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Abstract

We study the parallel machine scheduling problem with release dates and we consider several

“min-sum” objective functions including total weighted tardiness, total tardiness, total weighted

completion time and total completion time. We describe several lower bounds for these problems,

most of them being original ones. We provide experimental results to compare these lower bounds

according to their quality and of their computational time requirement.
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1 Introduction

In this paper we consider the situation where a set of n jobs N = {1, . . . , n} has to be processed on m

identical parallel machines and where the objective is to minimize a sum objective function. Several

criteria are studied: total (weighted) tardiness and total (weighted) completion time. Associated with

each job i is a release date ri, a processing time pi, a due date di and a weight wi. A job cannot

start before its release date and preemption is not allowed. No more than m jobs can be scheduled

simultaneously. The tardiness of job i is defined as Ti = max (0, Ci − di), where Ci is the completion

time of job i. The problem is to find a feasible schedule with minimum total (weighted) tardiness
∑

(wi)Ti or with minimum total (weighted) completion time
∑

(wi)Ci. Note that all criteria are

special cases of the total weighted tardiness criterion. These problems are denoted as Pm|ri|
∑

wiTi,

Pm|ri|
∑

Ti, Pm|ri|
∑

wiCi and Pm|ri|
∑

Ci. As these problems are strongly NP-Hard [16], it is

essential to have good and fast lower bounds. In this paper, we propose a brief survey of existing

bounds and we present several new ones.
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1.1 Related Work

For the single machine problem, lower bounds are presented for the criteria studied in this paper (see

[14, 7, 8]). In [9], Rivreau describes a lower bound based on a Lagrangian relaxation of a time indexed

formulation of the single machine problem 1|ri|Fi, where the cost function F must comply with some

specific constraint.

The Pm|ri|
∑

Ci problem has been studied in [21]. The authors describe two lower bounds. The

first one consists in relaxing all release dates to the earliest one, and solving exactly the Pm||
∑

Ci

problem (this can be done in polynomial time [12]). The second lower bound uses “Job Splitting”.

Preemption and simultaneous execution of parts of a job are allowed. The optimal value of the relaxed

problem (solvable in polynomial time), is a valid lower bound of the initial problem.

In [4], Azizoglu and Kirca propose a lower bound for the Pm||
∑

wiCi problem. They compute

a lower bound of the weighted sum of start times, that they add to the weighted sum of processing

times. Recently, Nessah et al. have proposed two lower bounds for the Pm|ri|
∑

wiCi problem [18].

These two lower bounds are based on different splitting schemes.

Chen and Powell have studied deeply linear formulations for the R||
∑

wiCi problem [6]. They

have presented a reformulation of the linear program, solved by column generation.

The problem Pm||
∑

Ti has also been studied by Azizoglu and Kirca [3]. The authors have proposed

a lower bound, by computing a lower of minimal completion time of the job completed in ith position.

Then, after sorting due dates, we can obtain a lower bound for the total tardiness.

Recently, the problem Pm|ri|
∑

Ti has been studied by Shim and Kim [20]. The authors have

proposed three lower bounds. The first one is obtained by computing tardiness of unscheduled jobs as

if they were sheduled as soon as possible after scheduled jobs. The second one is the same as Azizoglu

and Kirca in. The third one uses the notion of minimal completion time to obtain a lower bound of

total tardiness.

The earliness tardiness problem, denoted Pm|ri|
∑

αiEi + βiTi has also been studied, mainly in

[15]. The authors use a time indexed formulation, and propose several relaxations to compute lower

bounds for the problem. The special case where m = 1 (single machine problem) has also been

extensively studied.

1.2 Outline of the Paper

Lower bounds relying on similar relaxation techniques are described in the same section. In Section 2,

we relax release dates. In Section 3, reduce the problems to flow problems. In Section 4, we focus on

lower bounds relying on i-th minimal completion times. In Section 5, we describe lower bounds based

on different relaxations of a time indexed mixed-integer formulation. Finally, experimental results and

comparisons between all lower bounds are provided in Section 6.
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All examples presented in this paper are based upon the instance of the total weighted tardiness

problem, described in Table 1 with m = 2 and n = 5. The same instance will also be used for other

“easier” (for total completion time, we consider only release dates and processing times, etc.).

i 1 2 3 4 5

ri 0 1 3 4 5

pi 6 4 3 1 4

di 7 5 8 7 12

wi 1 4 1 2 3

Table 1: The Instance Used over the Paper.

2 Relaxing Release Dates

The two following lower bounds (Sections 2.1 and 2.2) deal only with total completion time. However,

they can be used for more complex criteria (Section 2.3).

2.1 Relaxing all Release Dates to the Earliest Release Date

This lower bound has been proposed by Yalaoui and Chu in [21] for the total completion time criterion.

All release dates are relaxed to the minimal release date among all release dates. The relaxed problem

reduces to Pm||
∑

Cj which is polynomially solvable [12]. All jobs are scheduled according to the

Shortest Processing Time (SPT) Rule on the earliest available machine. That is to say that the job

with the shortest processing time is scheduled on the machine which is available the earliest. This

lower bound can be then computed in O(n logn). From now on we shall refer to this lower bound as

lbno−release (Release dates are relaxed to the smallest one).

The optimal solution for the total completion time problem with relaxed release dates is provided

in Figure 1. The value of the lower bound is lbno−release = 27.

0 1 2 3 4 5 6 7 8 9 10 11

M1

M2

4 2 1

3 5

Figure 1: Optimal solution when all release dates are relaxed to the earliest release date
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2.2 Splitting Problem into Relaxed Sub-Problems

In this section, we describe a lower bound in which several subsets of jobs are build according to

the value of their release dates. The main idea is to relax the release dates of jobs according to the

minimal release date among the jobs of the same subset. We then build the optimal solutions of these

subsets independently using the SPT rule described in the previous section. The sum of the costs of

each of these schedules is then a lower bound of the original problem. In the following, we only use

a separation in two subsets. Nevertheless note that the mechanism can be generalized to a greater

number of subsets.

Let t be a given date. We define N0 = {i ∈ N/ri < t} and Nt = {i ∈ N/ri ≥ t}. The initial

problem is now split into two relaxed sub-problems: (1) schedule optimally jobs of N0 from the earliest

release date and (2) schedule optimally jobs of Nt from date t. These two sub-problems can be solved

in polynomial time, and the sum of the optimal values of these sub-problems is denoted Γ(t). The

value Γ(t) is a lower bound of the initial problem. Every time point t can be chosen to compute a

lower bound. We want to pick one which maximizes Γ(t). In fact, it is sufficient to consider only the

dates corresponding to the release dates of jobs to find the best value Γ. From now on we shall refer to

this lower bound as lbno−release−subsets (Decomposition of the problem into a fixed number of problems

without release dates).

This bound can be computed in O(n2) since at most n lower bounds in O(n) are computed, after

a single step of sorting jobs in non-decreasing order of processing times.

In Table 2, one can see the different values of Γ(t). The maximum value of Γ(t) is reached for t = 4

and lbno−release−subsets = 29. The two sub-schedules are provided on Figure 2.

0 1 2 3 4 5 6 7 8 9

M1

M2

4

5

0 1 2 3 4 5 6 7 8 9

M1

M2

3 1

2

Figure 2: Best Solution for t = 4
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t 0 1 3 4 5

Γ(t) 27 26 28 29 27

Table 2: Values of Γ

2.3 Extension to Total Tardiness

The lower bounds described above (Sections 2.1 and 2.2) deal only with total completion time. However,

a lower bound can be derived for the total tardiness problem, by removing
∑n

i=1 di to the obtained

value for the total completion time problem [1]. Indeed, for all schedules (particularly for an optimal

one), we have
∑n

i=1max(0, Ci − di) ≥ max(0,
∑n

i=1Ci − di). For example, if a lower bound is equal to

V on the instance example, then we know that V ′ = max(0, V −
∑n

i=1 di) = max(0, V − 39) is a lower

bound for the total tardiness problem.

3 Flow Based Lower Bounds

These lower bounds deal with the four studied criteria and is based on relaxation of the problem which

leads to a flow problem. In Section 3.1, we focus on the total weighted tardiness criterion which is the

most general one. In Section 3.1, we show how the computed lower bound can be improved in the case

of the total (weighted) completion time case.

3.1 The total (Weighted) Tardiness Case

Associated with our initial problem π, we build a problem π′ as follows: each job i of the initial problem

π is split (see e.g., [5]) into pi pieces Jik, k ∈ 1, . . . , pi of processing time pik = 1. With each piece Jik,

we associate the weight wi

pi
and the due date di.

Proposition 3.1. The optimum of problem π′ is lower than or equal to the optimum of problem π.

In [5], the single machine case is presented. The proof is also valid for the parallel machine case,

so we do not show the proof here.

A lower bound of π′ can be computed considering the following flow based problem. The associated

network is a connected and directed graph G(X,U), where X is the set of vertices and U the set of

edges. The set X is made of a source S, a sink T , n vertices associated with the n jobs N and

u vertices associated with consecutive intervals I1, I2, . . . , Iu that partition [rmin, H) where H is the

horizon. These intervals are obtained from a set of non-decreasing dates t1 = rmin, t2, . . . , tu+1 = H, by

the relation Ik = [tk, tk+1[ (see Figure 3). We denote by lk the length of interval Ik, i.e. lk = tk+1− tk.

S is connected to each vertex i by an edge of capacity pi and of cost 0. Each vertex Ik is connected

to the sink T by an edge of capacity mlk and of cost 0. At last, for each job i and each time interval
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t1 = rmin tk tk+1 tu+1 = H

I1 Ik = [tk, tk+1[ Iu

Figure 3: Intervals I1, I2, . . . , Iu

Ik such that ri ≥ tk, vertex i is connected to vertex Ik by an edge of capacity lk and of cost cik (see

figure 4). The network is shown in Figure 3. The edges are labeled with pairs (x, y) where x is the

edge capacity and y is the cost per unit flow.

S T

1

. . .

i

. . .

n

I1

. . .

Ik

. . .

Iu

(pi, 0) (lk, cik
) (mlk, 0)

Figure 4: Flow Problem

It is easy to see that the maximal flow is equal to
∑

pi. The following proposition holds:

Proposition 3.2. If ∀k lk = 1 and each cost cik = wi

pi
max(0, tk + 1 − di), then the problem to find

a minimal cost flow which achieves the maximum total flow through the network solves exactly the

problem π′. The obtained value is then a lower bound of the total weighted tardiness of the initial

problem π.

Nevertheless note that the number of intervals to consider is P =
∑

pi which can be very large. To

obtain a polynomial lower bound we can consider a weaker version in which the set of dates to consider

to obtain intervals is {ri}∪ {di}. Values cik are chosen in such a way that the cost of optimal flow is a

lower bound of the cost the optimal schedule for problem π′. We can see that cik = wi

pi
max(0, tk+1−di)

are such values since each piece of job i allocated to an interval k has a completion time at least equal

to tk + 1. Since we have now O(n) vertices and O(n2) edges, the lower bound can be computed in
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O(n3 log2(n)) [19]. From now on we shall refer to this lower bound as lbflow (Reduction to a flow

Problem).

The described time splitting may be very poor. It is easy to build an instance with very large

intervals. To avoid this drawback, n new breakpoints are added. To insert a breakpoint, all time

intervals are checked, and the largest one is split into two equal parts. As the number of intervals is

still linear, this lower bound, denoted as lbflow′ (Reduction to a flow problem with a polynomial number

of time intervals), is again O(n3 log2(n)).

It can be interesting to bound the length of any time intervals, even if the lower bound becomes

pseudo-polynomial. The way to obtain these time intervals is the following one: the initial splitting is

made with {ri} ∪ {di}. Then, while there is an interval larger than an parameter a, it is split into two

parts. This lower bound is denoted lbflow′′(a) (Reduction to a flow problem with a pseudo-polynomial

number of time intervals).

3.2 The total (Weighted) Completion Time Case

Based on ideas from lower bounds of Belouadah, Posner and Potts [5] for the problem 1|ri|
∑

wiCi,

we propose to improve the value of the lower bound for the total (weighted) completion time criterion.

The idea is to add a quantity which can be seen as the cost of breaking each job i into pi pieces. For

the total (weighted) completion time criterion the following proposition, which is a particular case of

splitting of [5], holds:

Proposition 3.3. The value of an optimal solution of problem π′, to which the quantity
∑n

i=1wi(pi − 1)/2

is added, is lower than or equal to the value of an optimal solution of the initial problem π.

Proof. Let S be an optimal schedule of the initial problem π. Build the corresponding solution S′

of the problem π′ in which each job i are replaced by the corresponding pieces Jik, k ∈ 1, . . . , pi in

problem π′. The cost of schedule S is WC(S) =
∑n

i=1wiCi(S) where Ci(S) is the completion time

of job i in schedule S. The cost of schedule S′ is then WC(S′) =
∑n

i=1wi/pi
∑pi

k=1Ci(S)− k + 1 =
∑n

i=1wiCi(S)+
∑n

i=1wi/pi
∑pi

k=1 1− k = WC(S)−
∑n

i=1wi(pi − 1)/2. We conclude that the value of

an optimal solution of π′, to which the quantity
∑n

i=1wi(pi − 1)/2 is added, is lower than the value of

an optimal solution of π.

On the example, the optimal flow between vertices N and vertices Ii, i ∈ {1, . . . , u} is presented

on Table 3. The cost of the optimal flow is 23, 333.... After adding the value
∑n

i=1wi(pi − 1)/2, here

equal to 14, the lower bound obtained is equal to 38.
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I1 I2 I3 I4 I5

1 1 2 0 0 3

2 0 2 1 0 1

3 0 0 1 1 1

4 0 0 0 1 0

5 0 0 0 0 4

Table 3: Optimal Flow on the Example

4 Minimal Completion Times Based Lower Bounds

Let [i](S) be the job completed in ith position in S and C[i](S) its completion time. We define C[i],

i ∈ N as the minimal completion time of a job completed in ith position in a schedule among all

possible schedules. Based on this notion, we derive several lower bounds. In Section 4.1, we show how

lower bounds can be computed from C values for each criterion. Next, we study simple lower bounds

of C values in Section 4.2. In Section 4.3, we recall a lower bound based on “Job Splitting”. Then, we

present some new lower bounds based on Horn Theorem in Section 4.4. Finally, a combination two

fast and non dominated lower bounds is presented in Section 4.5.

4.1 Obtaining Lower Bounds from Minimal Completion Times

Let λ[i], i ∈ N denote a value such that λ[i] is a lower bound of C[i]. Let S be an optimal schedule of

an instance of the considered problem. Note that by definition we have ∀i ∈ N,λ[i] ≤ C[i] ≤ C[i](S).

In the following, we explain how lower bounds can be computed from λ values for each criterion.

4.1.1 Pm|ri|
∑

Ci

We have
∑n

i=1 λ[i] ≤
∑n

i=1C[i] ≤
∑n

i=1C[i](S). Therefore,
∑n

i=1 λ[i] is a lower bound of the problem

since S is optimal.

4.1.2 Pm|ri|
∑

wiCi

Let w′
1 ≤ w′

2 ≤ . . . ≤ w′
n be the list of the weights of jobs which have been resorted in non-increasing

order. Note that w1C1 +w2C2 ≥ w2C1 +w1C2 if w1 ≤ w2 and C1 ≤ C2. By interchange argument, it

can be proven that
∑n

i=1w
′
iC[i](S) ≤

∑n
i=1w[i](S)C[i](S). We have then

∑n
i=1w

′
iλ[i] ≤

∑n
i=1w

′
iC[i](S).

Therefore,
∑n

i=1w
′
iλ[i] is a lower bound of the problem.
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4.1.3 Pm|ri|
∑

Ti

Let d′1 ≤ d′2 ≤ . . . ≤ d′n be the list of the due dates of jobs which have been resorted in non-

decreasing order. Note that max(0, C1 − d1) + max(0, C2 − d2) ≥ max(0, C1 − d2) + max(0, C2 − d1)

if C1 ≤ C2 and d1 ≥ d2. By interchange argument, it can be proved that
∑n

i=1max(0, C[i](S)− d′i) ≤
∑n

i=1max(0, C[i](S)− d[i](S)).

It follows that
∑n

i=1max(0, λ[i]− d′i) ≤
∑n

i=1max(0, C[i](S)− d[i](S)). Therefore,
∑n

i=1max(0, λ[i]− d′i)

is a lower bound of the problem.

4.1.4 Pm|ri|
∑

wiTi

We have
∑n

i=1wimax(0, C[i](S)− d[i](S)) =
∑n

i=1wimax(d[i](S), C[i](S))−
∑n

i=1wid[i](S) ≥
∑n

i=1wiC[i](S)−
∑n

i=1wid[i](S). Therefore
∑n

i=1w
′
iλ[i]−

∑n
i=1widi is a lower bound of the problem.

4.2 Simple Lower Bounds

In this section, we describe two simple ways to compute lower bounds λ of the C values.

At first, without lost of generality, suppose that jobs are indexed in non-decreasing order of ri+ pi.

We can remark that a job completed in ith position cannot be completed before ri + pi. Thus, we

deduce that ri + pi is a lower bound of C[i]. From now on we shall refer to these lower bounds of C[i]

values as λr+p[i] = ri + pi, i ∈ N . Moreover, we shall refer to the lower bound associated with the

λr+p values as lb[ ]r+p (Minimal completion times based on ri + pi).

Suppose now that all release dates are relaxed to the minimal release date and that preemption is

allowed. The problem P |pmtn|Cmax is polynomially solvable in O(n) by McNaughton algorithm [17]

with C∗
max = max(mini∈N ri +

⌈

1
m

∑n
i=1 pi

⌉

,maxi∈N pi). Finding the subset of i jobs that leads to the

minimal makespan can be done by choosing the jobs with the i smallest processing times. Suppose

that jobs are indexed in non-decreasing order of processing times. We have mink∈N rk +
⌈

1
m

∑i
k=1 pk

⌉

is a lower bound of C[i]. From now on we shall refer to these lower bounds of C values as λspt[i] =

mink∈N rk +
⌈

1
m

∑i
k=1 pk

⌉

, i ∈ N . Moreover, we shall refer to the lower bound associated with the

λspt values as lb[ ]spt (Minimal completion times based on McNaughton’s rule).

On the example instance, the λr+p and λspt values are provided in Table 4. On this instance, the

lower bounds lb[ ]r+p and lb[ ]spt computed for the total completion time criterion are respectively equal

to 30 and 29.

jobs 1 2 3 4 5

λr+p 6 5 6 5 9

λspt 1 3 5 7 11

Table 4: λr+p and λspt Values.
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4.3 Job Splitting

This lower bound consists in allowing preemption and “Splitting” i.e. simultaneous execution of parts

of a same job on several machines [21]. The optimal schedule of this relaxed problem is built by

sequencing jobs according to the Extended Shortest Remaining Processing Time rule: at time t, the

job k with the shortest remaining processing time is chosen. Then, unit parts of job k are scheduled as

soon as possible, possibly on different machines during the same time unit, until the job is completed or

a new release date has been reached. The ith lowest completion time of a job in this optimal schedule

is a lower bound of C[i] [21]. From now on we shall refer to these lower bounds of C values as λsplit[i],

i ∈ N . Moreover, we shall refer to the lower bound associated with the λsplit values as lb[ ]split (Minimal

completion times based on job splitting).

On Figure 5, we can see the optimal schedule of the relaxed problem for the example instance and

the λsplit values. For the total completion time criterion, we have then lb[ ]split = 29.

0 1 2 3 4 5 6 7 8 9

M1

M2

1

1

1

1

1

1

2

2

2

2

3

3

3

4

5

5

5

5

λsplit[1] λsplit[2]

λsplit[3]

λsplit[4] λsplit[5]

Figure 5: Optimal Solution when Job Splitting is Allowed

4.4 Using Horn Theorem

In this section we describe a set of lower bounds relying on Horn theorem [13]. This theorem allows

us to solve polynomially the Pm|ri, pmtn|Cmax problem and can be reformulated in this way:

Theorem 4.1 ([13]). There exists a preemptive schedule in which all jobs are completed before time C

if and only if:






∀j ∈ N,
∑n

k=1 r(k, j) ≤ m(C − rj)

∀j ∈ N, rj + pj ≤ C

where r(k, j) = max(0,min(pk, rk + pk − rj)).

Note that r(k, j) is the minimal amount of time of job k that must be executed after time rj .

This theorem can be used to compute lower bounds of C values relaxing the problem in the

preemptive case. For each i ∈ N , the idea is to find the subset of i jobs that leads to the minimal

makespan. The obtained makespan is then a lower bound of C[i]. Indeed, the minimal completion

time of the job completed in the ith position in a preemptive schedule is obviously lower than or equal
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to the minimal completion time of the job completed in the ith position in a non preemptive one.

From now on we shall refer to this lower bound of C[i] values as λmip[i]. Moreover, we shall refer

to the lower bound associated with the λmip values as lb[ ]mip (Minimal completion times based on a

MIP formulation relying on Horn’s Theorem ). Based on Horn’s theorem, we propose the following

Mixed-Integer Formulation which allows us to find the subset of i jobs that minimizes the makespan

λmip[i]:

minλmip[i] (1)

∀j ∈ N, rjXj +
1

m

n
∑

k=1

r(k, j)Xk ≤ λmip[i] (2)

∀j ∈ N, (rj + pj)Xj ≤ λmip[i] (3)
n
∑

k=1

Xk = i (4)

∀j ∈ N, Xj ∈ {0; 1} (5)

i 1 2 3 4 5

λmip 5 5 6 8 10

subsets {4} {2, 4} {1, 2, 4} {1, 2, 3, 4} {1, 2, 3, 4, 5}

Table 5: Subsets of Jobs and λmip Values

In this particular case, the corresponding subsets are incremental, but this property does not always

hold.

4.4.1 Relaxing the Integrity Constraint

To reduce the amount of processing time required to compute the λmip values, we propose to use a

continuous relaxation of the previous one. From now on we shall refer to this lower bound of C[i]

values as λlp[i]. We shall refer to the lower bound associated with the λlp values as lb[ ]lp (Continuous

relaxation of lb[ ]mip).

4.4.2 Resorting Costs

The previous Mixed Integer Formulation may be very long to solve. To avoid this limitation, we

propose here a way to compute a lower bound of λmip values using Horn theorem. This method is

polynomial.

For each job j we define r′(k, j), k ∈ N obtained by resorting values r(k, j), k ∈ N in non decreasing

order. Obviously, we have ∀j ∈ N,
∑i

k=1 r
′(k, j) ≤

∑n
k=1 r(k, j)Xk since, in the best case, the jobs with
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the i shortest r(k, j) will be set with Xk = 1. Therefore, we have ∀j ∈ N, rjXj +
1
m

∑i
k=1 r

′(k, j) ≤

rjXj +
1
m

∑n
k=1 r(k, j)Xk ≤ λmip[i].

Suppose that job j is kept in the subset of i jobs and define θj = rj + 1
m

∑i
k=1 r

′(k, j): we

have θj ≤ rj +
1
m

∑n
k=1 r(k, j)Xk ≤ λmip[i]. Let θ′j , j ∈ N be the values obtained by sorting the

θj values in non decreasing order. Note that maxk∈N Xkθk = λmip[i]. It then becomes trivial that

maxk∈{1,...,i} θ
′
k ≤ maxk∈N Xkθk = λmip[i]. We conclude that θ′i is a lower bound of λmip[i].

Moreover, according to the Constraint (3) of the Mixed Integer Formulation, we should have ∀j ∈

N, (rj + pj)Xj ≤ λmip[i]. In the best case, the jobs j with the shortest quantity rj + pj are kept in

the optimal subset of i jobs. Relying on the notations of Section 4.2, we conclude that we should also

have λr+p[i] ≤ λmip[i].

Therefore, the quantity max(θ′i, λ
r+p[i]) is a lower bound of λmip[i] and then a lower bound of C[i].

From now on we shall refer to these lower bounds of C values as λresort[i] = max(θ′i, λ
r+p[i]), i ∈ N .

Moreover, we shall refer to the lower bound associated with the λresort values as lb[ ]resort (A relaxation

of lb[ ]mip based on “resorting costs”).

Quantities r′(k, j) are computed in O(n2 log n)) since n sorts of n values are performed. Next,

values λresort[i] can be incrementally computed: for each i, the n values of θ are computed in O(n)

considering the θ values of the previous iteration and are sorted in O(n2 log n). Thus, the lower bound

lb[ ]resort can be computed in O(n2 logn).

In Table 6, we can see the way to compute λresort[4] on the example instance. We know that 4

jobs must be chosen, so the value of θ′4 is the 4th smallest value among {6, 6, 7, 7, 7.5}. Thus, θ′4 = 7.

In addition, λr+p[4] = 6 and then λresort[4] = max(7, 6) = 7. The total value of lower bound lb[ ]resort

on the example equals 34 for the total completion time problem.

r(k, j) =





















6 5 3 2 1

4 4 2 1 0

3 3 3 2 1

1 1 1 1 0

4 4 4 4 4





















r′(k, j) =





















1 1 1 1 0

3 3 2 1 0

4 4 3 2 1

4 4 3 2 1

6 5 4 4 4





















j 1 2 3 4 5

θj 6 7 7.5 7 6

Table 6: Computing for λresort[4]
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4.5 Combining Polynomial Lower Bounds

In the previous sections, we have described several ways to compute λ values in polynomial time. In

this section, we propose to take advantage of all these lower bounds. Indeed, when values of λi are

computed, the highest value is not always reached by the same method. The idea is then to take for

each i, the maximum λ value we can compute in a reasonable time. We then define for each i ∈ N ,

the value λcombo[i] as:

λcombo[i] = max(λsplit[i], λresort[i]) (6)

Moreover, we shall refer to the lower bound associated with the λcombo values as lb[ ]combo (Combination

of lb[ ]resort and lb[ ]split). Note that the complexity to compute lb[ ]combo is then O(n2 log n). Table 7

presents values of lb[ ]combo for the example instance.

k 1 2 3 4 5

λresort[k] 5 5 6 7 10

λsplit[k] 3 5 5 7 9

λcombo[k] 5 5 6 7 10

Table 7: λcombo Values.

5 Time Indexed Formulation Based Lower Bounds

In the following H is an upper bound of the makespan of any active schedules for these criteria.

Note that finding the maximal makespan of an active schedule is NP-Hard [2]. The two following

lower bounds use a Mixed-Integer Formulation that solve exactly the four problems we study. In this

formulation, the variables are:

xjt =











1 if job j begins at time t

0 otherwise

Then, we use the following MIP:
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min
j∈N,t∈[0,H[

n
∑

j=1

H
∑

t=0

xjtfj(t+ pj) (7)

∀j ∈ N, ∀t < rj , xjt = 0 (8)

∀t ∈ [0, H[,
n
∑

j=1

t
∑

t′=t−pj+1

xjt′ ≤ m (9)

∀j ∈ N,
H
∑

t=0

xjt = 1 (10)

∀t ∈ [0, H[, ∀j ∈ [1, n], xjt ∈ {0, 1} (11)

Constraint (8) states that a job can not start before its release date. At most m different jobs can

be executed during a unit of time by Constraint (9). Each job has to begin his execution once and

only once (Constraint (10)).

5.1 Relaxing Integrity Constraint

To compute a lower bound, we first relax the integrity constraint, i.e. Constraint (11) is replaced by:

∀t ∈ [0, H[, ∀j ∈ N, xjt ∈ [0, 1]

From now on we shall refer to this lower bound as lbt−lp (Continuous relaxation of lbt). Note that

in the particular case where the optimal values of the formulation are integer, the value of lbt−lp is

optimal.

5.2 Lagrangian Relaxation on Resource Constraint

We can also use the Lagrangian relaxation on the resource constraint to get a lower bound, from this

formulation. Constraint (9) of non temporal overlapping is relaxed to be put in the objective function.

The Lagrangian multipliers are λt, t ∈ [1, H]. The formulation becomes:

L(λ) = min
xjt

n
∑

j=1

H
∑

t=0

xjtfj(t+ pj) +
H
∑

t=0

λt





n
∑

j=1

t
∑

t′=t−pj+1

xjt′ −m





∀j ∈ N, ∀t < rj , xjt = 0

∀j ∈ N,
H
∑

t=0

xjt = 1

∀t ∈ [0, H[, ∀j ∈ N, xjt ∈ {0, 1}

We now introduce the function δ and variables αjt:

14



δ(t1, t2, j) =







λt2 if t1 ∈ [t2 − pj + 1, t2[

0 otherwise

αjt = wj ∗ (fj(t+ pj) +
H
∑

t′=0

δ(t, t′, j)

Then, the cost of a solution becomes:

L(x, λ) =
H
∑

t=0

αjtxjt −m
H
∑

t=0

λt

We can remark that m
∑H

t=0 λt is not function of xjt, then it is a constant term in the objective

function. So removing m
∑H

t=0 λt from the objective function does not change the optimal solution. In

addition, the variables xjt are only mutually independent according to the parameter j. Then, finding

the optimal solution is equivalent to minimizing separately
∑H

t=0 αjtxjt for j ∈ N . Furthermore, only

one xjt for a fixed value of j can be non null because of the constraint ∀j ∈ N,
∑H

t=0 xjt = 1. Last,

minimizing
∑H

t=0 αjtxjt is made by choosing t = t∗ such that αjt∗ = mint′∈[rj ,H] αjt′ .

Then, we use a standard sub-gradient (see [10]) to get iterative values of this lower bound. From

now on we shall refer to this lower bound as lbt−lag−mach (Lagrangian resource relaxation of lbt).

5.3 Lagrangian Relaxation on the Number of Occurrences Constraint

In this section, we follow the idea of Rivreau and we relax the constraint (10) stating that a job has to

be executed exactly once (see [9]). The relaxation is dualized to obtain another Lagrangian relaxation.

The formulation becomes:

min
j∈N,t∈[0,H[

n
∑

j=1

H
∑

t=0

xjtfj(t+ pj) +
n
∑

j=1

λj(1−
H
∑

t=0

xjt) (12)

∀j ∈ N, ∀t < rj , xjt = 0 (13)

∀t ∈ [0, H[,
n
∑

j=1

t
∑

t′=t−pj+1

xjt′ ≤ m (14)

∀t ∈ [0, H[, ∀j ∈ N, xjt ∈ {0, 1} (15)

In this problem, we have to find the optimal schedule on m parallel machines, where jobs are allowed

to be “unprocessed” or to be processed several times. The cost of any feasible solution is composed

by two parts: the sum of the costs of all jobs
∑n

j=1

∑H
t=0 xjt(fj(t + pj) − λj), and a constant value

∑n
j=1 λj . As scheduling no jobs is a feasible solution, we can say that the minimal sum of all costs is

negative. In addition, we can remark that all the machines must be equivalent according to their costs

in the optimal solution. Otherwise, it would be possible to build a better solution by duplicating m
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times the better machine in this schedule. It means that we only have to find an optimal schedule on

a single machine. We denote by Λ(t) the minimal cost between time t and H on a single machine. We

have Λ(H) = 0. Then, we use the following dynamic relation:

Λ(t) = min(Λ(t+ 1), min
j∈[1,n] with rj≥t

(fj(t+ pj)− λj + Λ(t+ pj)))

The optimal cost is λ∗ = mΛ(0) +
∑n

j=1 λj . From now, on we shall refer to this lower bound as

lbt−lag−occ (Lagrangian relaxation of the number of occurrences of lbt).

Proposition 5.1. Lower bounds lbt−lp, lbt−lag−mach and lbt−lag−occ are equal.

Proof. In both Lagrangian relaxations, the integrity contraint is useless to obtain optimal solutions.

Moreover, the Lagrangian relaxation of a constraint of a linear program does not change the value of

the optimum. Hence these three lower bounds are equal.

5.3.1 Baning Local Repetitions

To improve this lower bound, we can add a constraint stating that a job can not be processed twice

consecutively. This notion is a particular case of the P (λ)− path defined by Rivreau [9]. To find the

optimal solution without local repetition, we have to use the following definitions:

• Λ1(t): The minimal cost of a schedule between time t and time H without local repetition.

• J(t): The job which is executed in first position in the schedule that realizes the value of Λ1(t).

• Λ2(t): The minimal cost of a schedule between time t and time H without repetition, and not

beginning with job J(t).

Then, we can compute the optimal schedule without repetition according to the following scheme

[9]:

First, we need to introduce the following notations:

Λb(j, t) =







Λ1(t) if j 6= J(t)

Λ2(t) otherwise

Jb(j, t) = argmin
j∈[1,n]
rj≥t

(fj(t+ pj)− λj + Λb(j, t+ pj))

Hence, it follows:

Λ1(t) = min















Λ1(t+ 1)

min
j∈[1,n]
rj≥t

(fj(t+ pj)− λj + Λb(j, t+ pj))
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Now, we have:

J(t) =







J(t+ 1) if Λ1(t) = Λ1(t+ 1)

Jb(t) otherwise

Finally, we compute Λ2(t) as follows:

Λ2(t) = min



















Λb(J(t), t+ 1)

min
j∈[1,n]
rj≥t

j 6=J(t)

fj(t+ pj)− λj + Λb(j, t+ pj)

Using this recursive scheme, value Λ1(0), which is a lower bound, is computed. From now on we

shall refer to this lower bound as lbt−lag−ltd−occ (Lagrangian relaxation of the number of occurrences of

lbt without local repetitions).

6 Experimental Results

In this section, we provide experimental results to compare efficiency of all lower bounds. There is

a part for each criterion. All the computations have been done on a Pentium-M 1,6GHz running

MS-Windows XP. We have used instances generated from schemes of the literature.

For the total completion time and the total weighted completion time, schemes of Hariri and Potts

[11] and Belouadah, Posner and Potts [5] have been adapted. This scheme depends on one parameter

R. When n, m and R are fixed, five instances are generated: values pi, ri and wi follow uniform

distributions. Values pi are distributed in [1, 100], wi in [1, 10] and ri in [0, 50.5nR/m]. Parameter R

takes ten values {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0}. Finally, there are 50 instance for each

couple (n,m).

For the total tardiness and the total weighted tardiness, we have adapted the schemes from Chu

[7] and Akturk and Ozdemir [1] for the single machine problem. For each n, m, we generate m sets of
⌊

n
m

⌋

jobs and one set of n − m ∗
⌊

n
m

⌋

jobs are done to build an instance. This method is controlled

by two parameters α and β. Values ri, pi, di and wi (for the weighted case) are generated from

uniform distributions: pi are uniformly distributed in [1, 100], wi in [1, 10]. Then, ri are distributed in

[0, α
∑

pi] and di − ri + pi in [0, β
∑

pi]. Parameter α takes values {0, 0.5, 1, 1.5} and β takes values

in {0.05, 0.25, 0.5}. When n, m, α and β are fixed, 10 instances are created. Finally, there are 120

instances for each couple (n,m).

Tests have been made on instances of 20, 50 and 100 jobs. For each size, there are five sets

of instances depending on the number of machines: 2,3,4,5 or 10. For each criterion and for each

instance, we have computed all lower bounds. Then, the distance between each lower bound and the

best one is computed. In each table, we report the average of these distances “dist” (in percents)

grouped by number of jobs. Average computational times “cpu” (in seconds) are also provided.
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Some preliminary tests have been made to guess “good” values of the parameters for the flow based

lower bounds. When the number of intervals is allowed to be pseudo-polynomial, our tests lead us to

choose a = 15 (see Section 3.1).

6.1 Pm|ri|
∑

Ci

All results for the total completion time are presented in Table 8. One can see that lower bounds based

on a time indexed formulation provides the best results. However, the cpu time needed is quite large.

Improved flow based lower bounds are also efficient and faster than lbt−lag−mach. Among minimal

completion times based lower bounds, we can observe the dominance (theoretically proved) of lower

bound lb[ ]mip. However, lower bound lb[ ]combo seems to be, among all lower bounds, the best trade-off

between quality and speed.

n=20 n=50 n=100

lower bound dist cpu dist cpu dist cpu

lbno−release 37,4 0,0 38,7 0,0 39,4 0,0

lbno−release−subsets 15,1 0,0 18,5 0,0 19,5 0,0

lbflow 14,3 0,0 11,7 0,1 10,2 0,8

lbflow′ 3,6 0,0 1,8 0,4 0,3 5,1

lbflow′′(15) 3,7 0,0 1,9 0,5 0,4 5,4

lb[ ]r+p 10,4 0,0 13,4 0,0 14,1 0,0

lb[ ]spt 46,1 0,0 44,2 0,0 42,6 0,0

lb[ ]split 18,0 0,0 9,1 0,0 4,3 0,0

lb[ ]mip 4,3 0,1 2,9 0,3 1,2 1,8

lb[ ]lp 5,0 0,1 4,2 0,3 3,1 1,8

lb[ ]resort 5,3 0,0 5,4 0,0 5,1 0,0

lb[ ]combo 4,8 0,0 3,7 0,0 1,9 0,0

lbt−lp 0,0 2,8 6,0 73,7 - -

lbt−lag−mach 0,1 50,2 0,0 775,3 - -

lbt−lag−occ 0,1 2,7 0,0 41,3 - -

lbt−lag−ltd−occ 0,0 5,4 0,0 82,9 - -

Table 8: Results for Total Completion Time

6.2 Pm|ri|
∑

wiCi

Results for total weighted completion time are shown on Table 9. Lower bounds based on a time

indexed formulation provide the best results. However, the cpu time needed is very important. Minimal
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completion times based lower bounds are far from the best lower bound. Last, we can say that all flow

based lower bounds provide very good results during a quite reasonable amount of time.

n=20 n=50 n=100

lower bound dist cpu dist cpu dist cpu

lbflow 12,5 0,00 9,7 0,08 8,0 0,95

lbflow′ 3,4 0,02 1,8 0,50 0,3 6,61

lbflow′′(15) 3,6 0,02 1,9 0,51 0,4 6,98

lb[ ]r+p 28,4 0,00 32,9 0,00 35,1 0,00

lb[ ]spt 62,0 0,00 64,7 0,00 64,1 0,00

lb[ ]split 38,6 0,00 33,4 0,00 30,4 0,00

lb[ ]mip 25,1 0,05 26,9 0,31 26,9 1,98

lb[ ]lp 25,7 0,06 28,4 0,33 29,1 1,80

lb[ ]resort 26,1 0,00 29,4 0,00 31,0 0,00

lb[ ]combo 25,6 0,00 27,6 0,00 27,7 0,00

lbt−lp 0,0 2,40 0,0 49,63 - -

lbt−lag−mach 0,0 51,29 0,0 808,47 - -

lbt−lag−occ 0,0 2,83 0,0 43,10 - -

lbt−lag−ltd−occ 0,0 5,62 0,0 85,55 - -

Table 9: Results for Total Weighted Completion Time

6.3 Pm|ri|
∑

Ti

Results for the total tardiness problem are provided on Table 10. One can see that lower bounds based

on time indexed formulation are the best ones, but need an important amount of cpu time. Once more,

flow based lower bounds seem to be the best trade-off between quality and speed.

6.4 Pm|ri|
∑

wiTi

Results for the total weighted tardiness are presented on Table 11. Behaviors of lower bounds are

closed to those obtained for the total tardiness problem. In particular, time indexed formulation based

lower bound provide the best results, with a larger gap than others lower bounds. The cpu time is very

important. Minimal completion times based lower bounds do not provide interesting results. Finally,

flow based lower bounds seem to be interesting when time indexed formulation based lower bounds

can not be used.
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n=20 n=50 n=100

lower bound dist cpu dist cpu dist cpu

lbno−release 51,3 0,0 48,2 0,0 40,0 0,0

lbno−release−subsets 50,6 0,0 47,5 0,0 39,2 0,0

lbflow 58,8 0,0 50,5 0,2 27,7 1,6

lbflow′ 48,1 0,0 32,7 0,5 3,5 6,1

lbflow′′(15) 48,5 0,0 33,3 0,5 4,6 5,8

lb[ ]r+p 68,5 0,0 69,3 0,0 64,5 0,0

lb[ ]spt 51,5 0,0 42,4 0,0 29,7 0,0

lb[ ]split 49,7 0,0 39,3 0,0 25,4 0,0

lb[ ]mip 47,2 0,1 36,8 0,5 20,8 3,7

lb[ ]lp 47,8 0,1 39,2 0,3 26,7 2,0

lb[ ]resort 49,6 0,0 41,2 0,0 30,2 0,0

lb[ ]combo 48,7 0,0 38,7 0,0 24,9 0,0

lbt−lp 1,6 1,8 0,7 44,2 - -

lbt−lag−mach 4,1 22,0 1,8 326,6 - -

lbt−lag−occ 6,2 1,0 5,1 14,5 - -

lbt−lag−ltd−occ 3,3 1,7 2,5 25,1 - -

Table 10: Results for Total Tardiness
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n=20 n=50 n=100

lower bound dist cpu dist cpu dist cpu

lbflow 56,1 0,0 48,2 0,2 24,2 1,4

lbflow′ 45,9 0,0 32,4 0,5 2,1 6,9

lbflow′′(15) 46,5 0,0 33,2 0,5 3,3 6,9

lb[ ]r+p 66,2 0,0 69,0 0,0 64,8 0,0

lb[ ]spt 64,5 0,0 65,2 0,0 58,9 0,0

lb[ ]split 64,7 0,0 65,2 0,0 58,9 0,0

lb[ ]mip 64,5 0,1 65,1 0,5 58,8 3,6

lb[ ]lp 64,5 0,1 65,1 0,3 58,8 1,8

lb[ ]resort 64,5 0,0 65,1 0,0 58,8 0,0

lb[ ]combo 64,5 0,0 65,1 0,0 58,8 0,0

lbt−lp 0,4 2,5 0,2 50,9 - -

lbt−lag−mach 1,0 22,5 0,6 344,7 - -

lbt−lag−occ 1,3 1,0 1,2 14,7 - -

lbt−lag−ltd−occ 0,4 1,7 0,8 25,9 - -

Table 11: Results for Total Weighted Tardiness
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7 Conclusion

In this paper, we have presented a large overview of lower bounds for the Pm|ri|
∑

Ci, Pm|ri|
∑

wiCi,

Pm|ri|
∑

Ti and Pm|ri|
∑

wiTi scheduling problems. In particular, we have proposed several lower

bounds based on different principles. Some of these lower bounds give very good results for the four

studied problems. Experimental results are given to compare all lower bounds. Finally, we have tried

to analyze the behavior of the lower bounds depending on the criterion involved.

Time indexed formulation based lower bounds are very often the best ones. We can also remark

that minimal completion times based lower bounds are efficient for the total completion time. For

other criteria, it seems to be a bit less efficient. For instance in the weighted case, parameters of the

problem (typically the weights) are reassigned in such a way that the obtained value is minimal. This

comes from the fact that we want to ensure that we obtain a lower bound.

Flow based lower bounds provide better results for total (weighted) completion time than for total

(weighted) tardiness. This comes from the fact that for total weighted completion time, the loss

associated to the relaxation is partially balanced by some constant value (see Proposition 3.3).

Finally, note that release dates relaxation lower bounds seem to be often dominated.
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A Notations

• lbno−release as Release dates are relaxed to the smallest one.

• lbno−release−subsets as Decomposition of the problem into a fixed number of problems without release

dates.

• lbflow as Reduction to a flow Problem.

• lb[ ] as Minimal completion times based lower bounds.

– lb[ ]r+p as Minimal completion times based on ri + pi.

– lb[ ]spt as Minimal completion times based on McNaughton’s rule.

– lb[ ]split as Minimal completion times based on job splitting.

– lb[ ]mip as Minimal completion times based on a MIP formulation relying on Horn’s Theorem

.

– lb[ ]lp as Continuous relaxation of lb[ ]mip.
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– lb[ ]resort as A relaxation of lb[ ]mip based on “resorting costs”.

– lb[ ]combo as Combination of lb[ ]resort and lb[ ]split.

• lbt as Time indexed formulation.

– lbt−lp as Continuous relaxation of lbt.

– lbt−lag−mach as Lagrangian resource relaxation of lbt.

– lbt−lag−occ as Lagrangian relaxation of the number of occurrences of lbt.

– lbt−lag−ltd−occ as Lagrangian relaxation of the number of occurrences of lbt without local

repetitions.
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