Emmanuel Perrey-Debain
Professeur des Universités
Roberval laboratory
University of technology of Compiègne
( +33 (0) 3 44 23 46 41
* emmanuel.perrey-debain@utc.fr
Head of
the Acoustics and Vibration team at Roberval laboratory (since 2016)
Member of
the GAHA group of the Société Française
d‛Acoustique (since 2019)
I graduated with BSc in Mech. Eng. from Ecole Nationale Supérieure de Mécanique et Aérotechnique in 1993. Since
graduating in 1998 with a PhD in Computational Aeroacoustics, I devoted my
research effort to the broad area of wave propagation modelling and I had the
opportunity to work as a Research Fellow in Eindhoven, Durham and Manchester.
My current research interests lie in the field of computational acoustics,
vibration & aeroacoustics with partnership within the industry.
Employment history
University of technology of Compiègne,
Jan. 2006 - present
University of Manchester, School of Mathematics, U.K.,
Jan. 2004 - Dec. 2005
University of Durham, School of Engineering, U.K.,
Sept. 2000 - Dec. 2003
Eindhoven University of Technology, The
Netherlands, Sept. 1999 - Aug. 2000
Centre
d‛Etudes Aérodynamiques et Thermiques, France, Feb.
1999 - June 1999
________________________________
Teaching at UTC
Point mechanics (PS21)
Electromagnetism and Waves
(PS23)
Discrete vibrational systems
(MQ03)
Physical acoustics (PS05)
Introduction to quantum
mechanics (PS66)
Computational vibro-acoustics (PS13)
BEM in Acoustics (http://vibroacoustique.fr)
________________________________
Research [GS]
Journal papers
Duct Acoustics
This covers sound generation,
propagation with flow and liner, self-sustained oscillations and flow induced
vibrations in ducts. Applications include HVAC, exhaust systems and turbofan
inlet.
1.
S. de Reboul, E. Perrey-Debain, J.-M. Ville, N. Zerbib,
S. Moreau, F. Hugues. Experimental and numerical observation of flow-acoustics feedback phenomena
due to two diaphragms in tandem inserted in a rectangular duct. Acta Acustica (in press), 2024.
2.
C. Calmettes, E. Perrey-Debain, J. Caillet, E. Lefrançois. A multi-port scattering matrix formalism for the acoustic prediction in
duct networks, Acta Acustica, 7, 2023.
3.
L. Quaroni, I. Ramadan, S. Rampnoux, S. Malavasi, E. Perrey-Debain. Experimental investigation of multi-modal noise generation by ducted low
Mach number flows through orifice plates. Journal
of Acoustical Society of America,
152, 2982-2999, 2022.
4.
A. David, F. Hugues, N. Dauchez,
E. Perrey-Debain. Vibrational response of a
rectangular duct of finite length excited by a turbulent internal flow. Journal
of Sound and Vibration, 422, 146-160, 2018.
5.
N. Papaxanthos, E. Perrey-Debain,
S. Bennouna, B. Ouédraogo,
S. Moreau, J.-M. Ville. Pressure-based integral formulations of Lighthill-Curle‛s analogy for internal aeroacoustics
at low Mach numbers. Journal of Sound and Vibration, 393, 176-186, 2017.
6.
C. Chan, E. Perrey-Debain, J.-M. Ville, B.
Poirier. Numerical determination of transmission losses of a turbofan inlet
duct lined with porous materials. Applied Acoustics, 117, 86-93, 2017.
7.
B. Ouédraogo, R. Maréchal, J.-M. Ville, E. Perrey-Debain. Broadband noise reduction by circular multi-cavity mufflers operating in
multimodal propagation conditions. Applied Acoustics, 107, 19-26, 2016.
8.
E. Perrey-Debain, R. Maréchal,
J.-M.Ville. A special boundary integral method for
the numerical simulation of sound propagation in flow ducts lined with
multi-cavity resonators. Journal of Computational
Acoustics, 2016.
9.
R. Binois, E. Perrey-Debain, N. Dauchez, B. Nennig, J.-M. Ville, G. Beillard.
On the efficiency of
parallel-baffle type silencers in rectangular ducts: prediction and
measurement. Acustica united with Acta Acustica, 2015.
10.
E. Perrey-Debain, R. Maréchal,
J.-M.Ville. Side-branch resonators modelling with
Green‛s function methods. Journal of Sound and Vibration, 333, 4458-4472, 2014.
11. R. Maréchal, E. Perrey-Debain, J.-M.Ville, B. Nennig. Fast computation of the scattering matrix of lined
ducts containing passive components. Acustica united with Acta Acustica, 97, 966-973, 2011.
12. B. Nennig, E. Perrey-Debain, M. Ben Tahar. A mode
matching method for modelling dissipative silencers lined with porous elastic
materials and containing mean flow. Journal
of Acoustical Society of America, 128(6), 3308-3320, 2010.
Computational methods in
acoustics and vibration
This includes enriched BEM/FEM
algorithms for short wave propagation, meshless methods, taylored-made
algorithms for thin structures and flow acoustics.
1.
A. Berthet, E. Perrey-Debain,
J.-D. Chazot, S. Germès.
Dynamic substructuring for mechanical systems with
frequency-dependent materials using a POD-based model reduction method. Journal
of Sound and Vibration, 569, 117941, 2024.
2.
A. Berthet, E. Perrey-Debain,
J.-D. Chazot, S. Germès.
The balanced proper orthogonal decomposition applied to a class of
frequency-dependent damped structures. Mechanical
Systems and Signal Processing 185, 109746, 2023.
3.
C. Langlois, J.-D. Chazot,
L. Cheng, E. Perrey-Debain. Partition of unity finite
element method for 2D vibro-acoustic modelling. Journal
of Theoretical and Computational
Acoustics, 29, 2021.
4.
T. Zhou, J.-D. Chazot, E. Perrey-Debain, L. Cheng. Modeling of
thin plate flexural vibrations by Partition of Unity Finite Element Method. International
Journal of Applied Mechanics, 13, 2150030, 2021.
5.
C. Langlois, J.-D. Chazot,
E. Perrey-Debain, B. Nennig.
Partition of Unity Finite Element Method applied to exterior problems with
Perfectly Matched Layers. Acta Acustica, 4, 16, 2020.
6.
T. Zhou, J.-D. Chazot, E. Perrey-Debain, L. Cheng. Partition of Unity Finite Element Method
for the modelling of Acoustic Black Hole wedges. Journal
of Sound and Vibration, 115266, 2020.
7.
T. Zhou, J.-D. Chazot, E. Perrey-Debain, L. Cheng. Performance of the Partition of Unity
Finite Element Method for the modeling of Timoshenko
beams. Computers and Structures,
222, 148-154, 2019.
8.
M. Yang, E. Perrey-Debain, B. Nennig,
J.-D. Chazot. Development of 3D PUFEM with linear
tetrahedral elements for the simulation of acoustic waves in enclosed cavities.
Computer Methods in Applied Mechanics and Engineering,
335, 403-418, 2018.
9.
J.-D. Chazot, E. Perrey-Debain,
B. Nennig. The Partition of Unity Finite Element
Method for the numerical solution of waves in air and poroelastic
media. Journal of Acoustical
Society of America, 135, 724-733, 2014.
10. H. Bériot, G. Gabard, E. Perrey-Debain.
Analysis of high-order finite elements for convected
wave propagation. International Journal for Numerical
Methods in Engineering, 96, 665-688, 2013.
11.
J.-D. Chazot, B. Nennig,
E. Perrey-Debain. Harmonic response computation of poroelastic multilayered
structures using ZPST shell elements. Computers and Structures, 121, 99-107, 2013.
12. J.-D. Chazot, B. Nennig, E. Perrey-Debain.
Performances of the Partition of Unity Finite Element Method for the
two-dimensional analysis of interior sound field with absorbing materials. Journal
of Sound and Vibration, 332, 1918-1929, 2013.
13. B. Nennig, M. Ben Tahar, E. Perrey-Debain. A
displacement-pressure finite element formulation for analyzing
the sound transmission in ducted shear flows with finite poroelastic
lining. Journal
of Acoustical Society of America, 130(1), 42-51, 2011.
14. B. Nennig, E. Perrey-Debain, J.-D. Chazot. The method
of fundamental solutions for acoustic wave scattering by a single and a
periodic array of poroelastic scatterers.
Engineering Analysis with Boundary Elements, 35(8), 1019-1028, 2011.
15. H. Bériot, E. Perrey-Debain, M. Ben Tahar, C. Vayssade. A Galerkin wave boundary element formulation for bidimensional
scattering problems. Engineering Analysis with Boundary Elements, 34(2), 130-143, 2010.
16. O. Laghrouche, P. Bettess, E. Perrey-Debain, J.
Trevelyan. Wave interpolation finite elements for Helmholtz problems with jumps
in the wave speed. Computer Methods in Applied Mechanics and Engineering, 194, 367-381, 2005.
17. E. Perrey-Debain, J.
Trevelyan, P. Bettess. On wave boundary elements for
radiation and scattering problems with piecewise constant impedance. IEEE
Trans. on Antennas and
Propagation, 53(2),
876-879, 2005.
18.
E. Perrey-Debain, J. Trevelyan, P. Bettess. Wave boundary elements: a theoretical overview
presenting some applications in scatterings of short waves. Eng. Analysis
with Boundary Elements, 28,
131-141, 2004.
19. E. Perrey-Debain, O. Laghrouche, P. Bettess, J.
Trevelyan. Plane wave basis finite elements and boundary elements for three dimensional wave scattering. Philosophical
Transactions of the Royal Society of London A, 362, 561-577, 2004.
20.
P. Bettess, O. Laghrouche,
E. Perrey-Debain. Introduction to a Theme: Short-wave
scattering. Philosophical Transactions of the Royal Society of London A,
362, 417-419, 2004.
21. E. Perrey-Debain, J.
Trevelyan, P. Bettess. Use of wave boundary elements
for acoustic computations. Journal of Computational
Acoustics, 11(2), 305-321,
2003.
22. O. Laghrouche, P. Bettess, E. Perrey-Debain, J.
Trevelyan. Plane wave basis for wave scattering in three dimensions. Communication
in Numerical Methods in Engineering, 19, 715-723, 2003.
23. E. Perrey-Debain, J.
Trevelyan, P. Bettess. P-wave and S-wave
decomposition in boundary integral equation for plane elastodynamic
problems. Comm.
in Numerical Methods in
Engineering, 19(2),
945-958, 2003.
24. E. Perrey-Debain, J.
Trevelyan, P. Bettess. Plane wave interpolation in
direct collocation boundary element method for radiation and wave scattering : numerical aspects and applications. Journal
of Sound and Vibration, 261(5), 839-858, 2003.
25. E. Perrey-Debain, J.
Trevelyan, P. Bettess. New special wave boundary
elements for short wave problems. Communication in Numerical Methods in Engineering, 18(4), 259-268, 2002.
26.
E. Perrey-Debain, H.G. ter
Morsche. B-Spline approximation and Fast Wavelet
Transform for an efficient evaluation of the particular solution for the
Poisson‛s equation. Engineering Analysis with Boundary Elements, 26(1), 1-13, 2002.
27. E. Perrey-Debain, Y.
Gervais, M. Guilbaud. Extension de la DRBEM
à la propagation guidée en écoulement cisaillé. C. R. Acad. Sci. Paris, t.328, Série IIb,
429-436, 2000.
28. E. Perrey-Debain, Y.
Gervais, M. Guilbaud. Development and application of
the Dual Reciprocity Boundary Element Method for acoustic propagation in
inhomogeneous axisymmetric domains. Acustica united with Acta Acustica, 86, 83-92, 2000.
29. E. Perrey-Debain. Analysis
of convergence and accuracy of DRBEM for axisymmetric Helmholtz type equations.
Engineering Analysis with Boundary Elements, 23(8), 703-712, 1999.
30. E. Perrey-Debain, Y.
Gervais, M. Guilbaud. Calcul de la
propagation acoustique en milieux non homogène infinis par la DRBEM. C. R.
Acad. Sci. Paris, t.326, Série IIb, 649-656, 1998.
Exceptional points in acoustic waveguide and dynamical
systems
1.
N Even, B Nennig, G Lefebvre, E Perrey-Debain. Experimental observation of exceptional points in
coupled pendulums. Journal of Sound and Vibration,
118239, 2024.
2.
J.B. Lawrie, B. Nennig, E. Perrey-Debain. Analytic mode-matching for
accurate handling of exceptional points in a lined acoustic waveguide. Philosophical
Transactions of the Royal Society of London A, 478 (2268), 2022.
3.
E. Perrey-Debain, B. Nennig,
J.B. Lawrie. Mode coalescence and the Green‛s function in a
two-dimensional waveguide with arbitrary admittance boundary conditions. Journal
of Sound and Vibration, 116510, 2021.
4.
B. Nennig, E. Perrey-Debain.
A high order continuation method to locate exceptional points and to compute Puiseux series with applications to acoustic waveguides. Journal
of Computational Physics,
109425, 2020.
Rotating obstacles
1.
S. de Reboul, E. Perrey-Debain, N. Zerbib, S. Moreau. A 3D frequency domain finite element
formulation for solving the wave equation in the presence of rotating
obstacles. Journal of Sound and Vibration, 118024, 2023.
2.
S. de Reboul, E. Perrey-Debain, N. Zerbib, S. Moreau. A 2D frequency domain finite element
formulation for solving the wave equation in the presence of rotating
obstacles. Wave Motion, 121, 103171,
2023.
Porous materials
1.
L. Ke, B. Nennig, E.
Perrey-Debain, N. Dauchez. Poroelastic lamellar metamaterial for sound attenuation in
a rectangular duct. Applied Acoustics, 176, 107862, 2021.
2.
B. Nennig, R. Binois, N. Dauchez, E. Perrey-Debain, F. Foucart. A transverse isotropic equivalent fluid model
combining both limp and rigid frame behaviors for
fibrous materials. Journal of Acoustical
Society of America, 143(4), 2089-2098, 2018.
3.
B. Nennig, R. Binois,
E. Perrey-Debain, N. Dauchez.
A homogenization method used to predict the performance of silencers containing
parallel splitters. Journal of Acoustical
Society of America, 137, 3221-3231, 2015.
Propagation of light in
optical multimode fibres
1.
E. Perrey-Debain, I.D. Abrahams. TE
mode mixing dynamics in curved multimode optical waveguides. Communication in Computational
Physics, 11(2),
525-540, 2012.
2.
E. Perrey-Debain, I.D. Abrahams, J.D. Love. A
continuous model for mode mixing in graded-index multimode fibres with random
imperfections. Proceedings of the Royal Society of London A, 464, 987-1007, 2008.
3.
E. Perrey-Debain, I.D. Abrahams. A diffusion
analysis approach to TE mode propagation in randomly perturbed optical
waveguides. SIAM Journal of Applied Mathematics, 68(2), 523-543, 2007.
On orthogonal polynomials and
plane waves
1.
E. Perrey-Debain, I.D. Abrahams. An asymptotic
expansion formula for integrals involving high-order orthogonal polynomials. SIAM
J. of Scientific Computing, 31(5), 3884-3904, 2009.
2.
E. Perrey-Debain, I.D. Abrahams. A band
factorization technique for transition matrix element asymptotics. Computer Physics Communications, 175(5),315-322, 2006.
3.
E. Perrey-Debain. Plane wave decomposition in the
unit disc: convergence estimates and computational aspects. J. of
Computational and Applied Mathematics, 193(1), 140-156, 2006.
Conference Proceedings
1.
B. Nennig, E. Perrey-Debain,
M. Ghienne. Localization of higher order exceptional
points from finite element model and their applications to duct acoustics.
INTER-NOISE and NOISE CON Congress and Conference Proceedings 265 (2),
5151-5159.
2.
A. Berthet, E. Perrey-Debain,
J.-D. Chazot, G. Sylvain. Réduction
de Modèle des Structures Viscoélastiques par Balanced
POD. 15ème colloque national en calcul des structures.
3.
A. Berthet, E. Perrey-Debain,
J.-D. Chazot, S. Germès. Réduction
de Modèle et Rayonnement Acoustique des Structures Viscoélastiques. 16ème
Congrès Français d‛Acoustique, CFA 2022.
4.
N. Even, E. Perrey-Debain, B. Nennig,
G. Lefebvre. Interactions modales au voisinage des points
exceptionnels et application pour l‛atténuation acoustique. 16ème Congrès Français d‛Acoustique, CFA
2022.
5.
S. de Reboul, E. Perrey-Debain, N. Zerbib, S. Moreau. Direct Simulation of flow-acoustics
feedback phenomena for ducted diaphragm tandem using OpenFOAM.
16ème Congrès Français d‛Acoustique, CFA 2022.
6.
B. Nennig, E. Perrey-Debain,
M. Ghienne. Localization of high order exceptional
points: applications to acoustic waveguides. 16ème Congrès
Français d‛Acoustique, CFA 2022.
7.
C. Langlois, J.-D. Chazot,
E. Perrey-Debain. Couplage FEM-PUFEM: vers de
meilleures performances de la pufem en présence de
détails géométriques. 16ème Congrès Français d‛Acoustique, CFA 2022.
8.
L.N. Quaroni, I. Ramadan, S.
Rampnoux, S. Malavasi, E. Perrey-Debain. Multi-modal noise generation in low Mach number orifice plates: an
experimental investigation. Materials Research Proceedings 26, 2021.
9.
K. Li, N. Dauchez, B. Nennig,
E. Perrey-Debain. Metamaterial made of poroelastic lamellas for sound attenuation in duct. Forum Acusticum, 2020.
10.
B. Nennig, E. Perrey-Debain,
M. Ghienne. Localization of exceptional points and
modal branch tracking for acoustic waveguides applications. Forum Acusticum, 2020.
11.
C. Calmettes, E. Perrey-Debain, Emmanuel Lefrançois,
J. Caillet. Calculation of a multi-port scattering matrix for the acoustic power flow
using finite element, Forum Acusticum, 2020.
12.
S. de Reboul, E. Perrey-Debain, N. Zerbib, S. Moreau. Hybrid methods for duct aeroacoustics
simulations. Forum Acusticum, 2020.
13.
C. Langlois, J.-D. Chazot,
E. Perrey-Debain, L. Cheng. Partition of Unity
Element Method applied to 2D vibroacoustic coupling.
Forum Acusticum, 2020.
14.
T. Zhou, J.-D. Chazot, E. Perrey-Debain, L. Cheng. Partition of Unity Finite Element Method
for the modeling of structural vibrations. Forum Acusticum, 2020.
15.
F. Hugues, E. Perrey-Debain,
N. Dauchez, N. Papaxanthos.
Determination of the acoustic and hydrodynamic contributions to the vibrational
response of an air conveying rectangular duct. Contribution in Flinovia - Flow Induced Noise and Vibration Issues and
Aspects, 2019.
16.
F. Hugues, E. Perrey-Debain,
N. Dauchez. Numerical prediction of pipe flow noise
and vibration at low Mach number, NOVEM, Ibiza, May 2018.
17.
J.-M. Ville, N. Papaxanthos, E. Perrey-Debain, S. Moreau. Experimental observations of
flow-acoustic feedback phenomena in duct. ICSV24, London, 23-27 July 2017.
18.
F. Hugues, E. Perrey-Debain,
N. Dauchez. Determination of the acoustic and
hydro-dynamic contributions to the vibrational response of an air-conveying
rectangular duct, FLINOVIA, State College, PA, USA, April 2017.
19.
F. Hugues, E. Perrey-Debain,
N. Dauchez. Flow induced vibrations of a rectangular
duct: acoustic and turbulent excitations. ICSV24, London, 23-27 July 2017.
20.
N Papaxanthos, E Perrey-Debain.
Integral formulations for the prediction of low Mach number flow noise with
non-compact solid surfaces. 22nd AIAA/CEAS
Aeroacoustics Conference, 2716, Lyon 2016.
21.
E. Perrey-Debain, R.
Maréchal, J.-M. Ville. A spectral boundary integral method for computing the effect of locally and non-locally reacting liners in flow duct
applications. 22nd AIAA/CEAS Aeroacoustics Conference,
2716, Lyon 2016.
22.
M. Escouflaire, N. Zerbib,
D. Mas, N. Papaxanthos, S. Bennouna,
E. Perrey-Debain, B. Ouedraogo,
S. Moreau, J.-M. Ville. Numerical Aeroacoustics Prediction of a Ducted
Diaphragm Chaining RANS-LES and DES Results to a Parallel Boundary Element
Method. 9th International Styrian Noise, Vibration
& Harshness Congress: The European Automotive Noise Conference, 2016.
23. S. Bennouna, N. Papaxanthos, B. Ouedraogo, S. Moreau, E. Perrey-Debain,
J.-M. Ville, O. Cheriaux, Etude aéroacoustique
d‛un double diaphragme en conduit avec un écoulement à faible nombre de
Mach. Congrès Français d‛Acoustique, 2016, Le Mans.
24. E. Perrey-Debain, M. Yang,
J.-D. Chazot, B. Nennig. Approximation
par ondes planes et son approximation pour la méthode des éléments finis,
Congrès Français d‛Acoustique 2016, Le Mans.
25. N. Papaxanthos, E. Perrey-Debain. On the use of integral formulations for the
prediction of air flow noise in ducts. ICSV
22, Florence, 2015.
26.
R. Maréchal, E. Perrey-Debain,
J.-M. Ville, B. Ouédraogo. Acoustic characterization of a multi-cavity muffler for broadband noise
reduction in flow duct applications, Euronoise 2015,
Maastricht.
27.
M. Yang, E. Perrey-Debain, J.-D. Chazot, B. Nennig. Development of
the partition of unity finite element method for the 3D analysis of interior
sound fields, Euronoise 2015, Maastricht.
28.
N. Papaxanthos, E. Perrey-Debain,
B. Ouedraogo, S. Moreau, J.-M. Ville, F. Foucart, S. Bennouna. Prediction
of air flow noise in ducts due to the presence of
fixed obstacles, Euronoise 2015, Maastricht.
29. R. Binois, N. Dauchez, B. Nennig, E. Perrey-Debain E.,
J.-M. Ville, G. Beillard. Optimisation de la perte
par transmission en basse fréquence des silencieux rectangulaires à baffles
parallèles, CFA 2014, Poitiers.
30. B. Ouedraogo ,
J.-M. Ville, E. Perrey-Debain, F. Foucart,
J.-M. Gherbezza. Mesure de l‛efficacité d‛un
silencieux à cavités multiples, CFA 2014, Poitiers.
31. C.
Chan, E. Perrey-Debain E., J.-M. Ville. Etude d‛un
traitement acoustique basé sur des matériaux poreux pour la réduction du bruit
de soufflante, CFA 2014, Poitiers.
32. B. Nennig, R. Binois, N. Dauchez, E. Perrey-Debain, J.-M.
Ville. Les silencieux à baffles parallèles : Un modèle basé sur la double
porosité, CFA 2014, Poitiers.
33.
B. Nennig, R. Binois, N. Dauchez, E. Perrey-Debain, J-M. Ville. Parallel baffle silencer as an effective media : a description based on double porosity, Acoustics
2013, New-Delhi, India, 2013.
34.
J.-D. Chazot, B. Nennig,
E. Perrey-Debain. Numerical simulation of acoustic
waves in air and porelastic media using the partition
of unity finite element method, ICA 2013, Montréal, Canada, 2013.
35.
R. Binois, G. Beillard, N. Dauchez, E. Perrey-Debain, J-M. Ville, B. Nennig. A
two-dimensional multi-modal modeling of parallel
baffle-type silencers, ICSV 20, Bangkok, Thailand, 2013.
36.
C. Chan, E. Perrey-Debain, J-M. Ville, B.
Poirier. Modelling of an acoustic treatment based on porous materials for
aero-engine noise reduction, ICSV 20, Bangkok, Thailand, 2013.
37.
E. Perrey-Debain, B. Nennig.
Using the MFS for the analysis of the sound absorption by a porous plate
containing a periodic array of inclusions, Acoustics 2012, Nantes.
38.
R. Binois, N. Dauchez, J.-M. Ville, E. Perrey-Debain,
G. Beillard. Modeling of cylindrical baffle mufflers for low frequency
sound propagation, Acoustics 2012, Nantes.
39.
J.-D. Chazot, E. Perrey-Debain,
B. Nennig. Evaluation of the Partition of Unity
Finite Element Method for the analysis of poroelastic
materials, Internoise 2012, New-York, U.S., 2012.
40.
J.-D. Chazot, B. Nennig,
E. Perrey-Debain. Application of the PUFEM for the 2D
analysis of interior sound field with absorbing materials, ICSV 18, Rio de
Janeiro, Brazil, 2011.
41.
R. Marechal, E. Perrey-Debain,
J.-M. Ville. Numerical investigation of the HQ-liner system for inlet fan noise reduction, 15th CEAS-ASC Workshop, Lausanne,
2011.
42. S.
Gonzalez, E. Perrey-Debain, E. Lefrançois,
R. Marechal. Prédictions des bruits d‛obstacles en conduit par l‛analogie
de Lighthill-Curle. CFM 2011, Besançon, 2011.
43.
E. Perrey-Debain, I.D. Abrahams. Beam propagation
in multimode parabolically-graded helical fibres, WAVES 2011, Vancouver, Canada, 2011.
44.
B. Nennig, E. Perrey-Debain,
J.-D. Chazot. On the efficiency of the method of
fundamental solutions for acoustic scattering by a poroelastic
material, BEM / MRM 32, New Forest, 2010.
45.
R. Marechal, E. Perrey-Debain,
J.-M. Ville, B. Nennig. An impedance matrix method
for the multi-frequency acoustical analysis of lined ducts containing passive
components, BEM / MRM 32, New Forest, 2010.
46.
R. Marechal, E. Perrey-Debain,
J.-M. Ville, B. Nennig. A mixed analytical-numerical
model for the S-matrix computation of bidimensional
lined ducts with HQ tubes, CFA 2010, Lyon, 2010.
47. S. Essahbi, E. Perrey-Debain, M. Ben Tahar, L. Hammami, M. Haddar. Méthodes
d‛ondes planes pour la resolution des problèmes
vibroacoustiques en moyennes et hautes fréquences,
CFA 2010, Lyon, 2010.
48.
B. Nennig, E. Perrey-Debain,
M. Ben Tahar. Sound attenuation in duct lined with poroelastic material submitted to grazing flow : a mode matching approach, ICSV 16, Varsovie, Pologne, 2009.
49. M. Watrigant, C. Picard, E.
Perrey-Debain, C. Prax. Formulation
adaptée de l‛analogie acoustique de Lighthill-Curle
en zone source, CFM 2009, Marseille, 2009.
50. R.
Marechal, E. Perrey-Debain, J.-M. Ville. Numerical impedance matrix :
application to the Herschel-Quincke tube concept, EUCASS, Versailles, 2009.
51.
B. Nennig, E. Perrey-Debain,
M. Ben Tahar. Mode matching method for cylindrical
dissipative silencers with poroelastic material,
WAVES 2009, Pau, France, 2009.
52. E. Perrey-Debain, I.D.
Abrahams. TE mode propagation in curved
multimode waveguides, WAVES 2009, Pau, France, 2009.
53.
M. Ben Tahar, B. Nennig,
E. Perrey-Debain. The influence of a perforated plate
covering a poroelastic liner submitted to a grazing
flow, Advanced Materials for Application in Acoustics and Vibration, Le Caire, Egypte, 2009.
54.
B. Nennig, J.-D. Chazot,
E. Perrey-Debain, M. Ben Tahar.
Influence of solid phase elasticity in poroelastic
liners submitted to grazing flows, Acoustics‛08, Paris, 2008.
55.
E. Perrey-Debain, H. Bériot,
M. Ben Tahar, C. Vayssade.
A GWBEM method for high frequency acoustic scattering, Acoustics‛08,
Paris, 2008.
56.
H. Bériot, E. Perrey-Debain,
M. Ben Tahar, C. Vayssade.
On a Galerkin wave boundary
element formulation for scattering by non smooth
obstacles, WAVES 2007, University of Reading, R.-U., 2007.
57.
E. Perrey-Debain, I.D. Abrahams. A diffusion-like
equation for mode mixing in large diameter multimode optical fibres, WAVES
2007, University of Reading, R.-U., 2007.
58.
B. Nennig, M. Ben Tahar,
E. Perrey-Debain. A 3D numerical method for studying poroelastic liners with mean flow, ICSV 14, Cairns,
Australia, 2007.
59.
E. Perrey-Debain, I.D. Abrahams. A di ffusion analysis approach for multimode random optical
waveguides, WAVES 2005, Brown University, U.S., 267-269, 2005.
60.
J. Trevelyan, E. Perrey-Debain, P. Bettess. Experiments in adaptive selection of plane wave
basis directions for wave boundary elements, ACMSM, Perth, Australia, 2004.
61.
E. Perrey-Debain, J. Trevelyan, P. Bettess. Numerical aspects of single wave basis boundary
elements for acoustic scattering, UKBIM, University of Salford, U.K., 77-86,
2003.
62.
E. Perrey-Debain, J. Trevelyan, P. Bettess. Plane wave basis in integral equations for 3D
scattering, WAVES 2003, Finland, 292-297, 2003.
63.
E. Perrey-Debain, J. Trevelyan, P. Bettess. Use of wave boundary element to extend discrete
methods in acoustic computations to higher frequencies, WCCM V, Austria, 14
pages, 2002.
64.
E. Perrey-Debain, J. Trevelyan, P. Bettess. P-wave and S-wave boundary elements for scattering
of elastic waves, ACME, University of Swansea, U.K., 103-106, 2002.
65.
E. Perrey-Debain, J. Trevelyan, P. Bettess. Using wave boundary elements in BEM for high
frequency scattering, UKBIM, University of Brighton, U.K., 119-128, 2001.
66.
E. Perrey-Debain, J. Trevelyan, P. Bettess. Plane wave basis in BEM for short wave problems,
ACME, University of Birmingham, U.K., 151-154, 2001.
67.
E. Perrey-Debain, P. Boineau, Y. Gervais. A numerical study of refraction effects in
combustion-generated noise, ICSV 6, Technical University of Denmark, Lyngby, Denmark, 1999.
68.
E. Perrey-Debain, Y. Gervais, M. Guilbaud. Analysis of the sound refraction by a jet flow by
the DRBEM method, Internoise 97, Budapest, Hungary,
399-402, 1997.
69.
E. Perrey-Debain, M. Guilbaud,
Y. Gervais. A DRBEM model for sound waves propagation in an inhomogeneous
medium of infinite extent, COMPAC 97, Terni, Italy, 77-86, 1997.
70.
E. Perrey-Debain, E. Redon. Comparison between
the DRBEM and the Mapped Wave Envelope Elements Method for sound propagation in
an inhomogeneous medium, CFA, Marseille, France, 707-710, 1997.
71.
E. Perrey-Debain, Y. Gervais, M. Guilbaud. Application of the Dual Reciprocity Boundary
Element Method to acoustic radiation in an inhomogeneous medium, Internoise 96, Liverpool, U.K., 529-532, 1996.
Current and former PhD
Students