
Computer Physics Communications 175 (2006) 315–322

www.elsevier.com/locate/cpc
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Abstract

A new method of evaluating transition matrix elements between wave functions associated with orthogonal polynomials is proposed. The
technique relies on purely algebraic manipulation of the associated recurrence coefficients. The form of the matrix elements is perfectly suited to
very large quantum number calculations by using asymptotic series expansions. In practice, this allows the accurate and fast numerical treatment
of transition matrix elements in the quasi-classical limit. Examples include the matrix elements of xp in the harmonic oscillator basis, and
connections with the Wigner 3j symbols.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we offer a new approach to the numerical eval-
uation of transition matrix elements of the form

(1)
∫

Ψn(Q)f (Q)Ψm(Q)dQ,

where Q denotes the set of coordinates of a quantum system,
and dQ the product of the differentials of these coordinates.
Eigenfunctions Ψn and Ψm belong to the discrete spectrum of
the Hamiltonian operator and f is a given physical quantity.
The numerical treatment of (1) has been the topic of numerous
papers in the field of quantum chemistry and physics and a com-
plete survey would merit a separate paper. In the quasi-classical
limit, the wavelengths of particles are small in comparison with
the characteristic dimensions of the system and the wavefunc-
tions Ψn of the quasi-classical state (i.e. with large quantum
number n � 1) oscillate strongly [1]. This considerably com-
plicates a direct numerical evaluation of the transition matrix
elements, even using modern computers. To alleviate this prob-
lem, several numerical techniques have been devised, see, for
instance, [2–4]. Alternatively, asymptotic approximations have
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been proposed using the WKJB approximation [1] or other
methods [5].

In this work asymptotic series expansions to any order with
respect to the small parameter ε = O(1/n) are established for
several specific cases. These results have potential application
to a wide range of quantum problems. The proposed method
relies on the well known connection between the wave func-
tions and the classical orthogonal polynomials such as those
ascribed to Hermite, Legendre and Laguerre, which can serve
as a Hermitian basis for the space of square-integrable func-
tions [2,6–8]. By construction, these polynomials satisfy either
a two-term or a three-term recurrence relation [9]. This property
allows an analytical treatment of integrals of the type (1) when
the function f is expanded in its Taylor series. Furthermore,
these new integration formulas are perfectly suited for very
large quantum number calculations by using asymptotic series
expansions. In the following, for brevity, we restrict attention
to the class of orthogonal polynomials satisfying a two-term re-
currence relation. The generalization to three-term recurrence
relations will be the subject of future work.

2. Band factorization for two-term recurrence relations

In this section we consider maps of l(Z) (the space of real-
valued sequences) onto itself. In particular, we turn our atten-
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tion to the two-term recurrence operator

(2)T : l(Z) → l(Z),

satisfying the recurrence relation

(3)Ten = bn−1en−1 + anen+1,

where {en, n ∈ Z) is the standard canonical basis of l(Z), i.e.

(4)en = (. . . , δ−1,n, δ0,n, δ1,n, δ2,n, . . .)
T,

in which δ denotes the usual Kronecker symbol and T the vec-
tor transpose. Given a positive integer p, we wish to establish
the exact form for the pth iteration operator (T)p . It is con-
venient for the analysis to write T in the form of the infinite
dimensional bidiagonal matrix

(5)T = A + B =

⎛
⎜⎜⎜⎜⎜⎝

· · ·
a−2 0 b−1

a−1 0 b0
a0 0 b1

a1 0 b2
· · ·

⎞
⎟⎟⎟⎟⎟⎠ ,

where A and B are, respectively, the lower and the upper part
of T, i.e. A contains the an elements and B the bn elements. Here
A is an infinite matrix with only the sub-diagonal entries, which
henceforth is referred to as a 1-band structure matrix. Similarly,
B has a 1-band structure but only with the super-diagonal non-
zero. We now call dn the series of coefficients

(6)dn = anbn, ∀n ∈ Z,

and define the family of shifted diagonal operators Dk as

(7)Dken = dn+ken, ∀(n, k) ∈ Z
2.

Now, assuming for the moment that an �= 0 for all n, then we
can define the pseudo inverse operator A[−1] as

(8)A[−1]en = 1

an−1
en−1.

This can be generalized to any integer power q ∈ Z as follows

(9)A[q] =
⎧⎨
⎩

(A)q, q � 1
I, q = 0
(A[−1])|q|, q � −1

⎫⎬
⎭ ,

where I is the identity. With this definition, the following prop-
erties hold

(10)AA[q] = A[q+1] and A[−1]A[q] = A[q−1].

Because of the 1-band structure of A, it is straightforward to
show that

A[q]en =
q−1∏
l=0

an+len+q and

(11)A[−q]en = 1∏|q|
l=1 an−l

en−q,

for any positive integer q . This means that raising A to the
power q shifts the non-zero diagonal band q places ‘down’ the
matrix. The property (11), and the definition of the operator D
(7) yields

DkA[q]en =
q−1∏
l=0

an+ldn+q+ken+q = A[q]Dk+qen,

(12)∀q � 1.

A similar formula holds for negative powers. To summarize, the
diagonal operators commute with A[q] as follows

(13)DkA[q] = A[q]Dk+q, ∀q ∈ Z.

We can now establish the key result of this paper:

Proposition 1. Given a positive integer p, then (T)p admits the
band factorization

(14)(T)p =
p∑

q=0

A[p−2q]Sp
q ,

where S
p
q is the diagonal operator

(15)S
p
q =

∑
{it }∈Ip

q

q∏
l=1

Dil−l , p � q � 1 and S
p

0 = I,

and the set of indices Ip
q is associated with the nested sum

(16)
∑

{it }∈Ip
q

=
p−q∑
iq=0

iq∑
iq−1=0

· · ·
i3∑

i2=0

i2∑
i1=0

.

Proof. We shall prove (14) by induction. The factorization ob-
viously holds for p = 1 since BA = D0. Therefore,

T = A + B = A + D0A[−1] = A + A[−1]D−1

(17)= AS1
0 + A[−1]S1

1.

Assuming (14) holds for a given p, then

(T)p+1 = (
A + D0A[−1])(T)p

=
p∑

q=0

A[p+1−2q]Sp
q +

p∑
q=0

A[p−1−2q]Dp−1−2qS
p
q

= A[p+1]Sp

0 +
p∑

q=1

A[p+1−2q](S
p
q + Dp+1−2qS

p

q−1

)
(18)+ A[−p−1]D−p−1S

p
p

and by definition,

S
p+1
q =

p+1−q∑
iq=0

iq∑
iq−1=0

· · ·
i2∑

i1=0

q∏
l=1

Dil−l

= S
p
q + Dp+1−2q

p−(q−1)∑
iq−1=0

· · ·
i2∑

i1=0

q−1∏
l=1

Dil−l

(19)= S
p
q + Dp+1−2qS

p

q−1, 1 � q � p.
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Thus, given the fact that S
p+1
0 = S

p

0 = I and S
p+1
p+1 = D−p−1S

p
p ,

we end up with the result

(20)(T)p+1 =
p+1∑
q=0

A[p+1−2q]Sp+1
q ,

which completes the proof. �
We now have (T)p in a very useful closed form, consisting of

a sum of 1-band matrices each occupying the (p −2q)th diago-
nal position, ranging from p to −p in steps of two. In practice,
negative powers in (14) are less convenient to manipulate but a
similar factorization holds by defining the series of 1-band op-
erators B[q]; this gives the alternative form

(21)(T)p =
p∑

q=0

S
p
q B[p−2q],

which from (14) gives the relationship

(22)A[p−2q]Sp
q = S

p
p−qB[2q−p].

Among other things, this identity reveals that the band factor-
ization holds for any series of coefficients and the restriction
made earlier that an �= 0 can be lifted. For the sake of clarity,
we consider separately the odd and even powers. After some
algebra we can derive the final form

(T)2pen =
p−1∑
q=0

en · S
2p
q en

( 2p−2q−1∏
l=0

an+len+2p−2q

(23)+
2p−2q∏

l=1

bn−len−2p+2q

)
+ S

2p
p en,

and

(T)2p+1en =
p∑

q=0

en · S
2p+1
q en

( 2p−2q∏
l=0

an+len+2p+1−2q

(24)+
2p+1−2q∏

l=1

bn−len−2p−1+2q

)
,

where the dot symbol stands for the usual scalar product and we
have explicitly

(25)en · S
p
q en =

∑
{it }∈Ip

q

q∏
l=1

an+il−lbn+il−l , 1 � q � p,

and en · S
p

0 en = 1.
We end this section by noting that the band factorization

technique can easily be extended to the three-term recurrence
operator T′en = bn−1en−1 + en + anen+1. In this case, the di-
agonal is simply the identity. Applying the Leibniz rule yields
the following band factorization

(26)(T′)p = (A + I + B)p =
p∑

r=0

r∑
q=0

Cp
r A[r−2q]Sr

q ,

where Cp
r stands for the usual binomial coefficient. The band

factorization for a general three-term recurrence relation would
be an interesting and useful direction for future work.
3. Application to transition matrix element evaluation

We consider a system of polynomials fn(x), n = 0,1,2 . . . ,
orthogonal on the interval x ∈ I with respect to a weight func-
tion w(x). More specifically we are interested in the class of
orthogonal polynomials satisfying the following recurrence re-
lation:1

(27)ā1nfn+1(x) = ā3nxfn(x) − ā4nfn−1(x).

For instance, Hermite, Legendre, Chebyshev and Gegenbauer
polynomials all fall into this class. These polynomials are or-
thogonal with respect to w(x) as

(28)
∫
I

w(x)fn(x)fm(x)dx = hnδn,m.

It is convenient to introduce the normalized function

(29)ψn(x) =
√

w(x)

hn

fn(x),

so that the previous recurrence relation reads simply

(30)xψn(x) = an−1ψn−1(x) + bnψn+1(x),

in which

(31)an−1 =
√

hn−1

hn

ā4n

ā3n

and bn =
√

hn+1

hn

ā1n

ā3n

.

At this point, it should be remarked that the two series an and bn

are necessarily equivalent since, by using orthogonality proper-
ties, we find that

an−1 =
∫
I

xψn(x)ψn−1(x)dx and

(32)bn =
∫
I

xψn(x)ψn+1(x)dx;

hence an = bn and T is a symmetric matrix in this context. Now,
let us define the vector function �(x) as

(33)�(x) =
∑
m∈N

ψm(x)em,

then the recurrence relation can be written in the matrix form

(34)x�(x) = T�(x) =
∑
m∈N

ψm(x)Tem,

where T is the two-term recurrence operator introduced in the
previous section. Since polynomials are only defined for posi-
tive integers, we must put by convention the decoupling condi-
tion

(35)a−1 = b−1 = 0,

so that coefficients with negative indices an, bn for n < −1 can
be chosen arbitrarily since they are decoupled from their posi-
tive counterpart.

1 We strictly take the same notation as in [9], p. 782, and the bar symbol is
introduced to avoid any confusion with coefficients an from Eq. (3).
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Now, from (34), it is clear that, given any positive integer p,
we have

(36)xp�(x) = (T)p�(x) =
∑
m∈N

ψm(x)(T)pem,

which, by using orthogonality properties, yields

I
p
n,m =

∫
I

xpψn(x)ψm(x)dx = em · (T)pen

(37)= en · (T)pem.

Eq. (37) with the explicit form (23) and (24) are the main result
of this paper. Since T is symmetric, we only consider situations
where m � n and introduce the separation index s as the posi-
tive integer s = m − n. We call σ the quantity

(38)σ = p − s

2
,

and then (37) can be rewritten as the following explicit integra-
tion formula

I
p
n,n+s =

∫
I

xpψn(x)ψn+s(x)dx

(39)=
{

F(s,n)G(σ,p,n) if σ ∈ N,

0 otherwise,

where

(40)F(s,n) =
s−1∏
l=0

an+l if s �= 0, and F(0, n) = 1,

G(σ,p,n) =
∑

{it }∈Ip
σ

σ∏
l=1

a2
n+il−l if σ �= 0, and

(41)G(0,p,n) = 1,

and the nested sum over Ip
σ is defined in (16). Table 1 displays

the explicit form for the normalized functions and their recur-
rence relation coefficients an for classical orthogonal polynomi-
als (superscripts H,L,G and C, relating to Hermite, Legendre,
etc., are added to avoid any confusion). Notations are strictly
identical with Table 22.2, p. 774 in [9]. All functions are defined
over the interval I = [−1,1] except the Hermite polynomials
for which I = (−∞,∞). Note that recurrence coefficients as-
sociated with Hermite, Legendre and Gegenbauer polynomials
have the remarkable properties of automatically satisfying the
decoupling condition (35). This fact is exploited in [12].
At first sight, formula (41) appears to be rather ineffi-
cient from a computational point of view since it contains
σCard(Ip

σ ) = σCp
σ products. However, from (19), it can be seen

that coefficients G(σ,p,n) can be efficiently computed via the
recursion relation

(42)
G(σ,p,n) = G(σ,p − 1, n) + a2

n+p−2σ G(σ − 1,p − 1, n),

with the convention that G(σ,p,n) = 0 whenever σ > p/2 or
σ < 0. So, G(σ,p,n) can be numerically recovered with as
little as O(p2/2) products. The recursion relation (42) is not
surprising since the expression (41) is nothing else but the ana-
lytical result of an iteration process. At this point, the reader
may wonder about the usefulness of the integration formula
(39) since the integral could be directly computed via the re-
cursion

(43)I
p
n,m = am−1I

p−1
n,m−1 + amI

p−1
n,m+1,

at a similar computational cost, see for instance [7,10]. How-
ever, the expression (39) has the great advantage of revealing
the analytical form of I

p
n,m which is extremely useful when eval-

uating the integral for large mode numbers.

4. Asymptotic series expansion

In this section we exploit the explicit integration formula
(39). For large order n, a quick examination of Table 1 reveals
that all recurrence coefficients an behave asymptotically as

(44)an+l = ωn

(
1 + εαl + ε2βl + · · ·),

where we introduce the small parameter ε = O(1/n) (its pre-
cise form is established in each particular example). Substitut-
ing the asymptotic form in (40) yields

(45)F(s,n) = (ωn)
s
(
1 + εf1(s) + ε2f2(s) +O(ε3)

)
,

where

f1(s) =
s−1∑
l=0

αl and

(46)f2(s) = 1

2

s−1∑
l=0

s−1∑
k=0

αlαk(1 − δl,k) +
s−1∑
l=0

βl.

Similarly,

(47)

G(σ,p,n) = (ωn)
2σCp

σ

(
1 + εg1(σ,p) + ε2g2(σ,p) +O(ε3)

)

Table 1
Normalized function ψn and its two-term recurrence coefficients an for the classical orthogonal polynomials. For
the sake of clarity we put v(x) = √

2(1 − x2)1/4 in the normalized Gegenbauer and Chebyshev polynomials

Polynomial Normalized function an

Hermite, Hn ψH
n = 1√

π1/22nn!Hn(x)e−x2/2
√

n+1
2

Legendre, Pn ψL
n = ( 2n+1

2 )1/2Pn(x) 1
2 (

(n+1)2

(n+1)2−1/4
)1/2

Gegenbauer, C
(α)
n (α > − 1

2 ) ψG
n = (

n!(n+α)�2(α)
π�(n+2α)

)1/2v(x)2α−1C
(α)
n (x) 1

2 (
(n+2α)(n+1)

(n+α)(n+1+α)
)1/2

Chebyshev, Un ψC
n = 1√

π
v(x)Un(x) 1

2
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with

(48)g1(σ,p) = 2
(
Cp

σ

)−1 ∑
{it }∈Ip

σ

σ∑
l=1

αil−l

and

g2(σ,p) = (
Cp

σ

)−1 ∑
{it }∈Ip

σ

(
2

σ∑
l=1

βil−l

(49)+
σ∑

l=1

σ∑
k=1

αil−lαik−k(2 − δl,k)

)
,

where, as already mentioned, Cp
σ is the binomial coefficient.

In all these summations, it is understood that f1(0) = f2(0) =
g1(0,p) = g2(0,p) = 0. To summarize, the non-zero transition
matrix elements yield the following asymptotic expansion∫
I

xpψn(x)ψm(x)dx

(50)= (ωn)
pCp

σ

(
1 + εA1(σ,p) + ε2A2(σ,p) +O(ε3)

)
,

where by convention, m � n and the quantity σ = (p − (m −
n))/2 is a positive integer. The corrective terms are explicitly
given by

(51)A1(σ,p) = f1(p − 2σ) + g1(σ,p)

and

(52)
A2(σ,p) = f2(p − 2σ) + g2(σ,p) + f1(p − 2σ)g1(σ,p).

These asymptotic results are now exploited for three specific
examples.

4.1. Hermite polynomials

We shall firstly apply the asymptotic form for the Hermite
polynomials, which have the normalized functional form

(53)ψH
n (x) = 1√

π1/22nn!Hn(x) e−x2/2,

where Hn(x) can be found explicitly in [9] for example. The as-
sociated recurrence coefficients for ψH

n (x) have the asymptotic
form

an+l =
(

n + 1

2

)1/2(
1 + ε

l

2
− ε2 l2

8
+ · · ·

)

(54)with ε = 1

n + 1
.

Note this choice of ε; another form, such as ε = 1/n, would
lead to a more complicated (and slightly more slowly con-
vergent) expansion. Thus, in (44) we have αl = l/2 and βl =
−l2/8. This yields
∞∫
−∞

xpψH
n (x)ψH

m (x)dx

(55)

=
(

n + 1

2

)p/2

Cp
σ

(
1 + εA1(σ,p) + ε2A2(σ,p) +O(ε3)

)
.

There is no simple expression for the corrective terms A1(σ,p)

and A2(σ,p) for general σ and p. We list in Tables 2 and 3 the
value of these respective coefficients for the first few values of
σ and p.

We shall compare these asymptotic expressions with the ex-
act formula for the non-zero matrix element given in [11], that
is,

∞∫
−∞

xpψH
n (x)ψH

m (x)dx

(56)= 2μ− p
2

(
m!
n!

)1/2

p!
min(n,m)∑

l=μ

Cn
l

2l(m − l)!(l − μ)! ,

where μ = (n + m − p)/2 is an integer.
Eq. (56) clearly indicates the difficulties encountered in eval-

uating these coefficients with such formulae when using stan-
dard double-precision floating point arithmetic as n increases.
Since the value of the factorial of n goes beyond the accuracy
level of 32 bit machines even for moderately small n, computed
values of (56) are expected to be corrupted by round-off errors.
In Tables 4 and 5 the computed values of the transition matrix
elements are shown for the two specific cases: p = s = 3 and
p = 5, s = 3. All calculations are carried out with double pre-
cision arithmetic. The last column shows the round-off errors
caused by a large quantum number and the computed values

Table 2
Values of the corrective terms A1(σ,p) associated with the Hermite polynomial

p = 1 p = 2 p = 3 p = 4 p = 5

σ = 0 0 1/2 3/2 3 5
σ = 1 . −1/2 0 1 5/2
σ = 2 . . . −1 0

Table 3
Values of the corrective terms A2(σ,p) associated with the Hermite polynomial

p = 1 p = 2 p = 3 p = 4 p = 5

σ = 0 0 −1/8 −1/8 1 5
σ = 1 . 0 0 1/8 11/8
σ = 2 . . . 1/2 1/2

Table 4
Comparison between the asymptotic expressions and the analytical formula,
p = 3, s = 3, σ = 0

n = 8 n = 1024 n = 262144

Leading order 9.5459 11602.21220 47453404.3413
First order 11.136 11619.19105 47453675.8709
Second order 11.122 11619.18967 47453675.8708
Analytical 11.124 11619.18967 47453675.8356
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Table 5
Comparison between the asymptotic expressions and the analytical formula,
p = 5, s = 3, σ = 1

n = 8 n = 1024 n = 262144

Leading order 214.78 29730668.783 31099181702683.
First order 274.44 29803182.609 31099478286460.
Second order 278.09 29803221.519 31099478287082.
Analytical 278.10 29803221.521 31099478265649.

Fig. 1. Number of common digits (defined in Eq. (57)) with respect to the mode
number n. Straight line: p = s = 3; Dash-dot: p = 5, s = 3; Dashed line: p = 9,
s = 3.

from the exact formula are not accurate. This precision problem
is conveniently revealed in Fig. 1 where the number of common
digits (n.c.d.) between the second order asymptotic expression
and the computed formula (56) are plotted against n. By con-
vention, n.c.d. is evaluated as the real quantity

(57)n.c.d. =
∣∣∣∣log

|Second order − Analytical|
Leading order

∣∣∣∣.
Below a certain threshold n < nt , the progression is in agree-
ment with the O(ε3) approximation error. For larger values, the
exact expression (56) cannot be computed properly and the loss
of accuracy gets progressively worse as n increases.

Since (55) has to be used for moderately small exponent p,
corrective terms A1 and A2 as well as the binomial coefficients
Cp

σ can be computed and stored once and for all at very small
cost, and then the asymptotic expression (55) can be computed
extremely rapidly. Here the gain is clear when compared with
the cost of the full computation of the sum in (56) for each value
of n. It is believed that this should have some important applica-
tions in quantum chemistry and physics programs since in many
cases of practical interest the wave functions are expanded in
the harmonic oscillator basis [6,7]. We end this section by not-
ing that more elaborate formulae could be developed for taking
into account higher order correctives terms; we only restricted
ourselves to a second order expansion for the sake of clarity.
4.2. Legendre polynomials and associated Legendre functions

We extend the method to the associated Legendre functions
of the first kind, P ν

n , defined for n � ν and obtained from the
Legendre polynomials as P ν

n (x) = (−1)ν(1 − x2)ν/2(dν/dxν)

P 0
n (x) where, by convention, we put Pn ≡ P 0

n . Though the
functions P ν

n are not polynomials (except when ν is even) they
satisfy the two-term recurrence relation (see p. 334 in [9]):

(2n + 1)xP ν
n (x)

(58)= (n + ν)P ν
n−1(x) + (n + 1 − ν)P ν

n+1(x)

as well as the orthogonality relation

(59)

1∫
−1

P ν
n (x)P ν

m(x)dx = 2

2n + 1

(n + ν)!
(n − ν)!δn,m.

So, if we define the associated normalized functions ψL
n,ν as

(60)ψL
n,ν(x) =

(
2(n + ν) + 1

(n + 2ν)!
n!
2

)1/2

P ν
n+ν(x),

then ψL
n,ν satisfy (30) with

(61)an = 1

2

(
(n + ν + 1)2 − ν2

(n + ν + 1)2 − 1/4

)1/2

.

These coefficients have the striking properties of having a rela-
tively simple asymptotic form, namely

an+l = 1

2

(
1 − ε2 4ν2 − 1

8
+ · · ·

)

(62)with ε = 1

n + ν + 1
.

So αl = 0, and βl is independent of l and

(63)βl = β = 1

8
(1 − 4ν2).

It is easy to show that f1 = g1 = 0, f2(s) = sβ and g2(σ,p) =
2βσ and hence we end up with the explicit formula

1∫
−1

xpψL
n,ν(x)ψL

n+s,ν(x)dx

(64)= Cp
σ

2p

(
1 + ε2βp +O(ε3)

)
where σ ∈ N.

This last result is useful for certain quantum physics computa-
tions. For the sake of illustration, we consider the interaction of
a three dimensional quantum wave field due a rotation-invariant
potential with an axisymmetric perturbation. Interactions be-
tween the spherical harmonics are conveniently described by
the transition matrix elements

(65)T
qnm

0ν−ν =
∫

Y 0
q (Ω)Y ν

n (Ω)Y−ν
m (Ω)dΩ, m � n � ν � 0,

where Yν
n (Ω) is a spherical harmonic, dΩ = sin θ dθ dφ is the

element of the solid angle and the integral covers the entire
surface area of the unit sphere. These quantities are usually
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computed with the aid of the Wigner 3j symbols as

T
qnm

0ν−ν =
√

(2q + 1)(2n + 1)(2m + 1)

4π

(66)×
(

q n m

0 0 0

)(
q n m

0 ν −ν

)
.

For large orders n and m, the Wigner 3j symbols are known
to be both difficult and time consuming to evaluate numerically
[3,4]. To overcome this difficulty, we shall use the asymptotic
form (64). Since, by definition,

Y ν
n (Ω) = eiνφ

√
2π

ψL
n−ν,ν(cos θ) and

(67)Y−ν
m (Ω) = (−1)ν

e−iνφ

√
2π

ψL
m−ν,ν(cos θ),

it may be shown that we have the alternative form

(68)

T
qnm

0ν−ν = (−1)ν

√
2q + 1

4π

1∫
−1

Pq(x)ψL
n−ν,ν(x)ψL

m−ν,ν(x)dx.

Expanding Pq(x) in the polynomial basis xr , i.e.

(69)Pq(x) = 2−q

[q/2]∑
r=0

(−1)rCq
r C2q−2r

q xq−2r ,

together with (64) yields the asymptotic form for the non-zero
transition matrix elements

T
qnm

0ν−ν = (−1)ν

4q

√
2q + 1

4π

σ̄∑
r=0

(−4)rCq
r C2q−2r

q Cq−2r
σ̄−r

(70)× (
1 + ε2β(q − 2r) +O(ε3)

)
,

where

(71)σ̄ = q − (m − n)

2
∈ N and ε = 1

n + 1
.

Thus, up to the first order in ε, the transition matrix element
amplitude only depends on q and the difference m − n. Here
again, the second order expression (70) can be computed ex-
tremely rapidly with increasing accuracy for moderately small
values of q .

4.3. Gegenbauer and Chebyshev polynomials

The leading and first order asymptotic expressions for the
Gegenbauer polynomials can be shown to be identical to those
of the previous section. Indeed, by rearranging the terms, the
recurrence coefficients have the following form

(72)an = 1

2

(
(n + α + 1/2)2 − (α2 − α + 1/4)

(n + α + 1/2)2 − (α + 1/4)

)1/2

.

So, if we define the small parameter

(73)ε = 1

n + α + 1/2
,

we get the relatively simple asymptotic form

(74)an+l = 1

2

(
1 − ε2 α

2
(α − 2) + · · ·

)
.

Here again, αl = 0 and βl is independent of l, namely βl =
−α(α − 2)/2. After some calculation we end up with the ex-
plicit formula for the non-zero transition matrix elements

1∫
−1

xpψG
n (x)ψG

n+s(x)dx

(75)= Cp
σ

2p

(
1 − ε2 α

2
(α − 2)p +O(ε3)

)
.

The integration formula for the Chebyshev polynomial of the
second kind is extremely straightforward as the recurrence co-
efficients are constant with an = 1/2. This yields the exact for-
mula

(76)

1∫
−1

xpψC
n (x)ψC

n+s(x)dx = Cp
σ

2p
.

Thus, the normalized functions ψn associated with Legendre,
Gegenbauer and Chebyshev polynomials share the same strik-
ing property; that is, to leading order the integral formula in all
three cases is I

p
n,m = 2−pCp

σ (1 +O(1/n2)).

5. Conclusion

In this article we have presented an algebraic method for
evaluating typical transition matrix elements arising in a wide
range of quantum mechanical problems. The technique allows
the accurate and fast numerical treatment of transition matrix
elements for large quantum numbers. We have strong reasons
to believe that the idea can be extended to a wider class of wave
functions and this will be the subject of future work.
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