{'DES PONTS ET CHAUSSEES

Wellposedness and Convergent scheme for a non-local
system modelling dislocations densities dynamics

AuMAD EL HAJJ!, Nicoras FORCADEL

CERMICS, Ecole Nationale des Ponts et Chaussées
Multiscale Modeling and Applications, August 7 to 12, 2006, Cargese (Corsica), France.

Introduction

A dislocation is a crystal defect which corresponds to a discontinuity in the crystalline structure organisation. This
concept has been introduced by Polanyi, Taylor and Orowan in 1934 as the main explanation at the microscopic scale
of plastic deformation. A dislocation creates around it a perturbation that can be seen as an elastic field. Under an
exterior strain, a dislocation moves according to its Burgers vector which characterises the intensity and the direction
of the defect displacement (see Hirth and Lothe |3] for an introduction to dislocations).

Presentation of the 1-D Groma-Balogh model

Here, we are interested in the dynamics of dislocation densities.

(a) We consider dislocation densities that are 1-periodic in x1 and 9.
(b) We consider edge dislocations that move in the direction of the Burgers vectors £b = (1, 0).
(¢) The dislocations densities only depend on the variable © = 1 + 9.

Assume (a)-(b)-(c), the 2-D model of [2] reduces to the system of coupled 1-D non-local transport equations (see [1])

y

1
(P4t = — <p+ — p— + L(t) +/O (p+(2,t) — p—(2,1)) dl‘) Dpy on Rx (0,T)

1
(p—)t = <p+ — p—+ L(t) +/O (p+(z,t) — p—(,1)) dl‘) Dp— on R x (0,7

\

e Where py, p_ are the unknown scalars such that (p+ — p—) represents the plastic deformation.

e Their space derivatives Dp+ = % > () are the dislocations densities.
e The function L(t) represents the exterior shear stress field.

The initial conditions for the system (1) are defined as follows:

pe(w,0) = pli(z) = PL(x) + Loz on R (2)

e Where Pi are 1-periodic and Lipschitz continuous.

e The constant L is a given constant which is the total density of type 4=, 7.e. we suppose that initially, we have the
same total density of type 4+ and —.

Error estimate of Crandall-Lions type

Theorem 0.2 (

the CFL condition (At < 4(||P£—P0||LoO(R)+1)A$>

Then there exists a constant K > 0 depending only on ||P) — P9|]L00(R>, MaXpe(y ) HD,O%HLOO(R) and

) Assume that Az + At < 1, L € WH®(RY) and with

ILllpy1oo(r+) such that the error estimate between the solution p of the continuous system (1)-(2) and the
discrete solution v of the finite difference scheme (7)-(3) is given by

DNO|+—

provided K ((T +VT)(Ax + At)

)gl.

Theoretical Results

Theorem 0.1 ( Suppose that ,09_L € Lip(R) satisfying
(2) for some Ly € R, and L € WhH> (RT). Then, for all T > 0, the system (1)-(2)

Moreover, this solution is locally Lipschitz continuous in space and time.

The scheme

We want to approximate the solution of (1)-(2). Given a mesh size Az, At, we define

—
—
—

{’iAZC, 1 € Z} =7 == X {0, e (At)NT}

e The discrete running point is (xz;, t,,) with x; = o(Ax), t,, = n(At).
e The approximation of the solution py at the node (z;,ty) is written indifferently as vy (z;,tn) = v} ..

Now, we will introduce the numerical monotone scheme:

( .
Et <D+UZ7Z-7 D_UZJ-) if Cﬁ[v](aji, tn) >0
UZ,_Z'H =vp; + AtCkA[U] (x4, tn) 4 Vk € {+,—} (3)
E~ (D+UZZ-, D_UZZ-) if not
\ ) )
where
CR)(wi tn) = —k (011 — 07+ a®[e] (t)
and the non-local term a®[v](t,,) is given by
a>[o](tn) = Lltn) + Y Az (04(@j, tn) = v (27, tn)) (4)
1=0

where N, is the integer part of 1/Ax. E* are the approximation of the Euclidean norm proposed by Osher and
Sethian [4]:

1

ET(P,Q) = (max(R 0)2 + min(Q, 0)2)2 | (5)

1

E~(PQ) = (min(P, 0)2 + max(@)())z)?

and DJ“UZi, D~ vy - are the discrete gradients for all n € {0,..., Ny}, i € Z and k € {+, —}:

D+UZ,@ : UZ,HL; UZ,@) ©
D_UZ,Z B ”Z,@‘ —Af@_l
The intial conditions for the scheme are defined as follows:
of = (o ;00 ) = (o, ), (7)

where v\ (z;) is an approximation of pY (z;).

Numerical results

1-Nlumerical error estimate

Here, we show a numerical test in order to confirm our error estimate for local system.
e Let us fix L(t) = 0 (even if it is not physically relevant).

e Let us choose the following initial conditions:
P (1) = —|z —1/2| +1/2, and p" (z) = —[22 — 1| + 1 on [0, 1] (and extend it by periodicity on R).
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This figure shows the behaviour of the L°“-error versus the discretization parameter Ax in the log-log coordinates. The
regression slope is close to 0.7 and the ideal regression is % Hence, the behaviour of this errors confirms coherant with
our result.

2-Dislocations densities dynamics

[n this paragraph, we are interested by the evolution of dislocations densities for the 1-D Groma-Balogh model (1)-(2)
under the uniformly applied shear stress L(t) = 3t.

In this simulation, we choose an example of initially concentrated dislocation densities, 2.e. where dislocation densities
are initially periodic and equal to zero on some sub-intervals of [0, 1].

e This initial condition means that there exist some regions without dislocations and others with concentrated dislo-
cations.
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e Intuitively, dislocations are intended to be uniformly distributed in the whole crystal as shown in the (figure below)
where finally a uniform distribution in all the crystal is observed, i.e. the density of dislocations becomes a constant.
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We remark that when L(t) is non-constant, our system behaves like a diffusion equation. But evidently when L(t) = 0
with the same initial condition, the system does not evolve.

)
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