
BONNES PRATIQUES DE
DÉVELOPPEMENT LOGICIEL

Jeremy Laforet
Équipe NSE - D2.16 - 4372

jeremy.laforet@utc.fr

mailto:jlaforet@utc.fr

PLAN
Bonnes Pratiques
Gestion de versions
Tests
Profiling
Optimisation de code

BONNES PRATIQUES
Repris de software-carpentry.org

file:///Users/jlaforet/Documents/Cours/Formation_Python/software-carpentry.org

RULE 1
WRITE PROGRAMS FOR PEOPLE,

NOT COMPUTERS
Hard to tell if code that's difficult to understand is doing
what it's supposed to
Hard for other scientists to re-use it...
...including your future self

RULE 1A
A program should not require its readers to hold more than

a handful of facts in memory at once.

Short-term memory can hold 7±2 items
So break programs into short, readable functions, each
taking only a few parameters

RULE 1B
Make names consistent, distinctive, and meaningful.

p doesn't help the reader's short term memory as much
as pressure
Don't use temp for both "temporary" and "temperature"
i, j are OK for indices in small scopes

RULE 1C
Make code style and formatting consistent.

Which rules don't matter — having rules does
Brain assumes all differences are significant
Every inconsistency slows comprehension

RULE 2
LET THE COMPUTER DO THE WORK

Computers exist to repeat things quickly
99% accuracy ⇒ 63% of at least one error per hundred
repetitions

RULE 2A
Make the computer repeat tasks.

Write little programs for everything
Even if they're called scripts, macros, or aliases
Easier to do this with text-based programming systems
than with GUIs

RULE 2B
Save recent commands in a file for re-use.

Most text-based interfaces do this automatically
Repeat recent operations using history
"Reproducibility in the small"

Saving history supports "reproducibility in the large"
An accurate record of how a result was produced
If everything can be captured

RULE 2C
Use a build tool to automate workflows.

Originally developed for compiling programs
Can be used whenever some files depend on others
Makes workflow explicit

RULE 3
MAKE INCREMENTAL CHANGES

Most scientists don't have "requirements"
They are their own users
Code evolves in tandem with research

Closest fit from industry is agile development

RULE 3A
Work in small steps with frequent feedback

and course correction.

People can concentrate for 45-90 minutes without a break
So size each burst of work to fit that
Longer cycle should be a week or two

RULE 3B
Use a version control system.

Tracks changes
Allows them to be undone
Supports independent parallel development
Essential for collaboration collaboration

RULE 3C
Put everything that has been created manually

in version control.

Not just software: papers, raw images, ...
Not gigabytes...
...but metadata about those gigabytes

Leave out things generated by the computer
Use build tools to reproduce those instead
Unless they take a very long time to create

RULE 4
DON'T REPEAT YOURSELF (OR OTHERS)

Anything repeated in two or more places will eventually
be wrong in at least one
If it's faster to re-create than to discover or understand, fix
it

RULE 4A
Every piece of data must have

a single authoritative representation in the system.

Define constants exactly once
Ditto file formats, geographical locations, ...

RULE 4B
Modularize code rather than copying and pasting.

Reducing code cloning reduces error rates
Cuts the amount of testing needed
And increases comprehension

RULE 4C
Re-use code instead of rewriting it.

It takes experts years to build high-quality numerical or
statistical software
Your time is better spent doing science on top of that

RULE 5
PLAN FOR MISTAKES

No single practice catches everything
So practice defense in depth

Note: improving quality increases productivity

RULE 5A
Add assertions to programs to check their operation.

"This must be true here or there is an error"
Like diagnostic circuits in hardware
No point proceeding if the program is broken...
...and they serve as executable documentation

RULE 5B
Use an off-the-shelf unit testing library.

Manages setup, execution, and reporting
Re-run unit tests after every change to the code to check
for regression

TESTING IS HARD
"If I knew what the right answer was, I'd have published
by now."
Compare to experimental data
Or to analytic solutions of simple problems
Or to old (trusted) programs
If nothing else, forces scientists to document what
"errors" are acceptable

RULE 5C
Turn bugs into test cases.

Write a test that fails when the bug is present
Then work on the code until that test passes...
...and no others are failing

TEST-DRIVEN DEVELOPMENT
Why wait? Always write the tests, then the code
Improves focus
Encourages writing testable code
And ensures tests actually get written...
"Red, green, refactor"

RULE 5D
Use a symbolic debugger.

Explore the program as it runs
Better than print statements

You don't have to re-run...
...or guess in advance what you'll need to know

Use breakpoints to stop program at particular points or
when particular things are true

RULE 6
OPTIMIZE SOFTWARE

ONLY AFTER IT WORKS CORRECTLY
Even experts find it hard to predict performance
bottlenecks
Small changes to code often have dramatic impact on
performance
So get it right, then make it fast

RULE 6A
Use a profiler to identify bottlenecks.

Reports how much time is spent on each line of code
Re-check on new computers or when switching libraries
Summarize across unit tests

RULE 6B
Write code in the highest-level language possible.

People write the same number of lines of code per hour
regardless of language
So use the most expressive language available to get the
"right" version...
...then rewrite core pieces (possibly in a lower-level
language) to get the "fast" version

RULE 7
DOCUMENT DESIGN AND PURPOSE,

NOT MECHANICS
Goal is to make the next person's life easier
Focus on things the code doesn't say

Or doesn't say clearly
E.g., file formats

An example is worth a thousand words...

RULE 7A
Document interfaces and reasons,

not implementations.

Interfaces and reasons change more slowly than
implementation details, so documenting them is better
economics
And most people care about using code more than
understanding it

RULE 7B
Refactor code in preference to

explaining how it works.

Good code can be understood when read aloud
Good programmers build libraries so that solving their
problem is straightforward
Again, "red, green, refactor"

RULE 7C
Embed the documentation for a piece of software

in that software.

Specially-formatted comments or strings
More likely to be kept up to date
More accessible to interactive help
Many modern tools embed code in documentation rather
than vice versa

RULE 8
COLLABORATE

Computers were invented to calculate
The web was invented to collaborate
Science is more fun when it's shared

RULE 8A
Use pre-merge code reviews.

Have someone else review changes before merging in
version control
Significantly reduces errors
Good way to share knowledge
It's what makes open source possible

RULE 8B
Use pair programming

when bringing someone new up to speed
and when tackling particularly tricky problems.

Two people, one keyboard, one screen
An extreme form of code review
Can get a bit tired if done all the time...

RULE 8C
Use an issue tracking tool.

A shared to-do list
Items can be assigned to people
Supports comments, links to code and papers, etc.

"Version control is where we've been, the issue tracker is
where we're going"

GESTION DE VERSIONS
Archivage des modifications incrémentales
Identification des auteurs
Possibilité d'avoir des branches parallèles

Il existe de nombreux systèmes, un des plus courant
aujourd'hui: GIT

GIT
Décentralisé
Dépot local (+ distant)
Hébergement personnel ou forges (github, bitbucket…)

TESTS
test-driven development

Écrire les tests avant le code
Puis écrire le code qui passe les tests
Faire passer les tests à chaque itération du code

Les tests sont une formalisation du cahier des charges et
permettent d'éviter les régressions ("ça marchait avant.")

EN PYTHON
pytest
unittest
nose

DEMO: PYTEST

PROFILING
Analyser les performances du code en terme de mémoire ou

de temps de calcul.

Permet d'avoir une vision objective des goulets de
performances
Savoir où et quoi optimiser pour améliorer effectivement
les performances

TYPE DE PROFILER
cProfile: analyse du temps de calcul, à l'échelle de la
fonction
kernprof: analyse du temps de calcul, ligne par ligne
memory_profile: analyse de la consomation mémoire,
ligne par ligne
guppy: analyse des types de donées utilisés

OPTIMISATION DE CODE
Optimiser là où c'est nécessaire
Vérifier l'absence de régressions

PISTES

Appliquer la technique la plus adapté au problème local

Limite d'un construction particulière du langage: ré-
écriture
Nombreux traitement indépendants: parallélisation
…

EXEMPLE

En python les boucles sont assez lentes, donc autant que
possible les remplacer pour des fonctions dédiées

for x in array:
 sum+=x

numpy.sum(array)

CONCLUSION

