
An 0-1 Integer Linear Programming
approach to schedule outages of nuclear

power plants.

V. Jost and D. Savourey

LIX CNRS, École Polytechnique Palaiseau
Chair X-CNRS-Microsoft Optimization for Sustainable Development

{vjost,savourey}@lix.polytechnique.fr

Abstract

We address the problem of planning outages of nuclear power
plants submitted by EDF (Électricité De France) as the challenge
EURO/ROADEF 2010. As our team won the first prize of the con-
test in the senior category, our approach may be of interest: it is
conceptually simple, easy to program and computationally relatively
fast. We present both our method and some ideas to improve it.

1 Introduction

The subject of the challenge EURO/ROADEF 2010 was proposed by EDF1.
Nuclear power plants need to be stopped regularly for maintenance and
refueling. The problem mainly consists, over a 5 years horizon, in deciding
when to stop nuclear power plants and by how much to refuel them, so as
to satisfy the demand, and in order to minimize the cost of production.

A nuclear plant works in a “cyclic” (although not periodic) way. Every
cycle starts with an outage during which maintenance operations are per-
formed, and more importantly, some nuclear combustible is renewed. This
operation is called a refueling. Refuelings can only be performed when the

1Électricité de France : French electricity provider

1

plant is on outage. The amount of energy that a plant can produce with its
current stock of combustible is called its (level of) fuel. Between two out-
ages, a nuclear plant is considered in production. The production phase
consists of two successive subphases and the transition between them only
depends on the amounts of fuel remaining in the plant. The production
starts with a modulation phase, during which the power delivered by the
plant can be chosen. When the fuel is below the “zero boron” (denoted BO
hereafter) threshold, the plant produces less than its nominal power, and
its production is constrained to a value that depends only on its level of
remaining fuel.

Power plants are grouped (geographically) in subsets which use the
same resources (human and mechanical) during their outages. Therefore,
the outages of grouped plants must satisfy some disjonctive constraints.

Finally the production of energy must be equal to the demand at each
time step. Since the demand is known only through forecasts, which de-
pend among other, on meteorological conditions, the demand is modeled
by a set of independent scenarios. The production must then be equal to
the demand at each time step in each scenario.

Energy is not produced only using nuclear plants, but other plants are
more expansive and are used mainly during peaks of demands.

A simple model of these plants is included in the model of the challenge,
but the reason for their presence is not to take operational decisions. They
are present essentially to evaluate the cost induced by the decisions taken
on nuclear plants.

The paper is organized as follows. The problem of the challenge is de-
fined in Section 2. We review solution methods described in the litterature
in Section 3. In Section 4, a global presentation of our approach is given.
Section 5 focuses on the scheduling sub-problem and the way we modeled
it. In Section 6, algorithms used to solve the refueling sub-problem are pre-
sented. Numerical results are provided in Section 7. Section 8 consists in
an analysis of the instances: we present some features of the instances that
help designing efficient ways to solve the real world cases of the problem
(that is, for EDF in France). Finally, a discussion about our approach and
the way it could be improved is given in Section 9.

2

2 Formal problem statement

We provide here a formal and detailed definition of subject of the challenge.
We use almost exactly the same notations as those of the challenge, whose
subject is available at http://challenge.roadef.org/2010/. We will use
the following indices :

• t for a time period, in T;

• h for a week, in H;

• s for a scenario, in S;

• i for a nuclear power plant, in I;

• j for a non nuclear power plant, in J;

• k for an outage, in K.

Here are the inputs of the problem :

• DEMt,s : demand of energy at time step t in scenario s;

• D : length of a time step;

• PMAXt,s
j : maximum power of non nuclear power plant j during time

step t in scenario s;

• PMINt,s
j : minimum power of non nuclear power plant j during time

step t in scenario s;

• Ct,s
j : proportional production cost of non nuclear power plant j

during time step t in scenario s;

• XIi : initial fuel level of nuclear power plant i;

• DAi,k : length of outage k of nuclear power plant i;

• TOi,k : first possible week for outage k of nuclear power plant i;

• TAi,k : last possible week for outage k of nuclear power plant i;

3

• MMAXi,k : maximum modulation during cycle k of nuclear power
plant i;

• RMINi,k : minimum load of fuel during cycle k of nuclear power plant
i;

• RMAXi,k : maximum load of fuel during cycle k of nuclear power
plant i;

• Qik : refueling coefficient during cycle k of nuclear power plant i;

• PMAXt
i : maximum power during time slot t of nuclear power plant

i;

• BOi,k : threshold on fuel level during cycle k of nuclear power plant i
: when fuel level is above this threshold, the plant is in “modulation
phase”; when fuel level is below this threshold, the plant is in “profile
phase”;

• PBi,k : imposed increasing function defined on [0,BOi,k] to [0, 1] for
“profile phase” during cycle k of nuclear power plant i : values of PBi,k

represent a proportion of maximum power imposed on production;

• ε : tolerance for tracking of the imposed decreasing profile;

• SMAXi,k : maximum fuel level after refueling during cycle k of nuclear
power plant i;

• AMAXi,k : maximum fuel level before refueling during cycle k of
nuclear power plant i;

• Ci,k : unit cost of fuel during cycle k of nuclear power plant i;

• Ci,T+1 : unit cost at the end of time horizon of nuclear power plant i.

Now, we introduce the following variables :

• ha(i, k) : index of first week of outage in cycle k of nuclear power plant
i;

• r(i, k) : reload of fuel during cycle k of nuclear power plant i;

4

• p1(j, t, s) : production of non nuclear power plant j during time step
t in scenario s;

• p2(i, t, s) : production of nuclear power plant i during time step t in
scenario s;

• f uel(i, t, s) : fuel level of nuclear power plant i during time step t in
scenario s.

Additionally, ec(i, k) will denote the set of time steps where nuclear
power plant i is in production phase during cycle k; and ea(i, k) will denote
the set of weeks composing the outage k of nuclear power plant i.

We can now formulate precisely the problem by the following con-
straints.

Constraints CT1

First, the production must be equal to the demand for each time slot t in
each scenario s :

∀s ∈ S, t ∈ T,
∑

j

p1(j, t, s) +
∑

i

p2(i, t, s) = DEMt,s

Constraints CT2

The non nuclear production must be within bounds for each time slot t in
each scenario s :

∀s ∈ S, t ∈ T, j ∈ J, PMINt,s
j ≤ p1(j, t, s) ≤ PMAXt,s

j

Constraints CT3

During every time step t of every scenario s where plant i is on outage, its
production is equal to zero.

5

Constraints CT4

During every time step t of every scenario s where plant i is online, its
production is positive or equal to zero.

Constraints CT5

The nuclear production must be under a maximal bound during modula-
tion period :

∀s ∈ S, t ∈ T, i ∈ I, k ∈ K, (t ∈ ec(i, k))∧(f uel(i, t, s) ≥ BOi,k)⇒ p2(i, t, s) ≤ PMAXt
i

Constraints CT6

When the fuel level is under a threshold BOi,k, the production levels are
imposed by a given production profile :

∀s ∈ S, t ∈ T, i ∈ I, k ∈ K
(t ∈ ec(i, k)) ∧ (f uel(i, t, s) < BOi,k)⇒(

if f uel(i, t, s) ≥ (PBi,k(f uel(i, t, s)) × PMAXt
i)×

then
(1−ε)(PBi,k(f uel(i, t, s))×PMAXt

i) ≤ p2(i, t, s) ≤ (1+ε)(PBi,k(f uel(i, t, s))×PMAXt
i)

else

p2(i, t, s) = 0
)

Constraints CT7

The reloads of fuel must be within bounds for each outage :

∀i ∈ I, k ∈ K s.t. ha(i, k) , −1,RMINi,k ≤ r(i, k) ≤ RMAXi,k

6

Constraints CT8

At first time step, fuel level is equal to XIi :

∀s ∈ S, i ∈ I, f uel(i, 0, s) = XIi

Constraints CT9

Fuel at time step (t + 1) is equal to fuel level at time step t minus the energy
produced at time step t :

∀s ∈ S, t ∈ T, i ∈ I, k ∈ K, t ∈ ec(i, k)⇒ f uel(i, t+1, s) = f uel(i, t, s)−p2(i, t, s)×D

Constraints CT10

A refueling is performed at each start of an outage :

∀s ∈ S, t ∈ T, i ∈ I, k ∈ K, (t is the first time step of ea(i,k))
⇒ f uel(i, t + 1, s) = ((Qi,k − 1)/Qi,k)(f uel(i, t, s) − BOi,k−1) + r(i, k) + BOi,k

Constraints CT11

Fuel levels must be under maximal bounds before and after each refuel :

∀s ∈ S, t ∈ T, i ∈ I, k ∈ K, (t is the first time step of ea(i,k))
⇒ f uel(i, t, s) ≤ AMAXi,k ∧ f uel(i, t + 1, s) ≤ SMAXi,k

Constraints CT12

The allowed modulation is bounded for each production cycle :

∀s ∈ S, i ∈ I, k ∈ K,
∑

t∈ec(i,k)∧ f uel(i,t,s)≥BOi,k

[(PMAXt
i − p2(i, t, s)) ·D] ≤MMAXi,k

7

Constraints CT13

It is possible not to schedule certain outages. In this case, we set ha(i, k) =
−1.

The following constraint defines the outages that must be done :

∀(i, k) ∈ I × K,TAi,k , −1⇒ ha(i, k) , −1

In the case where an outage is not scheduled, the following outages can
not be scheduled either.

Each scheduled outage must start within a given time window :

∀(i, k) ∈ I × K, TAi,k , −1⇒ TOi,k ≤ ha(i, k) ≤ TAi,k

Outage k cannot start while outage (k − 1) is not over :

∀(i, k) ∈ I × K, k > 0, ha(i, k) , −1⇒ ha(i, k) ≥ ha(i, k − 1) + DA(i, k − 1)

About constraints CT14,. . . ,CT21

The constraints CT14,. . . ,CT21 require specific input datas. All these datas
must be considered relatively to the given type of constraint, even if their
names are common from one type of constraints to another type. For
example, the input Sem in CT14 is not the same as the input Sem in CT15.
This notation ambiguity is inherited from the subject of the challenge, as it
prevents from too heavy notations.

The set of constraints of each type is denoted by Mx where x is the
index of constraint type. For example if |M14| = 5, it means that there are
5 constraints of type CT14. Within a given type of constraints, m ∈ Mx

denotes the index of a specific constraint.

Constraints CT14

For some given groups of nuclear power plants, a minimum distance
between each outage must be respected. When this distance is a negative
number, this means a maximal overlap between outages. The inputs are :

• m : index of constraints of this type;

8

• Am : set of nuclear power plants;

• Sem : minimum spacing (when positive), maximum overlap (when
negative).

∀m ∈M14,∀i, i′ ∈ Am, i , i′,∀k, k′ ∈ K,
(ha(i, k) , −1 ∧ ha(i′, k′) , −1)

⇒ (ha(i, k) − ha(i′, k′) −DAi′,k′ ≥ Sem) ∨ (ha(i′, k′) − ha(i, k) −DAi,k ≥ Sem)

Constraints CT15

For some given groups of nuclear power plants, during some specific
time period, a minimum distance between each outage must be respected.
When this distance is a negative number, this means a maximal overlap
between outages. The inputs are :

• m : index of constraints of this type;

• Am : set of nuclear power plants;

• Sem : minimum spacing (when positive), maximum overlap (when
negative).

• IDm : beginning of the specific period;

• IFm : end of the specific period.

∀m ∈M15,∀i, i′ ∈ Am, i , i′,∀k, k′ ∈ K,
(ha(i, k) , −1 ∧ ha(i′, k′) , −1)∧

(IDm −DAi,k + 1 ≤ ha(i, k) ≤ IFm) ∧ (IDm −DAi′,k′ + 1 ≤ ha(i′, k′) ≤ IFm)
⇒ (ha(i, k) − ha(i′, k′) −DAi′,k′ ≥ Sem) ∨ (ha(i′, k′) − ha(i, k) −DAi,k ≥ Sem)

9

Constraints CT16

For some given groups of nuclear power plants, a minimum distance
between each starting dates of outage must be respected. The inputs are :

• m : index of constraints of this type;

• Am : set of outages;

• Sem : minimum spacing (must be positive).

∀m ∈M16,∀i, i′ ∈ Am, i , i′,∀k, k′ ∈ K, (ha(i, k) , −1 ∧ ha(i′, k′) , −1)⇒
| ha(i, k) − ha(i′, k′) |≥ Sem

Constraints CT17

For some given groups of nuclear power plants, a minimum distance
between each ending dates of outage must be respected. The inputs are :

• m : index of constraints of this type;

• Am : set of nuclear power plants;

• Sem : minimum spacing (must be positive).

∀m ∈M17,∀i, i′ ∈ Am, i , i′,∀k, k′ ∈ K, (ha(i, k) , −1 ∧ ha(i′, k′) , −1)⇒
| ha(i, k) + DAi,k − ha(i′, k′) −DAi′,k′ |≥ Sem

Constraints CT18

For some given groups of nuclear power plants, a minimum distance
between each starting dates and ending dates of outage must be respected.
The inputs are :

• m : index of constraints of this type;

10

• Am : set of nuclear power plants;

• Sem : minimum spacing (must be positive).

∀m ∈M18,∀i, i′ ∈ Am, i , i′,∀k, k′ ∈ K, (ha(i, k) , −1 ∧ ha(i′, k′) , −1)⇒
| ha(i, k) + DAi,k − ha(i′, k′) |≥ Sem

Constraints CT19

For some given group of nuclear power plants, for each week, the number
of nuclear power plants that are in a specific time interval within the outage
must be less than a maximal number. The inputs are :

• m : index of constraints of this type;

• Am : set of outages;

• Li,k,m : number of weeks after the start of the outage that defines the
beginning of the specific period on which the constraint holds for
outage k of nuclear power plant i;

• TUi,k,m : length of the specific period on which the constraint holds
for outage k of nuclear power plant i;

• Qm : maximum number of unavailable nuclear power plants in their
specific period.

∀m ∈M19,∀h ∈ H,
∑

(i,k)∈Am∧ha(i,k),−1

1[ha(i,k)+Li,k,m;ha(i,k)+Li,k,m+TUi,k,m[(h) ≤ Qm,

where

1A(x) =

1 if x ∈ A
0 if x < A

11

Constraints CT20

For some given weeks, the number of nuclear power plants in a given
subset that are in outage must be less than a maximal number. The inputs
are :

• m : index of constraints of this type;

• Am : set of outages;

• hm : the week on which the constraint is defined;

• Nm : maximal number of plants.

∀m ∈M20,
∑

(i,k)∈Am∧ha(i,k),−1

1[ha(i,k);ha(i,k)+Li,k,m+DAi,k[(hm) ≤ Nm,

where

1A(x) =

1 if x ∈ A
0 if x < A

Constraints CT21

For some given groups of nuclear power plants, for each time slot, the sum
of the maximum production of nuclear power plants that are on outage
must be less than a maximum value. The inputs are :

• m : index of constraints of this type;

• Cm : set of nuclear power plants;

• ITm : a time period in weeks;

• IMAXm : maximal value of offline power capacity.

∀m ∈M21,∀t ∈ h s.t. h ∈ ITm,
∑

i∈Cm\(∃k\h∈ea(i,k))

PMAXt
i ≤ IMAXm

12

Objective function

Finally, the goal is to minimize the sum of the average cost of production
over all scenarios :

Minimize
∑

i

∑
k

Ci,k·r(i, k)+
1
S

∑
s

∑
t

∑
j

Ct,s
j · p1(j, t, s) ·D

 −∑
i

Ci,T+1 · f uel(i,T, s)


3 Literature review

Our approach to the problem of the challenge was to use an linear program
with binary variables, indicating whether outages start at a given week
or not. Background on linear progamming models and combinatorial
optimization problems can be found in [10]. Reference work on linear
programming and in particular time index formulations for scheduling
problems include [11, 13].

Solutions methods designed and tested specifically for the model of the
challenge include:

• Local search [5]. Best reported results in the litterature, high quality
solutions are obtained in a few minutes.

• Column Generation [12]. Second best results reported in the lit-
terature. Requires more than several minutes to find good quality
solutions.

• Local search and constraint programming [6]. Reported solutions
around 1.3% above the best known solutions.

• Constraint programming [2]. Also proposes lower bound computa-
tions. Objective value of reported solutions is comparable with our
method. On instances B and X, the best found lower bounds are more
than 15% below the best found solutions.

• Benders Decomposition [9]. The reported implementation is good
on small instances (set A) but not competitive on large scale instance
(set B and X).

13

A similar problem was studied in [4], but with only one scenario, and
one time step per week. The instances of the challenge ROADEF contain
typically between 50 and 100 scenario and 7 to 21 time set per week,
making the space of decision variables around 2000 bigger. Some technical
constraints appear in the challenge version and not in [4] and vice-versa.

Although designed independently, our approach is very similar to the
one of [4], as both highly rely on a binary linear formulation. Moreover,
both approaches include production variables for each nuclear plant and
each week.

The main difference between the design of our approach and the one
of [4] seems that they treat exactly constraints bearing on one nuclear plant
within their MILP, while we use only surrogate simplified constraints.

Also their approach did not scale up very well to the real world problem,
maybe due to the presence of non-nuclear plants in their MILP, as well as
the global objective function of the problem. On the contrary, we use
a surrogate objective function that preserves the decomposability of the
problem in subgroups of power plants that interact in the original model
only through the constraints “production=demand”.

Other studies on variants of the problem include hybridized local
search and constraint programming approaches [8] and semi-definite re-
laxations [7].

4 Overview of the method

Conceptually, our approach consists in a hierarchical decomposition of the
problem into three phases : we fix some variables before working on fixing
subsequent other variables.

1. ILP : Fix the dates of outages (variables ha(i, k)),

2. Dichotomy : Fix the values of refueling (variables r(i, k)),

3. Greedy : Fix the production levels (variables p1(j, t, s) and p2(i, t, s)).

The first phase is mainly done using an ILP, the second phase using
a kind of dichotomised search on the values of refueling and the third,
running greedily the dynamic of the nuclear plants over the time horizon.
Hence, within this paper, “ILP” refers to the first phase while “Dichotomy”

14

refers to the second phase. However, since we often need to check exactly
the feasibility of the decisions taken, we use the “Greedy” subroutines in
various places, and not only in the third phase.

4.1 Specifications, utilization and principle of the ILP

The ILP encodes exactly the constraints linking the dates of outages of
various nuclear plants (CT14-21), as well as the bounds on these dates
(CT13). The ILP also encodes constraints on minimum distances between
pairs of outages of each given plant (see section 5.2). These (constraints
on) distances are not given in the subject. We designed them as a way
to aggregate approximately the constraints on the dynamic of production,
interruptions and refueling in each nuclear plant (CT3-13) to help our ILP
finding solutions that lead to the global feasibility of the problem.

The ILP uses binary temporal variables xikh, stating whether or not
outage (i, k) starts at week h. In the subject, constraints (CT14-18) express
incompatibility between pairs of outages (see Section 5). It turns out that
the underlying incompatibility graphs have a kind of interval structure.
Thus the graphs have a small number of cliques, on which we formulate
packing constraints (see [10] for background on this topic). This leads to
fewer constraints, which moreover provide a tighter linear relaxation than
the constraints on pairs. Constraints (CT19-21) are essentially kept as in
the subject.

The distance constraints being only necessary and not sufficient to
satisfy (CT3-13), we run the Greedy routine at the end of the ILP. If the
Greedy routine says that (CT3-13) can be satisfied, we go to the second
phase. If not, we increase the minimum date (TOi,k) on an outage on which
we detected infeasibility and rerun the ILP.

The ILP needs an objective function to find appropriate outages dates
that lead to a global solution with good objective value. As discussed in
section 5.2, a binary variable pih serves as a rough estimate of whether plant
i will be able to produce at week h or not (depending on the dates of outages
of plant i). Having pre-computed some estimate valih on the economical
value of producing on i during week h the ILP maximizes

∑
i
∑

h valihpih.
Although the variables pih are the only ones in the objective functions, we
only care about the variables xikh so as to fix the dates of outages ha(i, k)
after the solution of the ILP.

15

4.2 Specifications, utilization and principle of the Dichotomy

Once the dates of outage are fixed, we are looking for refueling values.
We say that a set of refueling values {r(i, k)} is feasible if we are able to
find a global feasible solution using these values. Our goal is to maximize
the ability to produce with nuclear plants while keeping a global feasible
solution. As it seems hard to compute directly feasible refueling with
high values, we use a kind of target-checker search on possible values.
This method relies heavily on the quasi monotonic feasibility of refueling
values: If {r(i, k)} is an infeasible set and r′(i, k) ≥ r(i, k) for all (i, k), then
{r′(i, k)} is also very likely infeasible. The method relies also on the fact
that we generally prefer higher refueling values than smaller ones. We
therefore start with low ← {RMINi,k}. Then, given a feasible vector low of
refueling values, we try to guess by how much we can increase them, thus
obtaining another vector high. If high is feasible, low ← high and high is
again increased. If high is infeasible, high ← (high + low)/2. These rules
are iteratively applied until low and high are almost equal (for all (i, k)).
At the end we have a feasible set of refueling values, and we didn’t find
opportunities to improve any value in this set.

4.3 Specifications, utilization and principle of the Greedy

Our approach needs ways to make sure, during the first two phases, that
we will be able to find feasible solutions based on the values we choose for
dates and values of refueling. To do this, we need to choose production
levels, either for each nuclear plant separately of for nuclear plants together.
Therefore, two different greedy procedures are used.

The first one does not take into account the scenarios, that is to say there
is no demand, and no modulation is required. This procedure is presented
in details with Algorithm 1. It is used in order to check that chosen dates
of outages for each plant are not violating the constraints involving only
that plant. It is also used to compute how much modulation we can afford
on a cycle of a plant, before conflicting with other constraints involving
that plant.

The second procedure takes into account the demand, it chooses pro-
duction levels for each scenario, by modulating if necessary. To do this,
a rolling horizon procedure is used. For each scenario, we follow the
dynamic of fuel for each nuclear power plant, producing at PMAXt

i in

16

modulation phase and following the profile constraint otherwise. When-
ever the production exceeds the demand in a scenario, we modulate on
chosen power plants until the production equals the demand. We use
modulation first on the plant for which we have the largest estimate of
allowed modulation. If there exists a scenario and a time step on which
more modulation would lead to violating some constraints but produc-
tion is still above demand, the procedure answers “no”. This method is
described more precisely with Algorithm 2.

5 Scheduling outages

5.1 Main variables of the ILP

We use the following binary decision variables

xikh =

1 if the k-th outage of plant i starts at week h,
0 otherwise.

Variables xikh allow an enriched reformulation of the variables ha(i, k).
The main advantage of variables xikh is that disjunctive constraints (CT14-
18) can be naturally expressed, ie without using “big M” tricks.

Constraints CT13

Each outage (i, k) has at most one starting week h, which must be in within
the bounds [TOi,k,TAi,k]:

∀(i, k) ∈ I × K,
∑

h∈[TOi,k,TAi,k]

xikh ≤ 1,

∀(i, k) ∈ I × K,∀h < [TOi,k,TAi,k], xikh = 0.

If k ≥ 1 and if the k-th outage of plant i starts at week h, then the k− 1-th
outage of plant i must occur, with a starting week not later than h−DAi,k−1

2

:
2The following constraints is written in the last paragraph, page 27 of the subject

17

∀h ∈ H,∀(i, k) ∈ I × K,
h−DAi,k−1∑

h′=0

xi,k−1,h′ ≥ xikh.

Constraints CT14

These constraints consider outages as intervals [ha(i, k), ha(i, k)+DAi,k], and
require separation of these intervals. We reformulate them as packing
constraints:

∀m ∈M14,∀h ∈ H,
∑
i∈Am

∑
k s.t.

DAi,k+Sem−1≥0

h∑
h′=h−DAi,k−Sem+1

xikh′ ≤ 1.

However, the above constraints are not sufficient, because outages for
which DAi,k ≤ −Sem are not considered. If it exists, each such outage must
not interfere with any of the packing described above.

∀m ∈M14,∀i ∈ Am,∀k s.t. DAi,k ≤ −Sem,∀h,

xikh +
∑
i′∈Am

∑
k′ s.t.

DAi′ ,k′+Sem−1≥0

h+DAi,k+Sem−1∑
h′=h−DAi′ ,k′−Sem+1

xi′k′h′ ≤ 1.

Constraints CT15

For convenience, we introduce the following notations :

wikm = [IDm −DAi,k + 1, IFm],

yiki′k′m(h) = [h −DAi′,k′ − Sem + 1, h + DAi,k + Sem − 1].

We have :

∀m ∈M15,∀h ∈ H,
∑

(i,k)∈Am

∑
h′∈[h−DAi,k−Sem+1,h]

h′∈wikm

xikh′ ≤ 1.

18

Then, the second part of (CT15) can be expressed as :

∀m ∈M15,∀i ∈ Am,∀k s.t. DAi,k ≤ −Sem,∀h,

xikh +
∑
i′∈Am

∑
k′ s.t.

DAi′ ,k′+Sem−1≥0

∑
h′∈yiki′k′m(h)

h′∈wi′k′m

xi′k′h′ ≤ 1.

Constraints CT16

For each week h, the number of decoupling dates in interval [h, h + Sem− 1]
must be smaller or equal to 1 :

∀m ∈M16,∀h ∈ H,
∑

(i,k)∈Am

h+Sem−1∑
h′=h

xikh′ ≤ 1.

Constraints CT17

For each week h, we consider the interval [h, h + Sem − 1] and impose that
at most one coupling date belongs to this interval. It is equivalent to say
that at most one decoupling date belongs to [h −DAi,k, h −DAi,k + Sem − 1].
Thus, we have :

∀m ∈M17,∀h ∈ [0,H + max
ik

DAi,k − 1],
∑

(i,k)∈Am

h−DAi,k+Sem−1∑
h′=h−DAi,k

xikh′ ≤ 1.

Constraints CT18

Again, we consider interval [h, h + Sem − 1]. There must be at most one
coupling date or decoupling within this interval. Outage (i, k) couples or
decouples in [h, h + Sem + 1] iff ha(i, k) ∈ [h−DAi,k, h + Sem− 1]. Thus, (CT18)
can be rewritten as :

∀m ∈M18,∀h ∈ [0,H + max
ik

DAi,k − 1],
∑

(i,k)∈Am

h+Sem−1∑
h′=h−DAi,k

xikh′ ≤ 1.

19

Constraints CT19

There must be at most Qm decoupling dates within every intervals [h′ +
Li,k,m, h′ + Li,k,m + TUi,k,m] :

∀m ∈M19,∀h ∈ H,
∑

(i,k)∈Am

h−Li,k,m∑
h′=h−Li,k,m−TUi,k,m+1

xikh′ ≤ Qm.

Constraints CT20

For a given week hm, the number of outages overlapping this week must
be smaller than Nm :

∀m ∈M20,
∑

(i,k)∈Am

hm∑
h′=hm−DAi,k+1

xikh′ ≤ Nm.

Constraints CT21

The total power of nuclear plants on outage cannot exceed a given thresh-
old :

∀m ∈M21,∀h ∈ ITm,∀t ∈ h,
∑
i∈Cm

∑
k∈K

h∑
h′=h−DAi,k+1

PMAXt
i · xikh′ ≤ IMAXm.

5.2 Minimum distances between the outages within each
plant

The variables x do not allow to express the constraints concerning the
production of nuclear plants. Indeed, constraints (CT3-11) imply that, even
if refueling at the minimum allowed RMINi,k and producing at PMAXt

i , the
plant needs several weeks for its fuel level to fall below AMAXi,k+1.

Let i ∈ I and C ⊆ K, we say that a set of week of outage {ha(i, k)}k∈C
is “feasible” if there exists values {ha(i, k)}k∈K\C such that there exists fuel,
production and refueling levels such that plant i satisfies the constraints
(involving only itself) (CT3-13).

20

It turns out that a set of outages dates {ha(i, k)}k∈K might be infeasible,
while fixing all but one of these values might still be feasible. One might
then wish to write constraints on {ha(i, k)|k ∈ C ⊆ K} “as they are needed”
(for example, when the current solution violates them). But this would
lead to an iterative approach calling the ILP solver as a subroutine many
times.

Concrete values in the data set suggest that feasible outage dates are
highly (and mainly) constrained by minimum distances between (consec-
utive) pairs. In other words, under constraints involving pairs of outages
of a plant, a set of value {ha(i, k)}k∈K is often feasible or requires shifting
some outages to the future by only one week to become feasible.

Our trade-off is thus to rely only on constraints involving pairs. To do
so, we pre-compute exactly the values (with k < k′):

earl(i, k, k2, h) := first week h2 for which xikh and xik2h2 are feasible together

These values (earl) are then all encoded in our ILP, with the following
constraints:

∀h ∈ H,∀(i, k),∀k′ > k, xikh +

earl(i,k,k2,h)∑
h′=0

xi,k2,h2 ≤ 1.

The values earl(i, k, k′, h) are deduced on each plant i independently,
using a dynamic program to first compute the following quantities.

Let minFl(i, k, h) be the minimum fuel level that we can achieve at week h,
assuming that outage k has been completed (that is, with h ≥ ha(i, k)+DAi,k).
Let minFuel(i, k, k2, h, h2) be the minimum reachable fuel level at week h2

such that k2 is the last completed outage, and such that outage k has started
at week h.

Assuming these values are computed, one deduces easily earliest fea-
sible week of an outage and minimum distances between outages of one
plant. This amounts to ask whether minFl and minFuel are lower than
AMAX. Notice first that computing values minFuel knowing the values
minFl is very similar to computing minFl starting from week 0 with fuel
level XIi.

The rest of section 5.2 describes the dynamic program. Constraint
(CT10) implies that the dynamic of refueling is non-linear (although affine):

21

if t − 1 is the first time step of outage (i, k), then the fuel level at time t is
given by f uel(i, t) = Ψi,k(f uel(i, t − 1)) + r(i, k) with

Ψi,k(f) :=
Qi,k − 1

Qi,k
.(f − BOi,k−1) + BOi,k,

(where Qi,k is equal to 3 or 4 in practice).
Constraint (CT6) says that, if the fuel level is less than a threshold BOi,k,

then, until the plant enters an outage, the production is constrained to a
proportion of its capacity PMAXt

i . This proportion decreases together with
the fuel level, and is given by a (piecewise-linear decreasing function PBi,k).
We simplify, and indeed, over-constrain (CT10) (which normally allows a
tiny margin) into:

p(i, t) = PMAXt
i ∗ PBi,k(f uel(i, t)).

To achieve minFl(i, k, h), we assume that each refueling is done at
RMINi,k and that consumption is always equal to PMAXt

i in modulation
phase. This second hypothesis is false in general because using modula-
tion to adjust sharply the fuel level before entering the profile phase might
help decreasing it at the end of the profile phase. Anyway, although not
exact, these hypothesis are almost exact given the order of magnitude of
the numbers in the data set.

One concludes that, in order to compute minFl(i, k, h) we shall use the
following equations describing fuel levels and power.

p(i, t) =


0 if plant i is in outage at t,
PMAXt

i if f uel(i, t) ≥ BOi,k,

PMAXt
i .PBi,k(f uel(i, h)) if f uel(i, t) < BOi,k;

(1)

f uel(i, t) =


XIi if t=0 ,
Ψi,k(f uel(i, t − 1)) + RMINi,k if outage k starts at t − 1,
f uel(i, t − 1) − p(i, t − 1).D otherwise.

(2)

Of course, to achieve minFl(i, k, h), we still need to choose the dates
of outages. minFl(i, k, h) is set to +∞ at the initialization of the dynamic
program. It may remain infinite, indicating that is is impossible to complete
outage k by week h. We start with initial conditions minFl(i, 0, 0) := XIi.

22

We compute the following values (as they are needed and without
storing them): let conso(i, k, h−1, x) be the quantity of fuel consumed during
all time steps of week h−1 under equations (1) and (2), assuming that plant
i is in cycle k, and with fuel level x at the beginning of that week.

minFl(i, k, h) satisfies a Bellman relation. It is the minimum between
two values:minFl(i, k, h − 1) − conso(i, k, h − 1,minFl(i, k, h − 1)),

Ψi,k(minFl(i, k − 1, h −DAi,k)) + RMINi,k.
(3)

The first case is always acceptable, but the second can be chosen only
if both minFl(i, k − 1, h −DAi,k) ≤ AMAXi,k and TOi,k ≤ h −DAi,k ≤ TAi,k.

Concerning minFuel(i, k, k2, h, h2), we don’t go into computational details
here. Let us just mention that minFuel(i, k, k2, h, h2) satisfies a relation quasi-
identical to (3) as it is the minimum between:

minFuel(i, k, k2, h, h2 − 1) − conso(i, k2, h2 − 1,minFuel(i, k, k2, h, h2 − 1)),
Ψi,k(minFuel(i, k, k2 − 1, h, h2 −DAi,k2)) + RMINi,k2 .

(4)

5.3 Computing an approximate objective function

One first issue that we had to solve, before evaluating costs, is to evaluate
the nuclear availability at each time step, or at least at each week. We
choose to evaluate the availability of each plant for each week. Actually,
we assume here that a plant either produce at PMAX or is offline (hence
neglecting modulation and profile phase effects !).

Let the following binary variable be

pih =

1 if we forecast a production (at PMAX) on plant i at week h,
0 if we forecast no production on i at h.

Contrary to variables x, the values of variables p are not intended to
be used outside of the ILP. They just help defining (and hence finding) the
quality of outages dates.

Variables p must be constrained to 0 while on outage:

23

∀i ∈ I,∀h ∈ H, pih +
∑

k

h∑
h′=h+1−DAi,k′

xikh′ ≤ 1.

p should be set to 0 in case of fuel shortage. Concerning fuel shortage,
we assume that each cycle starts at level RMAXi,k′ and that the fuel is
consumed at PMAXi,t. It is therefore immediate to pre-compute the number
Nikh′ of weeks during which we can produce at PMAX before fuel stock
falls to 0. The following constraints is added to the ILP :

∀i ∈ I,∀h ∈ H, pi,h ≤

∑
k

h−DAi,k∑
h′=h−Nikh′

xikh′ . (5)

Now that we have an estimate of the availability of plant i at week h,
we can express an objective function :

Maximize
∑

h

∑
i

DEMh.pih, (6)

where DEMh is the average demand at week h, i.e. DEMh = 1
S

∑
s
∑

t∈h DEMt,s.
Many hypothesis made in this section seem unjustified oversimplifi-

cations of the problem. Notice however the various advantages of the
approach. Thanks to the objective function, the ILP is decomposable on
subsets of plants that are not interacting through (CT14-21). Assuming
fuel levels of RMAX after outage is an under approximation of the fuel
level we can ensure, but often, the maximum fuel allowed (SMAX) is not
much higher than RMAX. Moreover, when RMAX − RMIN � 0, the ob-
jective function tends to help satisfying distance constraint discussed in
section 5.2, because scheduling the next outage much before the end of the
Nikh allowed weeks results in a loss in the objective function.

6 Production and refueling levels

In all this section, we consider that variables ha(i, k) are already fixed, so
they could be considered as implicit inputs of the algorithms discussed
here.

24

6.1 Fuel Levels without modulation

Algorithm 1 computes bounds on fuels levels for a given set of outages
and refueling values, without taking into account the demand.

It consists in unrolling time for each power plant, producing at maximal
level or following the profile production constraint. Refueling levels are set
by the input. During this loop, several bounds on fuel levels are computed
and stored :

• amaxGapik : difference between AMAXi,k and fuel level f uel[i] just
before the refueling r(i, k) ;

• smaxGapik : difference between SMAXi,k and fuel level f uel[i] just after
the refueling r(i, k) ;

• nomod f uelik : fuel level f uel[i] at the end of cycle (i, k) (nomod f uel
stands for “no modulation”).

6.2 Exact production level affectation

Algorithm 2 affects power production levels for each power plant for a
given scenario s. Outage dates and refuelings are known. It is a rolling
horizon procedure, very similar to Algorithm 1. The main difference is
that the demand of scenario s is taken into account. Thus, we can not affect
production levels independently on each power plant. Each time step
is decomposed in two phases : (1) maximal or profile levels affectation
for each power plant ; (2) if production exceeds demand, resolution by
modulation. Several additional indicators on the ability for a power plant
to modulate are also maintained. In particular, modMaxToEnd is computed
using amaxGap and smaxGap provided by Algorithm 1, and correponds to
the maximal possible modulation allowed in the current cycle taking into
account current MMAX and all future bounds AMAX and SMAX. In case
where phase (2) can not decrease the production down to the demand (i.e.
no more modulation is allowed), the algorithm stops and return “false”.
When this has been done for every time step, a new rolling time loop is
done to complete production with type 1 power plants to fill the demand.

25

Algorithm 1: bounds(r(i, k))
Data: r(i, k), i ∈ I, k ∈ K
Result: amaxGapik, smaxGapik,nomodFuelik, i ∈ I, k ∈ K, a set of power

plant indexes toReschedule
begin

for i ∈ I do
initialize state[i], cycle[i], f uel[i] ;

for i ∈ I do
for t ∈ T do

if state[i] = MOD then
prod[i]← PMAXt

i ;

if state[i] = PROF then
prod[i]← PBi,k(f uel[i]) ;

if state[i] = OUT then
if t = ha(i, k) · T/H then

compute amaxGapik ;
if f uel[i] violates AMAXi,cycle[i] then

toReschedule += {i} ;

update f uel[i] with r(i, k) ;
compute smaxGapik ;
if f uel[i] violates SMAXi,cycle[i] then

toReschedule += {i} ;

prod[i]← 0 ;

f uel[i]← f uel[i] − prod[i] ·D ;
if t + 1 = ha(i, k + 1) · T/H then

nomod f uelik ← f uel[i] ;

update state[i], cycle[i] for next time step ;

26

Algorithm 2: a f f ectScenar(s)
Data: amaxGapik, smaxGapik, r(i, k), i ∈ I, k ∈ K, scenario index s
Result: boolean value and p2(i, t, s) and p1(j, t, s) for

i ∈ I, j ∈ J, t ∈ T, s ∈ S
begin

for i ∈ I do
initialize state[i], cycle[i], f uel[i],modMaxToEnd[i] ;

for t ∈ T do
dem← DEMt,s ;
for j ∈ J do

p1(j, t, s)← PMINt,s
j ;

dem← dem − p1(j, t, s) ;

compute puissMax (available nuclear production at time t) ;
if puissMax > dem then

toModul← puissMax − dem ;
for i ∈ I do

capaModul[i]← min(PMAXt
i ,modMaxToEnd[i]) ;

while toModul > 0 do
choose i∗ such that state[i∗] = MOD and
capaModul[i∗] > 0 and modMaxToEnd[i∗] is maximal;
if there is no candidate for i∗ then

return f alse ;

modul[i∗]← min(toModul, capaModul[i∗]) ;
update modMaxToEnd[i∗], capaModul[i∗] ;
toModul← toModul −modul[i∗] ;

for i ∈ I do
if state[i] = MOD then

p2(i, t, s)← PMAXt
i −modul[i];

if state[i] = PROF then
p2(i, t, s)← PBi,k(f uel[i]) ;

if state[i] = OUT then
p2(i, t, s)← 0 ;

update f uel[i], cycle[i], state[i], modMaxToEnd[i] for next
time step ;

fill demand for each time step t with type 1 power plants sorted
by increasing cost Ct,s

j ;
return true ;

27

Algorithm 3: f illIdleProd(r(i, k))
Data: r(i, k), i ∈ I, k ∈ K
Result: new values for r(i, k), i ∈ I, k ∈ K
begin

for k ∈ K do
for i ∈ I do

if outage (i, k) exists and nomod f uelik is null then
increase r(i, k) so that fuel level becomes null at the
very end of cycle (i, k) ;
adjust r(i, k) to satisfy constraints on SMAXi,k and
RMAXi,k ;

Recompute bounds on fuel levels with Algorithm 1

6.3 Avoiding lack of fuel

It can happen that a power plant is on fuel shortage (much) before an
outage, although the preceding refueling could be increased. Algorithm 3
aims at avoiding these situations. We are given refuelings r(i, k), i ∈ I and
fuel bounds nomod f uelik, i ∈ I, k ∈ K. Considering cycles increasingly, this
algorithm checks if the fuel level is null at the end of cycle (i, k), with the
estimator nomod f uelik. If this quantity is null, r(i, k) is increased so that the
fuel level becomes null only at the end of cycle (i, k). Bounds on fuel level
are recomputed along and at the end of this method, using Algorithm 1.

6.4 Increasing refueling

We would like to maximize the amount of refuelings over all nuclear power
plants, without breaking the feasibility of the solution. Because it may be
hard to ensure this feature, we use an optimistic algorithm that increase
refuelings, and we will deal with the feasibility later. Increasing refuelings
is done in Algorithm 4. We consider iteratively every cycle. For each cycle,
all nuclear power plant are treated independently. Given a power plant i
and a cycle k, a quantity addik is computed and added to r(i, k). To compute
addik, we need to fulfil the following requirements :

• do not violate SMAXi,k′ , for k′ ≥ k ;

28

Algorithm 4: incRe f uelings(r(i, k))
Data: r(i, k), i ∈ I, k ∈ K
Result: new values for r(i, k), i ∈ I, k ∈ K
begin

for k ∈ K do
for i ∈ I do

if outage (i, k) exists then
Compute maximal value for addik (quantity of fuel to
add to r(i, k)) so that : no fuel bounds constraints are
violated within the current and the following cycles ;
fuel at the end of cycle (i, k) is no more than BOi,k ;
r(i, k)← r(i, k) + addik ;

Recompute bounds on fuel levels with Algorithm 1

• do not violate AMAXi,k′ , for k′ > k ;

• do not violate RMAXi,k′ , for k′ ≥ k ;

• nomod f uelik ≤ BOi,k ;

• maximize addik.

As we have an heuristic evaluation of fuel levels at the end of every
cycle with nomod f uel values, we are able to estimate the maximal amount
of fuel that we can add to r(i, k) without violating bound constraints over
AMAX, SMAX and RMAX. The target being at BOi,k at the end of cycle
(i, k), we just assume that power plant i produces at PMAX at each time
step of cycle k. We thus obtain a quantity of fuel needed at the beginning
of cycle (i, k).

After each power plant has been considered for cycle k, we recompute
indicators on gaps to fuel bounds using Algorithm 1.

6.5 Optimal refueling : Up&Down refuelings

Algorithm 5 just tries to affect production levels in every scenario, and
return true iff a global feasible solution has been found.

29

Algorithm 5: a f f ectPowerOk(r(i, k))
Data: r(i, k), i ∈ I, k ∈ K
Result: a boolean indicating if power affectation is feasible
begin

for s ∈ S do
if affectScenar(s) is FALSE then

return FALSE ;

return TRUE ;

Algorithm 6: upAndDown(r(i, k))
Data: r(i, k), i ∈ I, k ∈ K
Result: new values for r(i, k), i ∈ I, k ∈ K
begin

low← r(i, k) ;
high← incRe f uelings(r(i, k)) ;
while low 5 high do

if a f f ectPowerOk(high) then
low← high ;
high← IncRe f uelings(high) ;

else
high← middle(low, high) ;

30

Algorithm 6 is aimed to find the largest values of refueling such that
a feasible solution for the general problem has been found with these
values. It maintains two sets of refueling values : low and high. The low
set is always feasible. The high set is a simple increasing based on the low
set. The algorithm checks iteratively whether the high set is feasible or
not. In the positive case, low takes values from high and a new high set is
computed from this new low set, using Algorithm 4. In the negative case,
low does not change and high is decreased. The algorithm runs until low
and high are “close enough”, or a time limit constraint has been reached.
At the end of this algorithm, the low set is always feasible.

7 Numerical Results

The program was evaluated on instances published by EDF. We provide
results for the version discussed in this paper (even for instances A, for
which we were evaluated on a preliminary version). A global evaluation is
described in table 7. Gap of x to y is defined as 100(x−y)/y. Challenge’s Best
is the best value of solution found within the challenge (which concerns
only qualification results for instances A). CPU time is computed before
printing the solution in a file (which can take several minutes for B and X
instances.). Computational times are missing for X instances, since these
were run by EDF, with feedback only on the value of the solutions. Our
average gap to the best solutions founds on instances B and X (which was
the ranking criterion of the challenge) is 3, 9 percents.

We worked with the following PC-configuration: 4 processors Dual
Core AMD Opteron(tm) Processor 275 (2.2GHz, 1Mo cache), 16Go of RAM,
ILOG CPLEX 12.1. One of the eight cores was used.

8 Analysis of the data

The subject of the challenge in full generality is NP-Hard. However there
are structural properties that can be (robustly) found in all the 16 instances
proposed by EDF. These properties are important to state precisely and
formally, because they (might) help finding efficient resolution techniques.
We therefore discuss the most structuring properties we were able to find.

31

Instance Objective Value (Euros) Gap to Challenge’s Best (%) CPU time (mm:ss)
A0 8.73566e+12 1,2 00:00
A1 1.69937e+11 0,05 00:08
A2 1.46383e+11 0,2 00:16
A3 1.5501e+11 0,3 00:15
A4 1.12643e+11 0,9 00:29
A5 1.26876e+11 0,8 00:47
B6 8.6874e+10 4,1 01:56
B7 8.36859e+10 3,1 02:20
B8 8.7091e+10 6,3 04:31
B9 8.68907e+10 6,3 14:49

B10 8.1594e+10 3,7 04:28
X11 8.06461e+10 3,1
X12 7.88175e+10 1,6
X13 8.0582e+10 5,4
X14 7.94392e+10 4,3
X15 7.6063e+10 1,3

Table 1: Evaluation of the challenge ROADEF version of our program.

32

Pre-processing PMIN. Studying the subject only and not the instances,
observe that minimum power of type 1 plants can be assumed to be 0.
Indeed, as a pre-processing, for all (j, t, s) one can decrease PMINt,s

j , PMAXt,s
j

and DEMt,s by PMINt,s
j . To ensure that the objective value invariant by

this pre-processing, we also need to increase the cost function by D/S ·∑
j,t,s PMINt,s

j . When comparing demand to nuclear availability, this pre-
processing is highly recommended.

Quasi-monotonic feasibility of refuelings. The main structuring char-
acteristic of data is that non-nuclear availability is large enough so that it
always allows to match demand, whatever the nuclear power available.
On the other hand, too much nuclear availability might require too much
modulation and hence lead to global infeasibility. These two properties
almost imply that, given fixed outage dates, if {r(i, k)} is infeasible and
RMINi,k ≤ r(i, k) ≤ r′(i, k) for all (i, k) then {r′(i, k)} is also infeasible. Indeed
this statement is formally false because increasing refuelings shift the en-
trance into profile phase to the future, possibly allowing modulation for
some time steps. However, to the best of the little experiments we have
done regarding this issue, this counter-proof doesn’t apply in practice.

Approximation and evaluation of costs. Nuclear production costs are
roughly between 15 and 21, while type 1 plants costs typically vary be-
tween 10 and 10k. Most of the time, the most expansive nuclear plant is
cheaper than the cheapest non-nuclear one, but this is not always true.
The costs of type 1 plants are indicated in Figures 1, 2 and 3. Type 1 com-
pletion costs are convex piecewise linear for each scenario and time step.
Equivalently, associated marginal costs are non-increasing step functions
(of nuclear power available). One should be careful on his hypothesis
when aggregating on scenarios and time steps. However, if we rely on the
Figure 2, that is, if nuclear availability is assumed uniform in a given week,
we observe that marginal cost is constant (for small value on the x-axis),
then piecewise linear, then strictly convex. This implies that the cost can be
sharply approximated on some interval, by an affine or a quadratic func-
tion. Further Log(-log) plots should provide more insight on the nature of
the curves 1 and 2 for x ≥ 25000. For future investigations we recommend
to include (an evaluation) the cost of nuclear power within such plots.

33

More importantly, one should use approximate cost functions that zoom
on the range of likely (or possible) nuclear capability of each week.

Laminarity and decomposability of nuclear plant interactions. Insight-
fully, one can draw the hyper-graph of constraints (CT14-21). To do so,
associate a vertex with each nuclear plant, and an hyper-edge (Am) with
each constraint. On all instances B, we observe that this hyper-graph is
roughly the same (after relabelling the plants). The reason is that that sets
Am rely on the geographical positions of French nuclear plants. The hyper-
graph has a laminar structure (for any 2 pair of edges Am and Am′ , either
Am ∩ Am′ = ∅ or Am ⊆ Am′ or Am′ ⊆ Am). To visualize the hypergraph of
constraints, one can just draw a map of France, put one node for all the 58
reactors, and draw a circle for all reactors belonging to a nuclear site. Then
for nuclear sites having more than 2 reactors, match the reactors in pairs.
Also, an hyperedge may merge 2 nuclear sites that are geographically close
to each other.

In particular, often constraints (CT14) involve only 2 plants with large
Sem, hence strongly linking these 2 plants. The connected components of
the hyper-graph are of size 2, 4 or 6 (with a total of more than 50 plants),
yielding around 9 components. This implies that demand constraints
(CT1) are the only one linking these 9 subgroups of nuclear plants in the
model, so that just dualizing (CT1) allows to split the problem in much
smaller parts. We used this non-connectivity of the hyper-graph only in
the rescheduling phase of the ILP: if the solution of the ILP doesn’t allow
to find feasible production plans for a subset I∗ of plants, then we rerun the
ILP only with plants connected to at least one plant in I∗.

9 Ideas for future work

When participating in such a challenge, it is hard to explore all mathemat-
ical and algorithmic ideas that come to mind. When studying the subject,

34

Figure 1: Cost of completion by non-nuclear plants as a function of to-
tal nuclear availability, averaged on all steps and scenarios of week 63,
instance B6.

35

Figure 2: Marginal cost of completion by non-nuclear plants as a function
of total nuclear availability, averaged on all steps and scenarios of week
63, instance B6.

36

Figure 3: Marginal cost of completion by non-nuclear plants as a function
of the week (x-axis) and nuclear availability, averaged on all steps and
scenarios, instance B6.

37

and even the instance, it is very hard to guess whether an approach will
be fast, robust and/or competitive. We hope that sub-problems will be
studied thoroughly so has to provide insight and subroutines aiming at
building bricks on which smart global approaches could rely. We want to
share our ideas concerning such issues in this section.

The main characteristic of our approach is its hierarchical decompo-
sition nature. This kind of strategy might be considered inefficient and
not noble. But we gave some arguments showing that subsequent choices
of variables might be evaluated approximately in compact implicit ways.
Moreover, since other resolution techniques are successfully addressed by
other competing teams, we prefer to stick to our approach in this discus-
sion.

Assuming that the hierarchical structure is preserved, there are several
issues that need to be addressed to judge the ability of our decomposition
to provide solutions with highly competitive objective value.

9.1 Improving the ILP

Implicit refueling and fuel stocks at the end of cycles. Although sim-
plistic and preliminary, our work challenges the idea that refueling values
should be intimately studied with dates of outages. The hypothesis that
fuel stock after an outage is limited to only RMAX should be improv-
able using (one) more dates of outage than only the last one (as done in
Equation (5)).

Modulation and profile phases. Using variables pikh (production within
each cycle) instead of just pih, there might be some ways to express the
possibility of modulation. Moreover, assuming that the profile phase is
convex, there might be ways to impose it using only linear inequalities,
that is, only with upper bounds on the production. Notice that modulation
and profile destroy the assumption that production is binary and constant
within each week. Still it seems hard not to express modulation and profile
without expliciting dates at which fuel reaches BO. Morevoer as long as
our algorithm for power affectation does not modulate for objective value,
we have no reason to allow the ILP to modulate.

38

Evaluating objective costs within the ILP. The problem with the vari-
ables xikh is that they don’t allow to reformulate easily (an approximation
of) the objective function of the subject. To evaluate the cost of a sched-
ule, we should compute the amount of nuclear power dedicated to each
pair (t, s). This last information seems too detailed, because it yields too
many variables. One may wish to compute only an approximation of
the completion cost by non-nuclear plants for each week (aggregated on
steps and scenarios). Such values are plotted in section 8. We tried such
an approach by approximating, for each week, the function of Figure 1
piecewise-linearly. Indeed, we tried both upper and under approxima-
tions, using exponential thresholds (like 20,50,100,200,500,2k,9k) on the
derivative (i.e. marginal costs), as indicated in Figure 3. Because the func-
tion of Figure 1 is convex, minimizing a piecewise linear approximation
can be expressed with linear inequalities only. The method works, indeed,
it works so well that the optimal value found by CPLEX was very close to
the exact value of the final solution. However the time taken by CPLEX on
instance B9 to find an optimal solution was around 40 minutes. Moreover
and more surprisingly, the quality of the solution was not really improved
(it was a little better or worse depending on the instances). So we closed
this direction of research during the challenge. The reason why this nice
idea didn’t bring improvements in the solution seems to be that something
else is too roughly taken into account, and should be improved before
thinking about cost evaluation within the ILP.

Polyhedral study and pre-processing constraints. We tried to provide
to CPLEX strong constraints, but further studies on the linear relaxation
of our formulation are required to judge its quality. Constraints (CT21)
are a priori highly redundant and naively written, bunch of constraints
(CT21) should be advantageously reformulated in the format of (CT20) by
studying subset of plants that conflict together.

Decomposability of the ILP Assuming we use non-correlating objective
functions (such as Equation 6), the ILP could be submitted to CPLEX for
each connected components one at a time (or in parallel).

Using constraint based and local search solvers. After all, why solv-
ing the ILP at optimality while we know it is only an approximation of the

39

global problem ? One might wish to apply other resolution paradigms orig-
inating from the SAT community like pseudo-boolean programming [3].
Local search [1] seems also a promising way in order to find good solutions
faster.

9.2 Improving the refueling and the power assignment

Modulation for value. Our approach doesn’t look at future demand
when dealing with a given scenario at a given time step. We only use
modulation for feasibility.

Faster greedy procedures. Because computational time was not a key
point that needed improvement, we made intensive use of nuclear power
affectation in order to check feasibility. We clearly recompute again and
again similar affectations when adjusting the refueling values. In some
instances, the time to adjust refueling is therefore substantial. In order
to accelerate recognizing set of refueling that are infeasible, it would be
useful to identify scenarios and step windows that are the most critical.
Recomputing only (or first) on these critical points would be natural.

Smarter view on good refueling. One thing that we overlooked is that
although r(i, k) cannot be increased, fuel level might be far below BOi,k at
the end of cycle (i, k), yet it might be possible to increase r(i, k − 1). More
generally, our view on refueling would benefit visualizing many outputs
and comparing with better solvers to evaluate how much we lose at this
point. This idea can be generalized easily, as we explain now.

9.3 Creating collaboration between solvers of the challenge.

Following our decomposition, one might wish to evaluate each competing
solver of the challenge not on the global aspect of the subject, but only in
solving sub-problems. The following sketch of protocol should provide
an easy framework. Given solvers S1 and S2, and given an instance I of
the problem, let S1 solve I and obtain solution I1. Gather part of the values
in I1 (like {ha(i, k)} and/or {r(i, k)}). Fix these values in I to obtain a more
constrained instance I′. Run S1 and S2 on I′ and compare speeds and values.
We can have up to 3 solvers collaborating this way, fixing sequentially

40

{ha(i, k)}, {r(i, k)}, {p2(i, t, s)} and {p1(j, t, s)}. Unfortunately, notice that this
idea will not be so easy to use if we want to fix other critical informations
(like time index of entrance into profile phase) because such informations
are not designed to be encoded in the format of inputs.

References

[1] T. Benoist, B. Estellon, F. Gardi, R. Megel, and K. Nouioua. Localsolver
1. x: a black-box local-search solver for 0-1 programming. 4OR: A
Quarterly Journal of Operations Research, pages 1–18, 2011.

[2] F. Brandt, R. Bauer, M. Völker, and A. Cardeneo. A constraint
programming-based approach to a large-scale energy management
problem with varied constraints. Journal of Scheduling, to appear, 2012.

[3] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into
sat. Journal on Satisfability, Boolean Modeling and Computation, 2:1–25,
2006.

[4] F. Fourcade, E. Johnson, M. Bara, and P. Cortey-Dumont. Optimiz-
ing nuclear power plant refueling with mixed-integer programming.
European journal of operational research, 97(2):269–280, 1997.

[5] F. Gardi and K. Nouioua. Local search for mixed-integer nonlinear
optimization: a methodology and an application. Evolutionary Com-
putation in Combinatorial Optimization, pages 167–178, 2011.

[6] S. Godskesen, Th. Jensen, N. Kjeldsen, and R. Larsen. Solving a real-
life, large-scale energy management problem. Journal of Scheduling, to
appear, 2012.

[7] A. Gorge, A. Lisser, and R. Zorgati. Stochastic nuclear outages
semidefinite relaxations. Computational Management Science, pages
1–17, 2012.

[8] M. Khemmoudj, M. Porcheron, and H. Bennaceur. When constraint
programming and local search solve the scheduling problem of elec-
tricité de france nuclear power plant outages. Principles and Practice of
Constraint Programming-CP 2006, pages 271–283, 2006.

41

[9] R.M. Lusby, L.F. Muller, and B. Petersen. A solution approach to
the roadef/euro 2010 challenge based on benders’ decomposition.
http://orbit.dtu.dk/en/, Report 18.2010, 2010.

[10] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimiza-
tion, volume 18. Wiley New York, 1988.

[11] M. Queyranne and A.S. Schulz. Polyhedral approaches to machine
scheduling. TU, Fachbereich 3, 1994.

[12] A. Rozenknop, R. Wolfler Calvo, L. Alfandari, D. Chemla, and L. Leto-
cart. Solving eletricity production planning by column generation.
Journal of Scheduling, to appear, 2012.

[13] J.M. van den Akker, C.A.J. Hurkens, and M.W.P. Savelsbergh. Time-
indexed formulations for machine scheduling problems: Column
generation. INFORMS J. Comput., 12(2):111–124, 2000.

42

