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Abstract

The problem of appropriately defining the First Indenter-Sample Contact (FISC) is known to be a major problem in hardness measurement and
particularly in nano-indentation. Another difficulty arises from the determination of the real indentation area when a piled up occurs near the
indentation print. This phenomenon is known as the Indentation Size Effect (ISE). The indentation piles up can be particularly heavy for low loads
which affects the nano-indentation measurements. The Loading Displacement Curves (LDC) with ISE can bemodelled by the PSR law (Proportional
Specimen Resistance). We show that an error on the FISC validates PSR law even if no ISE occurs meaning that it is illusory to quantify the ISE with
only one loading curve. To overcome this difficulty, a statistical protocol is proposed that consists in simultaneously analysis a fixed number of
loading curves. With this approach, a new equation of LDC is proposed that allows determination of Hardness, ISE coefficient and the FISC position
on each curve (98 LDC are recorded from a fused silica standard). The uncertainty on each coefficient is determined by a bootstrap protocol.
© 2006 Published by Elsevier B.V.
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1. Introduction

The problem of appropriately defining the First Indenter-
Sample Contact (FISC) is known to be a major problem in
hardness measurement and particularly in nano-indentation that
induces a false origin of the load-displacement curves fromwhich
mechanical properties will be evaluated. An additional difficulty
arises from determining the real indentation area when a piled up
occurs around the indentation print [1]. In this paper, we show that
these two major problems are strongly linked in the mathematical
formulation of the hardness evaluation. In this work, we focus
upon two laws in the hardness measurement: the Kick's [2,3] and
the PSR laws (Proportional Specimen Resistance) [4].

2. Materials and method

Nano-indentations were performed using a Nano Indenter
XP® (MTS Nano Instruments Oak Ridge, USA). Sample is
fused silica that is commonly used as the calibrating material.
Indentations are performed using a diamond Berkovich indenter
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at room temperature. Experiments are performed using the
Continuous Stiffness Measurement (CSM) at constant loading
rate (0.05 s−1) until a maximum indentation depth of 2500 nm.
The applied load F, contact stiffness S and indentation depth h
are continuously measured. 98 indentation measurements are
recorded and shown on Fig. 1 (left).

3. Pre-treatments of experimental indentation curves

To calculate indentation curve parameters, three pre-treatments
have to be completed. In a first time, the loading part must be
extracted from the experimental curve. At the end of loading,
curves present a crossover (slow decrease of ∂2F /∂h2) on around
0.85 Fmax where Fmax is the maximal load. As a consequence, we
only retain points of the loading curves that are under this value.
The second treatment consists in transforming the penetration
value h as i.i.d (independence and identical distribution) to avoid
statistical artefacts in the future statistical regression. Then, load
data are averaged each 20 nm leading to i.i.d h values. The depth h
measured during the indentation includes the elastic deformation
of the sample around the indentation in addition to the contact
depth hc. The depression of the sample around the indentation
(hs=h−hc) is caused by elastic deformation andmust be subtracted
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Fig. 1. 98 initial load–displacement curves on fused silica (left) and load–displacement curves after statistical pre-treatments using Oliver and Pharr method (right).
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from the data to obtain the actual depth of indentation and
hardness. Oliver and Pharr [5,6] developed an expression for hc at
the maximum load (required for hardness calculation) from h, and
gives hc=h−εF /S where ε=0.75 for the Berkovich indenter and
S is the stiffness that can be deduced from the slope of unloading
curve (in our case, the stiffness is obtained by CSM). The Fig. 1
(right) represents the final loading curves, after these three pre-
treatments, from which our statistical treatments are performed.

4. Kick's law and the PSR one

The Kick model [2,3] is given by the following equation:

F ¼ ah2c ð1Þ

This is in fact the basic definition of the hardness H taking
into account the spring back:

H ¼ F=A ð2Þ

where A can be related geometrically to hc with A=24.56hc
2 for

Berkovich indenters. In presented units (H in GPa, hc in nm, F
in mN) α=25.5610−6, and then:

H ¼ a−1F=h2c ð3Þ

The PSR model [4] is given by the following equation:

F ¼ ah2c þ bhc ð4Þ
This model includes the well known Indentation Size Effect
(ISE) when piled up occurs, i.e., when material is forced up
along the sides of the indentation tip [7,8]:

H ¼ H0 þ b=hc ð5Þ

and leads to:

F ¼ aðH0h
2
c þ bhcÞ ð6Þ

It should be pointed out that works on the ISE are initially
based on non-instrumented micro-hardness. Then several
hardness tests are conducted at different loads, the diagonal
print is measured and ISE is estimated by Vingsbow's law
[1,7,8]. At the opposite, only one force–depth curve allows to
estimate the diagonal print at different loads and then,
theoretically, to estimate the ISE. However, it was shown on
non-instrumented indentation tests that a large number of
measurements (that increases inversely with the diagonal length
of the print) is needed for a given load [1]. The uncertainty is
due to both optical resolution and the heterogeneity of materials.
This clearly means that it becomes illusory to quantify the ISE
with only one loading curve and then, a statistical protocol must
be used by simultaneously analysing several loading curves.
Unfortunately, in the literature, statistical treatments are often
performed with a single loading curve. Even if several loading
curves are available, they are treated independently to obtain
hardness characteristics from which descriptive statistics are
computed [9].
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5. Error measurements on loading curve, a new model

As pointed out by Grau [10] and Ullner [11], the problem of
appropriately defining the first indenter-sample contact is quite
complex. This leads to define a zero position in a scalewith arbitrary
selected point h=0. By introducing the noiseΔ on hc in Eq. (1), due
to error measurements on the zero level, and if the Kick's model
holds i.e. H=αF / (hc+Δ)

2, the following expression is obtained:

F ¼ aðHh2c þ 2DHhc þ HD2Þ ð7Þ
By neglecting the term HΔ2, Eq. (7) reduces to the PSR model

with β=2ΔH due only to noise measurement without taking account
the ISE. This means an important feature: PSR law can be validated
even if only Kick's law hold with an error measurement on hc. More
Fig. 2. Histograms of (H0, Δi, β) when they are estimated fr
importantly, an increase in systemic error leads to the detection of an
unrealistic ISE. This unrealistic ISE increase rises artificially with the
material hardness leading to false correlation between hardness and
ISE.Anewequation of the loading curve is introduced by taking into
account both ISE (H=H0+β /hc) and noise in Eq. (7):

F ¼ aððH0 þ b=hcÞh2c þ 2DðH0 þ b=hcÞhc
þ ðH0 þ b=hcÞD2Þ ð8Þ

that leads to:

F ¼ aððH0Þh2c þ ð2DH0 þ bÞhc þ 2bDþ H0D
2

þ bD2=hcÞ ð9Þ
This final equation (Eq. (9)) includes both ISE and noise

measurement. To integrate all curves from measurements, two
om models given by Eq. (10) (left) and Eq. (11) (right).
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optimisation methods can be performed. In the first optimisation
the hardness is assumed to be variable or each curve while the
β value is hold constant. Consequently, the n pairs (Δi, H0,i)
(corresponding to the ith loading curve with pi sampling points)
and β are obtained by solving the following functional:

min
H0;1 N H0; n

D1 N :Dn; b

Xn

i¼1

Xpi

j¼1

½Fi;j−aððH0;iÞh2cj þ ð2DiH0;i þ bÞhcj

þ 2bDi þ H0;iD
2
i þ D2

i b=hcjÞ�2
ð10Þ

under constrains H0,iN0. In the second method, H0 is assumed
to be constant and the functional becomes:

min
H0;D1 N :Dn;b

Xn

i¼1

Xpi

j¼1

½Fi;j−aððH0Þh2cj þ ð2DiH0 þ bÞhcj

þ 2bDi þ H0D
2
i þ D2

i b=hcjÞ�2 ð11Þ

The main problem consists in determining the confidence
intervals of all parameters of Eqs. (10)–(11). For this reason, a
double bootstrap is computed to calculate the variation into each
curve and between all curves. In a first time, let analyse the
β coefficient that quantifies the ISE. Both histograms (Fig. 2)
are quite similar and present Gaussian shapes. The two methods
lead, in a first approximation, to the same result (βeq. 10=
486±120,βeq. 11=484±118) meaning that β value does not depend
on the heterogeneity of the hardness (initial hypothesis well
posed). Similarly, the mean value by taking H0 variable (H0=
8.86 GPa) is closed to the mean value by taking H0 constant
(H0=8.84 GPa). The dispersion, characterised by the standard
deviation, is more important for variable (0.33) than for H0

constant (0.02).
The final question about this value: “Is the ISE really exists”.

More precisely, this assertion is verified if statistically βN0.
Answer comes from the statistics calculated from the bootstrap
set: from 1000 simulations, no negative or null values were
found. As a consequence the probability to assert fallacy that
ISE exists is less than 1/1000 and then the ISE cannot be
rejected. The ISE exhibited by fused silica (previously shown
by Li and Bradt in the measurement of the hardness of vitreous
silica [4]), was confirmed by Atkinson by introducing a new
description, demonstrating a common phenomenology regard-
less of the different micro-mechanisms sustaining indentation
[12]. Concerning the first indenter-sample contact, the histo-
grams show the distribution of the zero-value Δ. As it could be
observed, a mode on histograms appears at the high value Δ=
−225 that corresponds to a loading curve on Fig. 1. This curve
must be visually shifted of the same value on the left to be at the
origin. Five curves possess “abnormally” negative values of Δ
(false detection of the surface before contact), the 93 others
possess a gaussian density with a standard deviation of 6 nm,
characterising the error on the zero level determination. Our
method has then well corrected the contact depth to obtain an
accurate value of hardness and quantify the ISE.

6. Conclusion

We have shown that an error on the first indenter-sample
contact validates PSR law even if no indentation size effect
occurs meaning that more than one curve is necessary to detect
the ISE. An equation of a loading displacement curve is
proposed and is associated with a statistical protocol to quantify
the ISE. As a result of the bootstrap, an ISE is exhibited by fused
silica, its hardness is estimated to 8.84±0.02 GPa and the error on
the first indenter-sample contact is quantified for each loading
curve to be around ±6 nm.
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