information theoretic concept of entropy. They interpret it as the amount
of additional information the attacker needs to identify the user. A similar
entropy-based metric has been independently proposed by Diaz et al. [4]. Tóth
and Hornàk [18] introduce the notion of source-hiding and destination-hiding. A
system is source-hiding with parameter Θ if the attacker cannot assign a sender
to any message with probability greater than Θ. In a similar way, a system
is destination-hiding for a given parameter Ω if the attacker cannot assign the
recipient of any message with probability greater than Ω. The authors also
show that a system may appear near optimal with respect to the entropy-based
metrics even if the attacker can identify the sender or the recipient of some
messages with high probability. Newman et al. [13] propose to use an entropy-
based approach to evaluate the level of protection provided by a Traffic Analysis
Prevention system. Instead of computing the size of the anonymity set for each
message, Edman et al. [5] use a combinatorial approach to obtain a metric that
considers all messages simultaneously. Gierlichs et al. [9] generalize the ideas
of Edman et al. to take into account multiple messages sent or received by the
same user and propose an algorithm to compute this metric.

It is also worth mentioning the work of Meurdesoif et al. [12], where a
situation almost opposite to our is tackled: it is required to find a minimum
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cost set of arcs that allows to completely identify any path between fixed source
and destination vertices.

This paper is organized as follows. In Section 2 we propose a definition
of anonymous family of subgraphs and we formalize the Anonymous Subgraph
Problem. In Section 3 an algorithm to solve a restriction of the problem is
described. Two applications of the restriction of the problem are illustrated in
Sections 4 and 5; for a particular case of the latter, a more efficient algorithm is
also derived. In Section 6 an application of the general problem is presented and
an ad hoc algorithm is proposed for solving it. Finally we draw some conlusions
in Section 7.

2 Characterization of anonymity

Given a digraph G = (V,A), let |V | = n and |A| = m. We are interested in
finding if a certain family Y of subgraphs is anonymous with respect to G. By
anonymous we mean that it is not possible to single out a subgraph S ∈ Y, nor
to identify any other arc in the subgraph, given the topology of the graph and
a subset C of the arcs in S. We call C a partial view of S. P(A) denotes the
set of all subsets of A. Let PV : P(A)× Y → {0, 1} be the function

PV (X,S) =

{

1 X is a partial view of S
0 otherwise

that defines which subsets are considered a partial view of a certain subgraph.

Definition 1 (Anonymous family of subgraphs). Given a digraph G = (V,A),
a family of subgraphs Y ⊆ P(A) and a function PV : P(A)×Y → {0, 1}, Y is
anonymous in G if

∀S ∈ Y, ∀C ∈ {X|PV (X,S) = 1} , ∀b ∈ S \ C ∃T ∈ Y : C ⊆ T ∧ b /∈ T.

Intuitively, a family of subgraphs Y is anonymous if the knowledge of a
partial view C of any subgraph S of Y do not lead to infer the presence of
another edge b of S.

We call anonymous subgraphs the elements of an anonymous family Y. In-
tuitively, Definition 1 captures the standard notion of ignorance described, for
instance, in [6]: an agent ignores a fact if, given its current information, the
agent cannot establish whether this fact is true or false. In Definition 1, C is
the information an agent has, and the definition of anonymity requires that,
given this information, the agent cannot infer anything about any arc b not in
C.

Example 1. Consider the directed graph in Fig. 1 and the following partial
view function

PV (X,S) =

{

1 X ⊆ S ∧ |X| ≤ 1
0 otherwise
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Figure 1: Example of a graph and subgraph families.

that is at most one arc of the subgraph is known. For a subgraph S = {a, b} there
are three partial views to be considered: ∅, {a} and {b}. The family of subgraphs
X = {{a, b}, {b, c}, {a, d}} is clearly not anonymous: the partial view {c} allows
to determine that the subgraph contains also arc b. On the contrary, the family
Y = {{a, b}, {b, d}, {a, d}} satisfies the anonymity conditions.

It is now possible to define the Anonymous Subgraph Problem (ASP) as the
decision problem of checking if a family of subgraphs contains an anonymous
family with respect to a given graph.

Definition 2 (Anonymous Subgraph Problem). Given a digraph G = (V,A), a
family F of subgraphs of G and a function PV : P(A)×F → {0, 1}, is there a
non empty subset Y of F which is anonymous in G?

When the set of partial views of each subgraph S is {C| C ⊆ S ∧ |C| = 1},
i.e. only one arc of the subgraph is known, we obtain the following definition of
anonymity:

Definition 3. Given a digraph G = (V,A), a family of subgraphs Y ⊆ P(A) is
anonymous in G if the knowledge of any edge a from any subgraph S of Y can
not lead to infer another edge b of S. Formally, it means:

∀S ∈ Y, ∀a 6= b ∈ S ∃T ∈ Y : a ∈ T ∧ b /∈ T.

We will refer to ASP1 to denote the Anonymous Subgraph Problem where
Definition 3 is used to characterize anonymity. In Section 3 we propose an
algorithm to solve ASP1 and we show under which conditions its computational
complexity is polynomial in the size of the graph G, even if the family F contains
a non-polynomial number of subgraphs.

3 Algorithm

Algorithm 1 is a recursive algorithm that solves ASP1: it returns an element
of Y, if Y exists, and an empty set otherwise. The algorithm is based on the
following observation: if there exist two distinct arcs a, b ∈ A such that no
subset T ∈ F contains a but not b, then all the subsets S ∈ F that contain
a are not anonymous. Thus, we can transfer the anonymity property from the
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subsets to the arcs. At the top level, the set P of permitted arcs is equal to
the arc set A. The algorithm iteratively removes arcs from P and uses this set
as additional constraints when looking for possible subgraphs. If no subgraphs
can be found satisfying the additional constraints given by P , then the family
is not anonymous in G.

We assume the correctness of the subroutine FindSG(G,F , P,X) defined as
follows:

FindSG(G,F , P,X) =

{

S if ∃S ∈ F s.t. S ⊆ P ∧X ⊆ S
∅ otherwise.

Theorem 1. Alg. 1 correctly solves the ASP1.

Proof. First we observe that, if the algorithm returns a non empty solution, at
Line 7 the set Y of subgraphs in F where every arc belongs to P is anonymous
in G. Let S ⊆ P be an element of Y, we know that ∀a, b ∈ S ∃T ∈ Y s.t. a ∈ T
and b /∈ T , otherwise a would have been removed from P in Line 4. Assume now
there is a solution to ASP1 and Alg. 1 returns ∅. The existence of a solution
implies the existence of a non empty anonymous set Y. If Alg. 1 reached Line
7 with Y ⊆ P(P ), then, because FindSG(G,F , P,X) is correct, Alg. 1 would
not have returned ∅. Thus we know that the algorithm reached Line 7 with
Y \P(P ) 6= ∅. Consider the first time an arc a ∈ A used in at least one element
of Y was removed from P . At that time Y ⊆ P(P ), so a should not have been
removed because ∀b 6= a ∈ P ∃T ∈ Y s.t. a ∈ T and b /∈ T . Moreover, since
initially |P | = m and at every recursive call the cardinality of P is decreased by
one, we are sure that the number of recursive calls is bounded by m.

At each call the subroutine FindSG (which solves the subproblem) is exe-
cuted up to m2 times. Thus, if FindSG has computational complexity O(γ), the
worst case complexity of the overall algorithm is O(m3γ). In conclusion, if we
are provided a polynomial algorithm (in the size of |G|) to solve the subproblem,
we can solve ASP1 in polynomial time.

Algorithm 1 Algorithm for solving the ASP1. The first call has P = A.

1: FindAnonymousSG(G,F , P ):
2: for all a 6= b ∈ P do

3: if FindSG(G,F , P \ {b}, {a}) = ∅ then

4: return FindAnonymousSG(G,F , P \ {a})
5: end if

6: end for

7: return FindSG(G,F , P, ∅)

Definition 2 holds for a generic family F of subgraphs of G, which might
have non-polynomial size in terms of |G|. In real applications we usually have
to deal with a family F characterized by specific properties, such as, for ex-
ample, sets of disjoint cycles. By exploiting these properties, we can describe
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F implicitly and, in some useful cases, obtain polynomial procedures to solve
FindSG independently of |F|.

In the remainder of the paper we describe three applications of ASP1 and
ASP.

4 Secret Santa Problem

If the family F is the set of all Vertex Disjoint Circuit Covers (VDCCs — see
Defn. 4), we obtain the Secret Santa Problem described in [11] (notice that the
definitions of anonymity used here are slightly different from those given in [11]).

The basic concept of the Secret Santa ritual is simple. All of the participants’
names are placed into a hat. Each person chooses a recipient’s name from the
hat, keeps the name secret, and buys a gift for the named recipient. The label
on the gift wrapping indicates the recipient’s name but not the buyer’s. All the
gifts are then placed in a general area for opening at a designated time.

Additional constraints are considered in the definition of the problem: it
may be required that self-gifts and gifts between certain pairs of participants
(e.g. siblings) should be avoided. The problem can be modeled with a digraph,
where vertices represent the participants and arcs (u, v) the fact that participant
u is eligible to select v as a recipient’s name. We want to determine if the
topology of the graph allows an anonymous exchange of gifts, i.e. one having
the property that nobody can discover any gift assignment knowing the graph
topology and their own recipient names.

The problem can be formulated as an ASP1 where F is the family of all the
VDCCs of the graph.

Definition 4. A Vertex Disjoint Circuit Cover (VDCC) for G = (V,A) is a
subset S ⊆ A of arcs of G such that: (a) for each v ∈ V there is a unique u ∈ V ,
called the predecessor of v and denoted by πS(v), such that (u, v) ∈ S; (b) for
each v ∈ V there is a unique u ∈ V , called the successor of v and denoted by
σS(v), such that (v, u) ∈ S. We denote by C the set of all VDCCs in G.

Since gifts must be exchanged anonymously, not all VDCCs are acceptable:
e.g. when V = {1, 2} and A = {(1, 2), (2, 1)}, there is a unique VDCC, so each
person knows that the other person will make her a gift. Informally, we define
a graph G as a Secret Santa graph if it admits at least one VDCC ensuring
anonymity.

Definition 5. A graph G is a Secret Santa graph (SESAN) if there exists
an anonymous family Y of VDCCs in G. Elements of Y are called acceptable
solutions.

By the definition of anonymity (Def. 3), even if a participant knows his/her
own gift assignment a, he/she does not gain any knowledge with respect to any
other gift assignment b.
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Figure 2: Example of non SESAN graph that satisfy the necessary condition.

Proposition 1. Given a directed graph G = (V,A), let δ−(v) and δ+(v) be the
number of ingoing and outgoing arcs respectively. If G is SESAN then δ+(v) ≥ 3
and δ−(v) ≥ 3 ∀v ∈ V .

Proof. Assume there is a node i ∈ V that has only 2 outgoing arcs (i, j) and
(i, k). Any VDCC containing an arc (l, k) cannot include the arc (i, k) because
only one ingoing arc per node can be selected. As a consequence, (i, j) is the
only available outgoing arc for node i. Thus, any VDCC using the arc (j, k)
must contain the arc (i, j) and the graph is not SESAN. The same argument
holds for ingoing arcs.

The converse of Prop. 1 is false, as shown in Figure 2. This graph has
exactly δ+(v) = δ−(v) = 3 ∀ v ∈ V , but any VDCC which includes arc (4, 3)
must contain (6, 1) as well. If we exclude arc (4, 3), δ+(4) becomes smaller than
3 and the necessary condition is not satisfied.

4.1 Examples

Consider the graph obtained by replacing each edge in K4 (the leftmost graph
in Fig. 3) with two anti-parallel arcs. This graph is SESAN: the 6 subgraphs on
the right in Fig. 3 are an anonymous family of VDCCs in K4.

Figure 3: K4 and an anonymous family of VDCCs.

Consider now the graph on the left in Fig. 4. By replacing each edge with
two anti-parallel arcs we obtain another SESAN graph. It is enough to combine
two independent solutions for the K4 components. However, not all VDCCs
are acceptable solutions. The right hand side of Fig. 4 is a VDCC, but it does
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Figure 4: Example of SESAN graph and a non anonymous VDCC.

not guarantee anonymity: if the arc a is used, we are forced to include the arc
b.

4.2 Solving the Secret Santa problem

As stated above, the secret Santa problem can be formulated as an ASP1 and,
therefore, it is solved by Alg. 1. In this case FindSG(G,F , P, {(i, j)}) requires
to find a VDCC with restrictions on the arcs can be used. As shown in [11] it

can be done in O(n
1

2m) by solving an assignment problem on a bipartite graph
B = (U1, U2, A

′), where U1 = U2 = V \ {i, j} and A′ = P .
We generated groups of 20 random graphs with |V | ∈ {10i|1 ≤ i ≤ 5} and

arc generation probability p ∈ {0.05i|1 ≤ i ≤ 8}. The plot in Fig. 5 shows, for
each |V | and p the number of graphs out of 20 that are SESAN. We also used
randomly generated power law graphs because they are a more realistic model
of the structure of a social network [14]. In these graphs the expected degree
of the i-th vertex is αn(i−t), where n is the number of vertices. Hence, an

arc is created between the vertices i and j with probability (αni−t)(αnj−t)∑
n

k=1
αnk−t . We

generated graphs with α = 0.5, t in the range [0.1, 0.4] and |V | ∈ {10i|1 ≤ i ≤ 5}.
The plot in Fig. 6 shows, for each |V | and t, the number of graphs out of 20
that are SESAN. The results confirm the intuition that the SESAN property
becomes more common as the size and the density of the graph increase.

5 Anonymous routing

In many contexts it is desirable to hide the identity of the users involved in a
transaction on a public telecommunication network. Anonymous routing con-
sists of guaranteeing anonymity and anti-localization of sender and/or receiver
of messages in a communitcation network. It protects user communication from
identification by third-party observers According to the specific application, we
may be interested in:

• sender anonymity at any node (using local node information), at the re-
ceiver node (using receiver node information) or for a global attacker (who
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Figure 5: Proportion of SESAN random graphs with p ranging in [0.05, 0.4].
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can monitor traffic on every link in the network);

• receiver anonymity at any node, at the sender node or for a global attacker;

• sender-receiver unlinkability (i.e. knowing that u sent a message and v
received one is not sufficient to establish that u sent a message to v) at
any node or for a global attacker.

In order to obtain anonymous routing a protocol of communication must be
defined among the users of the network. Several protocols have been proposed
in the literature to provide anonymous routing features [2, 17, 15]. We now
briefly describe two such protocols, Onion Routing and Crowds, to show how
anonymous routing can be achieved. Then we show how ASP1 can be used
to identify if the topology of a network is unsuitable to support an effective
anonymous routing.

Onion routing is a general-purpose protocol [17] that allows anonymous con-
nection over public networks. Messages are routed through a number of nodes
called Core Onion Routers (CORs). In order to establish a connection, the
initiator selects a random path through the CORs and creates an onion, a re-
cursively layered data structure containing the necessary information for the
route. Each layer is encrypted with the key of the corresponding COR. When a
COR receives an onion, a layer is “unwrapped” by decrypting it with the COR’s
private key. This reveals the identity of the next router in the path and a new
onion to forward to that router. Since inner layers are encrypted with different
keys, each router obtains no information about the path, other than the identity
of the following router. There are two possible configurations for an end-user.
They can either run their own COR (local-COR configuration) or use one of the
existing ones (remote- COR). The first requires more resources, but provides
better anonymity.

Crowds is a system proposed by Reiter and Rubin [15] that aims to increase
the privacy of web transactions by providing sender anonymity. The idea is
to hide one’s actions within the actions of many others. To execute a web
transaction a user first joins a “crowd” of other users. The request is first
passed to a randomly selected member of the crowd. That member can either
submit the message to the end server or forward it to another randomly chosen
member of the crowd. Thus, when the request eventually reach the end server,
it is submitted by a random member of the crowd, preventing the end server
from identifying its true initiator. Even the other member of the crowd cannot
identify the sender, because it is not possible to distinguish a newly generated
message from a forwarded one.

5.1 Anonymous routing and network topology

Attacks against anonymous routing protocols are usually based on traffic analy-
sis. This means to monitor some of (or all) the links of the network and then try
to correlate information in order to rebuild the path followed by messages. Now
suppose the topology of the network over which we want to make anonymous
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Figure 7: Example of non-anonymous family of paths.

routing has the following property: if a message sent by s to t traverses a link
a, then it has also traversed another link b. We will call it a “forced path”. The
graph in Fig. 7 is an example of this situation. There are several paths from
vertex s to vertex t, but the presence of the arcs (1, t) or (2, t) in a path forces
the use of the arc (s, 1).

This information can be exploited by an attacker who is monitoring the
traffic on those links to restrict the set of potential senders for the message.
Thus it would be desirable to verify that our network does not contain forced
paths. This can be done by solving for each pair of nodes (s, t) of the network,
an instance of ASP1 where G is the graph representing the network and S is
the family of all paths of length at least 2 between the two nodes. We exclude
paths involving one arc because they naturally fail in providing anonymity. The
subproblem FindSG(G,F , P \ {b}, {(i, j)}) requires, in this case, to find two
paths: one from s to i and one from j to t. It can be done in O(n+m) using a
graph traversing algorithm.

In this case we can also provide a more efficient algorithm. Checking the
anonymity property for all pairs of distinct vertices s, t ∈ V is equivalent to
verify the existence of two different elementary paths between every pair of
vertices. If the latter condition is not satisfied by a pair of vertices i, j ∈ V ,
then the family of paths between i and j cannot be anonymous. Vice versa, if
for all i, j ∈ V there exists two paths, therefore it is always possible to substitute
the arc (i, j) with another path from i to j and thus the anonymity condition is
satisfied for every pair of vertices. The computational complexity of verifying
the existence of two paths for all pairs of nodes is O(n2(n +m)), which is less
than O(n2m3(n+m)) required by n2 executions of Alg. 1.

The plot in Fig. 8 reports the result obtained on randomly generated graphs,
with the same parameters used for the secret Santa problem. Again the anonymity
property becomes more common as the number of vertices and the density of
the graph increase.

Anonymous routing protocols usually generate pseudo-random paths in or-
der to maximize the level of anonymity provided and the robustness against
traffic analysis attacks. This introduces delays in the transaction (e.g. in onion
routing we have to apply a layer of cryptography for each node in the path)
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Figure 8: Proportion of random graphs with p ranging in [0.05, 0.4] which do
not contain forced paths.

that cannot be tolerated in certain applications, i.e. when the content of the
message is part of an audio or video stream, or in financial market transactions.
In these situations we may want to give up some anonymity in exchange for
performances. We may, for example, force the routing protocol to choose paths
whose length is close to the shortest path, instead of random ones. Again, we
would like the topology of the graph to allow them to be anonymous. We can
check this property in a similar way, but this time the family F will contain
only the s-t paths whose length is not greater than α times the length of the
shortest path from s to t, where α ≥ 1 is a given parameter. Also this case
has been tested on randomly generated graphs, with 10 or 20 vertices and arc
generation probability p = 0.4. The plot in Fig. 9 shows, for different values of
α, the number of graphs out of 20 that satisfy the anonymity property.

6 Robust path

Another application of the ASP is to ensure robustness in a path. Given a graph,
a path from s to t is said to be robust if from any vertex touched by the path it is
always possible to reach t, no matter which arc of the graph becomes unavailable.
This is particularly useful in defining routes for emergency services: suppose one
needs to travel from a location A to another location B and wants to be sure
that in case a street becomes unavailable (e.g. because of a traffic accident) he
will not be stuck. We can model the problem as an ASP where F is the family
of all paths between 2 fixed nodes s and t and, given a path S, we consider any
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Figure 9: Proportion of random graphs with p = 0.4 and 10 or 20 vertices which
do not contain forced paths for values of α between 3 and 7.

initial subpath of length at most |S| − 1 a partial view of S. For example, if
S = {a, b, c, d} (see Fig. 10) it has 4 partial views: ∅, {a}, {a, b}, {a, b, c}.

s t
a b c d

Figure 10: A path and its partial views. A path S = {a, b, c, d} has 4 partial
views: ∅, {a}, {a, b}, {a, b, c}.

Consider the network in Fig. 11. The path {s, 4, 3, t} is not robust: if arc
(4, 3) becomes unavailable while one is traversing arc (s, 4), there is no way
to complete the path. From the point of view of anonymity, the partial view
{(s, 4)} implies that the selected subgraph contains also the arc (4, 3). The path
{s, 0, 2, t}, on the contrary allows at every step to switch to a different path in
case of failure of one of the arcs.

This case of the ASP can be solved particularly efficiently. First we observe
that for each partial view the last arc is the only one that matters in order to
obtain information on the unknown subpath. Moreover the only condition for
a vertex v ∈ V to be safe is the existence of paths that use different outgoing
arcs of the vertex v itself.

We propose Algorithm 2 to solve this problem. It incrementally discards
unsafe vertices until it obtains a graph G′ = (V ′, A′), with V ′ ⊆ V and A′ ⊆ A,
such that the family of s − t paths in G′ is anonymous. Going back to the
network in Fig. 11, Alg. 2 removes the unsafe vertex 4 and then returns an
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affirmative answer. In fact, any s− t path not visiting the vertex 4 is robust.

Theorem 2. Alg. 2 correctly solves the robust path problem

Proof. Let G′ = (V ′, A′) be the restricted graph obtained at the end of Alg. 2.
If the algorithm returns a non empty path, for all vertices v ∈ V ′ there exist two
paths from v to t which use different outgoing arcs form v. Hence, any initial
sub-path ending in a vertex v ∈ V does not allow to predict any following arc
of the path. Thus, the set of all the s− t paths visiting only vertices in V ′ is an
anonymous family of subgraphs and all of them are robust. Assume now there is
a solution and Alg. 2 returns ∅. The existence of a solution implies the existence
of a non empty anonymous set Y of paths between s and t. Since at line 16
FindPath(V,A, s, t) returned ∅ for every path S ∈ Y at least one visited vertex
has been removed from V . Consider the first time a vertex v, visited by at least
one path S ∈ Y was removed from V . Since S is an anonymous path, Y must
contain another path T sharing with S the initial sub-path ending at vertex v,
but leaving v through a different arc. Thus the algorithm cannot remove the
vertex. Finally, since at each recursive call the cardinality of V decreases by
one, the number of recursive calls is bounded by the number of vertices of the
original graph.

The subroutine FindPath requires a visit of the graph, hence its computa-
tional complexity is O(m). The number of recursion levels is bounded by the
number of vertices and in each level FindPath is executed at most two times
for each vertex. Thus the overall complexity of Alg. 2 is O(n2m).

The algorithm has been tested on two real-world instances. The first graph
is a large portion of the directed road network of the city of Rome (Italy).
It contains 3353 vertices and 8870 edges. The second one is the directed road
network of the city of Milan (Italy) and contains 12442 vertices and 26373 edges.
We randomly selected 100 pairs of vertices and run the algorithm to verify the
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existence of a family of robust paths. In the graph of Rome we obtained a
positive result in the 70% of the cases. The length of the shortest robust path
is on average only 5% more than the shortest path and in 30 cases over 100 the
shortest path is a robust path. The same test gave quite different results on the
graph of Milan: a family of robust paths exists only for 5 pairs over 100 and
the average increase of length with respect to the shortest path is 46%. The
reason for this wide discrepancy is probably a different level of details in the
description of the road network. Indeed, the way crossroads, traffic circles and
slip roads are mapped into the graph can deeply influence the existence of a
robust path.

Algorithm 2 Algorithm for solving the ASP for robust path on graph G =
(V,A). FindPath(V,A, v, t) returns a path S ⊆ A from v to t in graph (V,A).
It returns ∅ if such path does not exist. Si denotes the i-th arc in path S.

1: FindRP(V,A, s, t)
2: for all v ∈ V do

3: S = FindPath(V,A, v, t)
4: if S = ∅ then

5: V = V \ {v}
6: return FindRP(V,A, s, t)
7: end if

8: A = A \ {S1}
9: if FindPath(V,A, v, t) = ∅ then

10: V = V \ {v}
11: return FindRP(V,A, s, t)
12: else

13: A = A ∪ {S1}
14: end if

15: end for

16: return FindPath(V,A, s, t)

7 Conclusions

In this paper, we studied a notion of anonymous subgraph and anonymous
family of subgraphs. We formally defined the Anonymous Subgraph Problem,
that, given a directed graph, a family of subgraphs and a partial view function,
asks to decide if the given family of subgraphs contains an anonymous one.
We described a restriction of the problem, when only one arc of the subgraph
is known, and proposed an algorithm to solve it. We studied the condition
for the algorithm to be polynomial in the size of the graph. We described
examples of applications, from different fields, that can be modelled as ASP:
the first concerning the anonymous exchange of gifts among a group of people,
the second related to anonymous routing in telecommunication networks and
the last one in the field of transportation.
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