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Abstract A contact between a scanning force microscope

Si3N4 probe and a flat surface of similar material is created.

The low roughness of surfaces and their mechanical prop-

erties allow generating a nanoscopic elastic contact governs

by an extended Hertz theory (DMT theory). The behavior of

the initiation of sliding is investigated by submitting the

contact to lateral sinusoidal displacements whose amplitude

increases from zero to a few nanometers. The lateral force

generated by the displacement is analyzed by a lock-in

amplifier and the in-phase and out-of-phase components are

recorded as a function of the displacement amplitude.

Experimental results are compared to the Mindlin and

Savkoor theories, which describe the initiation of sliding of

macroscopic elastic contact. A relatively good agreement

between our experiments and these theories is observed. For

our particular experimental conditions, i.e., Si3N4 probe

sliding on a similar material, the Mindlin’s model gives a

slightly better agreement than the Savkoor’s model. This

study shows that macroscopic concepts remain valid at the

nanoscale, at least for the particular case studied here.

Keywords Nanotribology � Static friction � AFM �
Energy conservation

1 Introduction

Friction and wear are an everyday issue and are implied in

many industrial processes and natural phenomena from

earthquakes dynamics to physics of granular media. From

an industrial point of view, the energy losses by friction

must be reduced to decrease the economic and ecological

impacts or to increase the autonomy of portable mechanical

systems. Nevertheless, the fundamental phenomena gov-

erning friction and wear remain insufficiently understood.

These phenomena are particularly difficult to investigate

due to the fact they include mechanical and physico-

chemical aspects of surfaces for which the natures and

geometries are not completely controlled. For example, the

relations between the friction force, the real contact area,

the sliding velocity, and the adhesion force remain too

badly explained in front of the scientific stakes [1, 2].

The development of the scanning force microscope

(SFM) [3, 4] and surface force apparatus (SFA) [5, 6]

offers new opportunities for the understanding of friction,

wear, and adhesion at a nanometer scale. The major

advantage of these instruments is to be able to generate

contacts with a good control of the geometrical (shape and

roughness), mechanical, and physico-chemical operating

conditions. It is thus possible to obtain single asperity

contacts and to reach the governing laws of this kind of

contact. Many studies were carried out on single asperity

contacts [2–7]. Linear relations between friction force and

contact area [8–10] or applied load [8, 10, 11] have been

observed, meaning that the shear stress is constant or

depends on contact pressure. The influence of sliding

velocity on friction force were studied and showed a log-

arithmic increase or decrease of friction force with

increasing velocity [12–16].

In this article, initiation of sliding is particularly inves-

tigated. Experimental results show that for a single asperity

nanoscopic contact that complies with the Hertz theory and

Amontons’s law, the initiation of sliding, in our operating

conditions, still complies with the theory described by

Mindlin [17, 18].
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2 Initiation of Sliding in a Hertzian Contact

The Hertz theory was established at the end of the 19th

century [19] to describe the characteristics of an elastic

contact between two curved surfaces without roughness. In

the case of a contact between a sphere of radius R and a

plan, the main relations between the characteristics of the

contact such as the contact radius a (a � R), the inden-

tation depth h, the relative displacement of the center of the

two bodies in contact d, the load F, and the maximum

contact pressure Pmax are given by the following relations:
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E is the Young’s modulus and m the Poisson’s ratio of the

materials of the two bodies in contact.

When a contact between two spheres is submitted to a

relative displacement, there is initially a shear for dis-

placements much lower than the contact radius. The lateral

force is then proportional to the displacement d:

FL ¼ kLd ð5Þ

where kL the lateral contact stiffness equals to:

kL ¼ 8aG� ð6Þ

and G* is the reduced shear modulus:

1

G�
¼ 2� m1

G1

þ 2� m2

G2

ð7Þ

where Gi is the shear modulus of the materials of the two

bodies in contact.

Mindlin [17, 18] investigated the problem of the initia-

tion of sliding in an elastic contact between two spheres

that complies with the Hertz theory and Amontons’s law

[20]:

l ¼ FF

F
ð8Þ

where FF is the friction force and l the friction coefficient.

During the initiation of sliding, he suggests that when the

relative displacement d increases, there is an increase of the

lateral force FL and of the shear stress that causes a partial

sliding of the contact: An increasing annulus at the

periphery of the contact slides whereas the center of the

contact of radius c is sheared (Fig. 1).
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The lateral force FL should not be confused with the

friction force: It is the sum of the sheared force of the

contact’s center and of the friction force of the sliding

contact’s periphery. The lateral force evolves from a shear

force to a friction force as the relative displacement

increases. During the initiation of sliding, the lateral force is

not proportional to the displacement as observed in a stick-

slip model (FL = kLd if d \ FF/kL, FL = FF if d C FF/kL).

As the relative displacement d increases, the sliding area

increases and the sheared area decreases. Sliding is total

when the relative displacement d reaches a critical value D.

The relation between the lateral force and displacement is

given by the Mindlin equation:

FL

FF

¼ 1� 1� d
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FL ¼ FF; if d [ D

ð10Þ

with

D ¼ 3

2

FF

8aG�
ð11Þ

Savkoor [21] proposed a different approach of the initiation

of sliding for a friction force proportional to the contact

area. The relation between the lateral force and the

displacement is equal to:
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Fig. 1 Initiation of sliding in an elastic contact. According to the

Mindlin or Savkoor theory, the initiation of sliding is progressive: While

the displacement d increases, an increasing annulus at the periphery of the

contact slides whereas the center of the contact of radius c is sheared
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D ¼ 4

p
FF
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ð13Þ

For an oscillating displacement, these equations are still

valid but the boundaries conditions change leading to more

complex equations.

3 Experiments and Results

3.1 Method

The initiation of sliding can be easily highlighted by a

simple measurement of the lateral force as a function of the

displacement. In the case of a SFM, the measurement of the

lateral force is done easily using a simple measurement of

the torsion of the SFM cantilever [22]. The calibration of

the lateral force is relatively easy to make with the help, for

example of a sample presenting known slopes [23]. It is the

exact control of displacements that is cumbersome. Indeed,

in SFM experiments, a piezo scanner makes displacements.

The piezo scanner has the advantage of proposing a reso-

lution of displacements much lower than the atomic

dimension. Nevertheless, it has the drawback to give a

strongly nonlinear response characterized by strong hys-

teresis and a creep effect. If one seeks to initiate sliding by

starting a relative displacement of the ceramic, the relation

between the input voltage and the exact displacement will

not be known. The curve of the lateral force according to

displacement will be erroneous due to a bad knowledge of

the real displacement. Any comparison with a theoretical

model will be impossible.

We chose to impose a sinusoidal voltage to the piezo

scanner in order to have a better control of the displace-

ments by feeding the SFM piezo scanner at only one

frequency and to measure the amplitude of the lateral force.

This method has already been used successfully to measure

friction force and lateral contact stiffness at a nanometer

scale [24–29].

A commercial SFM is modified by implementing dis-

placement optical sensors in the three space directions. The

experimental device and its applications will be described

in another paper [30]. A short description is given here:

The principle of this homemade displacement sensor is the

following [31, 32]. A fixed optical fiber emits light near a

mobile mirror. Light is reflected by the mirror, reaches

optical reception fibers surrounding the emission fiber, and

is guided to a PIN photodiode (Fig. 2). The amount of light

received by these reception fibers is a function of the dis-

tance between the fibers and the mobile mirror. The

displacement sensor has a sensitivity of about 30 mv/lm

and a linear response (non-linearity\1% full-scale output)

for a displacement range of 200 lm. The RMS noise of the

sensor is about 2 nm. The calibration of the displacement is

achieved by calculating the sensitivity of the scanner for

some fixed frequencies.

– The sensor is first calibrated for quasi-static displace-

ment by comparing the response of the sensor

according to the calibrated displacement of the piezo

scanner. A triangular scan of 30 lm at 1 Hz is imposed

to the scanner and the sensor voltage is measured. The

sensor voltage is proportional to the displacement that

allows calculating the sensitivity of the sensor.

– In a second step, the scanner is calibrated for sinusoidal

displacements at various frequencies. The use of a

lock-in-amplifier allows increasing significantly the

signal-to-noise ratio by filtering the sensor signal.

Experimental data show that when one imposes a

sinusoidal voltage to the piezo scanner, the displace-

ment is sinusoidal. The phase between displacement

and voltage is constant at a fixed frequency and is

independent of the voltage amplitude. The displace-

ment (by means of the voltage sensor) as a function of

the scanner voltage is quasi-linear (non-linearity \1%)

from a few nanometers to a few micrometers. The

sensitivity of the scanner can then be determined at a

fixed frequency by calculating the slope of the curve

displacement/scanner voltage.

The calibration of the scanner sensitivity for harmonic

displacements is done indirectly with a calibration grating

and a lock-in-amplifier. The inaccuracy of the calibration is

mainly due to calibration grating and lock-in-amplifier

uncertainties. We estimate the uncertainty of the calibra-

tion to be less than 5%.

The cross-coupling phenomenon has been checked.

When one imposes a sinusoidal displacement in the Y

direction (parallel to the surface and perpendicular to the

main axis of the cantilever), a relative sinusoidal dis-

placement is observed in the other directions. Typically,

cross-coupling for frequency in the 1 Hz–2 kHz range is

about 0.7 ± 0.3% and 1.1 ± 0.3% in the X and Z direc-

tions, respectively, and could be neglected.

Fig. 2 Schematic principle of the displacement sensor used to

calibrate the piezo-scanner displacement

Tribol Lett (2008) 30:1–11 3

123



To investigate the initiation of sliding, we propose to

make a relative sinusoidal displacement of the contact

(d = d*sin(xt)) whose half-amplitude d* varies from zero

to several nanometers. A sinusoidal voltage is imposed to

the scanner in the Y direction and converted into a sinu-

soidal displacement using the sensitivity of the scanner at

the considered frequency. The signal of the lateral force

generated by the displacement of the contact is sent to a

lock-in amplifier. The lock-in amplifier acts like a filter and

takes into account only the first harmonic of the lateral

force signal at the frequency of the imposed displacement.

It provides the half-amplitude, Amp, and the phase, /, of

the first harmonic components of the lateral force signal.

They can be transformed into an in-phase component F0L
and an out-of-phase component F00L of the first harmonic of

the lateral force.

F0L ¼ Amp cos ð/Þ ð14Þ

F00L ¼ Amp sin ð/Þ ð15Þ

The experimental response can be compared to the

theoretical response. The theoretical response of the

contact can be computed from the Eqs. 10 and 12 in the

case of the Mindlin, Savkoor, or a stick-slip model that can

be observed in SFM experiments especially for atomic flat

surfaces [33]. Figure 3 shows the relative lateral force (FL/

FF) as a function of an oscillating relative displacement of

various half-amplitude according to the Mindlin theory

(d*/D = 1/3, 1, and 2). For d*/D = 1/3, the lateral force is

approximately proportional to the displacement: The

contact is mainly sheared as sliding is limited to the

contact periphery. For higher displacement, the lateral

force is proportional to the displacement only at the

beginning of the displacement and is equal to the friction

force for displacement value superior to D. The theoretical

signal of the lateral force generated by a sinusoidal

displacement is computed for d*/D values varying from

zero to infinity. The first harmonic F1 of the relative lateral

force (F1 = Amp sin(xt + /)) is computed as a function

of d*/D. Figure 4 shows the relative lateral force signal as

a function of time for various d*/D values. For d*/D = 1/3,

the contact is mainly sheared and the lateral force is

approximately proportional to the displacement. The lateral

force is then sinusoidal and in phase with the displacement.

For d*/D = 2, the contact slides and the lateral force signal

is truncated at the value of the friction force and becomes a

square signal. The half-amplitude of the first harmonic of

the lateral force signal is then superior to the value of the

friction force and its phase is in advance from the

displacement (Fig. 4). When the displacement tends to

infinity, the half-amplitude of the first harmonic of the

lateral force tends to 4/p the value of the friction force and

the phase tends to p/2 [25]. By varying d*/D, it is possible to

compute the half-amplitude, Amp, and phase, /, as well as

the in-phase (Amp cos(/)) and out-of-phase (Amp sin(/))

components of the first harmonic of the relative lateral

force. To get the correct values of the lateral force, the

amplitude should be divided by a correction factor v. The

values of v vary from 1 to 4/p as a function of the

normalized half-amplitude displacement d*/D (v = f(d*/

D)) but are only slightly sensitive to the considered theory:

the maximum difference between the correcting factors for

the two theories (Mindlin or Savkoor) for a fixed value of

d*/D is lower than 0.3%. Figure 5 shows the theoretical

phase and normalized lateral force (lateral force divided

by the friction force) as a function of d*/D. Figure 6 shows

the theoretical normalized in-phase and out-of-phase

components of the lateral force as a function of d*/D.

This method of measurement of the initiation of sliding

and more generally of friction has some advantages:

1. The response of the contact could be computed on a

great number of cycles. Then, an average response is

obtained leading to more significant value.

2. The response of the contact is done on contact area of a

few tens of nanometer square than one can regard as

homogeneous.

3. The method allows working with high sliding velocity.

Indeed, by carrying out displacements of the order of

the micrometer at high frequencies (a few kHz), it is

possible to obtain sliding velocities of several mm/s.

These velocities are difficult to obtain in classical SFM

experiments for which the velocity is of the order of

the lm/s. Thus, the method allows us to increase the

Fig. 3 Normalized lateral force as a function of an oscillating

normalized displacement according to the Mindlin theory. For low

displacement half-amplitude (d*/D = 1/3, light gray curve), the

contact is sheared and the lateral force is approximately proportional

to the displacement. For higher displacement half-amplitude (d*/

D = 1, gray curve; d*/D = 2 black curve), the contact begins to slide

and the lateral force is no more proportional to the displacement

4 Tribol Lett (2008) 30:1–11
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sliding velocity by several orders of magnitude and to

obtain measurements of friction on several decades.

4. The dynamic experiments allow to have two informa-

tion, the amplitude and the phase (or the in-phase and

out-of-phase component) of the lateral force. The sum

of the in-phase component of all the harmonics of the

signal of the lateral force is proportional to the stored

energy WS (i.e., mainly the shear energy of the

contact), divided by the displacement amplitude. In

the same way, the sum of the out-of-phase component

of all the harmonics of the signal of the lateral force is

proportional to the dissipated energy WD (mainly by

friction), divided by the displacement amplitude. Then,

this method allows reaching to the ratio of the stored to

the dissipated energy. This is obviously of major

interest for the study of the initiation of sliding that is a

transition from shear (stored elastic energy) to friction

(dissipated energy): As a first approximation, by

Fig. 4 Lateral force and its first

harmonic as a function of time

(t/T where T is the period of the

harmonic displacement) for a

contact submitted to a

sinusoidal displacement of

various half-amplitude (d*/D).

(a) Displacement (d/d*) as a

function of time. (b) For a low

displacement half-amplitude

(d*/D = 1/3), the lateral force

is a sinusoidal pattern in phase

with the displacement. The inset

is an experimental curve (d*/

D & 1/3). (c) For a higher

displacement half-amplitude

(d*/D = 2.5) the first harmonic

(gray line) of the lateral force

(black line) has a half-amplitude

superior to the friction force and

is in advance of phase. The inset

is an experimental curve (d*/

D & 2.5)

Fig. 5 Normalized lateral force (FL/FF) and phase as a function of

the normalized displacement amplitude (d*/D). Black lines are the

lateral forces, gray lines are the phases, solid lines are Mindlin curves,

dashed lines are Savkoor curves, squares are experimental data fitted

with Mindlin model, and circles are experimental data fitted with

Savkoor model. Note that the two experimental curves of the

normalized lateral force are confused

Fig. 6 Normalized in-phase and out-of-phase component of the

lateral force (FL/FF) as a function of the normalized displacement

amplitude (d*/D). Black lines are in-phase component, gray lines are

out-of-phase component, solid lines are Mindlin curves, dashed lines

are Savkoor curves, squares are experimental data fitted with Mindlin

model, and circles are experimental data fitted with Savkoor model

Tribol Lett (2008) 30:1–11 5
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estimating that the elastic energy of the contact is

similar to the elastic energy of a spring, we can

calculate the stored energy:

WS �
1

2
kLa2 ¼ 4G�a3 ð16Þ

and the dissipated energy by friction in the sliding domain

(d* [ D) equals to

WD � d� � Dð ÞFF ð17Þ

If we consider that the first harmonic of the lateral force is

a good estimate of the lateral force, the phase of the lateral

force in the sliding domain is approximately equal to:

/ � tan�1 WD

WS

� �

� tan�1 d� � Dð ÞFF

4G�a3

� �

ð18Þ

In the case of a Mindlin contact, by introducing Eqs. 1 and

8, Eq. 18 becomes:

/ � tan�1 d� � Dð ÞlE�

3RG�

� �

ð19Þ

The phase is only sensitive to d* if the other parameters are

constant. In our method, increasing d* is equivalent to

increase the sliding velocity. If l is not constant as a

function of the displacement, as proposed by several

models [34, 35], the phase could be used as an indicator of

the variation of the friction during the initiation of sliding.

The fact to have two data, the amplitude and the phase of

the lateral force, is a very good indicator of the relationship

between the friction force and the contact area. This

method is then very useful to study the relationship

between contact area, friction force, and sliding velocity.

Nevertheless, this method presents some drawbacks.

The first one is related to the fact that the initiation of

sliding is done after several cycles that can cause during

the experiment changes of the operating conditions

(plastic flow, wear, heat, change of the physico-chemical

conditions…). The other one is related to the fact that the

sliding velocity is not constant during the experiment.

This can introduce artifacts of measurements particularly

if the friction force is dependent of the sliding velocity. It

is, for example, known that the friction force at a nano-

metric scale shows a great dependence on the sliding

velocity [2].

3.2 Contact Between Two Silicon Nitride Surfaces

To establish a contact that comply with both Hertz theory

and Amontons’s law, Si3N4 cantilevers were used (DNP,

Digital Instruments, USA). The probe has a nominal cur-

vature radius equal to 20 nm. The most rigid cantilever was

used to avoid artifacts. The nominal stiffness of the can-

tilevers is 0.58 N/m.

In order to make a contact of the simplest nature, we

chose to establish a contact between the probe and a flat

surface of similar nature in order to have the same mate-

rials for the two bodies in contact. The back of a chip of a

DNP cantilever was chosen. An environmental scanning

electron microscope (ESEM) analysis shows that the

chemical natures are similar for the cantilever and the

center of the chip. One will note nevertheless the presence

of oxygen and carbon in the Si3N4 layer. The silicon nitride

is manufactured by CVD technique, starting from a mixture

of ammonia and dichloro-silane. Its chemical composition

is variable and the ratio N/Si varies from 0.27 to 1.33 [36].

The mechanical properties of the silicon nitride were

measured with the help of nanoindentation testing. The

tests were performed with a Nanoindenter XP (MTS, USA)

using a Berkovitch indenter and the Oliver & Pharr method

[37] at constant strain rate (0.05 s-1) until a maximum

indentation depth of 1,000 nm. Experiments have been

conducted using the ‘Continuous Stiffness Measurement’

method that allows a continuous measurement of the

Young’s modulus and Hardness. The Young’s modulus and

the hardness were found to be constant from 150 to 400 nm

indentation depths. Young’s modulus and hardness were

measured to be 140 and 25 GPa, respectively. This result is

in accordance with reported results for which the value of

the Young’s modulus varies from 130 to 155 GPa [23, 36].

After experiments, the probe radius was measured to be

26 ± 5 nm using an ESEM microscope. Due to the non-

conductive nature of Si3N4, probe imaging is difficult and

the measurement leads to a high uncertainty on the probe

radius. In situ calibration of the probe radius [38, 39] failed

to give reliable result as images realized in contact mode

are too noisy. The total displacement during an experiment

of the initiation of sliding is approximately 600 lm. This

distance is equivalent of the displacement done for a 1 lm2

image. Furthermore, silicon nitride is known to be resistant

to wear. Then during a set of experiments the wear of the

probe radius could be neglected and the probe radius could

be considered to be constant.

The cantilever stiffness was estimated using the unloaded

resonant frequency [40]. The resonant frequency was found

to be equal to 59.21 kHz. According to the geometrical and

material properties of the cantilever, its stiffness could be

estimated to be equal to 0.65 N/m. Cantilever calibration is

a difficult task especially for silicon nitride cantilever.

Burnham et al. [41] compared the results of four different

calibration methods and found important discrepancies. The

cantilever stiffness is then estimated with a high inaccuracy

leading to a poor accuracy of the applied load.

The friction force calibration has been done using the

in situ method proposed by Ogletree et al. [23]. A copper

surface chemically polished is used as sample for calibra-

tion. The method allows calibrating the friction coefficient,

6 Tribol Lett (2008) 30:1–11
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meaning that the friction force/normal force ratio is known

with a good uncertainty (\5%).

3.3 Initiation of Sliding

The aim of this article is to show that the initiation of

sliding at the nanometer scale still complies with macro-

scopic theory without expanding on the validity of the

Hertz theory and the Amontons’s law in our experimental

conditions. This last aspect has nevertheless been studied

and the validity of the Hertz theory and Amontons’s law

was checked (see Appendix for details).

The experiments of the initiation of sliding have been

done with a commercial SFM (Dimension 3100, Digital

Instruments, USA). For the experiments presented in this

article, the normal force was equal to 90 nN. The adhesive

force was measured to be 28 nN leading to a total applied

force equal to about 118 nN. The displacements were

generated at a frequency of 500 Hz from zero to a few

nanometers and the amplitude and phase of the lateral force

were recorded.

Experimental data are fitted to the theoretical curves by

adjusting the value of the friction force (59 nN), of D

(0.18 nm), and of the phase of the lateral force signal.

In a first step, a constant value /0 is added to the

experimental phase / in order to get the corrected phase /0.
We assume that when the d* is close to zero, there is no

dissipation in the contact (no sliding) and then the phase /0

should be equal to zero. Then, the value of /0 is chosen in

order to have an experimental phase very close to the

theoretical one especially when d* tends to zero

/0
d�!0

¼ /� /0 ¼ 0

� �

: The introduction of /0 is neces-

sary to correct the phase between the displacement of the

piezo-scanner and the input voltage.

In a second step, the out-of-phase component of the

lateral force is plotted as a function of the in-phase com-

ponent of the lateral force and fitted to the theoretical curve

by adjusting the value of the friction force. Then, in a third

step, the in-phase and out-of-phase components of the

lateral force are plotted as a function of d* and fitted to the

theoretical curves by adjusting the value of D. In a last step,

the experimental data are corrected using the correcting

factor v in order to obtain the true value of the lateral force.

Figure 5 shows the half-amplitude and phase of the

lateral force as a function of the d*/D, and Fig. 6 shows the

in-phase and out-of-phase components of the lateral force

as a function of d*/D. A very good agreement between

experimental and theoretical data according to the Mindlin

theory is observed. The experimental data are also com-

pared with the Savkoor theory using a different value of /0.

Whatever the value of /0, it is not possible to fit the

amplitude, phase, in-phase, and out-of phase components

with the same agreement. This is particularly obvious for

large displacements; in this case the experimental data of

the phase, in-phase, and out-of-phase component are

clearly lower than the theoretical values. If a higher value

of /0 is chosen, the agreement is good for large value but

fails for low value of d*/D. The phase is an indicator of the

ratio of the dissipated energy to the stored energy. The fact

that the theoretical phase is lower for a Savkoor model

means that the shear energy is higher for this model. As

total sliding occurs, the shear energy increase becomes

constant while the dissipated energy increases linearly with

displacement. The phase as a function of the displacement

curves are then different for the two theories and are not a

simple shift. The fact that the fit for Savkoor curve is less

good seems to show that this model does not plan the

correct shear energy.

The Mindlin and the Savkoor models are very similar;

the lateral force as a function of the normalized displace-

ment is very close for the two models and could not be

detected for a quasi-static displacement. But for an oscil-

lating displacement, the use of the amplitude and the phase

allows comparing the quality of the agreement between

experimental results and the two theories. Obviously the

difference between the two theories is so weak that it is

difficult to conclude definitively that the Savkoor model is

not valid in our experimental conditions as the experi-

mental curve could be sensitive to artifacts (nonlinearity of

the signals, noncurve geometry of the probe, etc...). Nev-

ertheless, the fact that the fit seems better for the Mindlin

model and that the friction force is proportional to load (see

Appendix for details) made us confident in the fact that the

Mindlin theory is still valid for our experimental condi-

tions. Whatever, this experiment shows that the initiation

of sliding in a nanometer contact could be also described

by theories developed for macroscopic contact.

The fitting value of D for the Mindlin theory is equal to

0.18 nm. According to the value of the friction force

(59 nN) and the calculated value of G* (16 GPa), the

contact radius is computed to be 3.8 nm (3.2 nm for a

Savkoor model). One should notice that the values used to

fit experimental data are given with an uncertainty due to

the difficulty to calibrate signals at high frequencies. Fur-

thermore, the fitting value of D is not perfectly constant

from an experiment to another. Nevertheless, the experi-

mental contact radius is in good agreement with the

theoretical value (3.1 nm) calculated using Eq. 1. The

uncertainty of the values of probe radius, applied load (and

then cantilever stiffness), and reduced Young’s modulus

are high, leading to a high uncertainty (at least 50%) of the

theoretical value of the contact radius. The uncertainty of D

and then the experimental contact radius is only due to the

uncertainty of the displacement, the friction force, and the
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combined shear modulus. These errors are systematic and

lead to a constant error on the contact radius. The present

method is then interesting to measure experimentally the

contact radius with a constant uncertainty. This data is

generally impossible to obtain and we propose to use it for

the determination of the contact area.

The fitting value of the friction force is also in relative

good agreement with the experimental friction force. The

experimental friction force is obtained by means of the

half-amplitude of the lateral force divided by p/4. This

value is obtained during an oscillating displacement of high

amplitude (about 4 nm at 500 Hz) for the same applied

load. The values are 59 and 65 nN for the fitting and

experimental values, respectively.

4 Discussion

Mindlin supposed that the friction force complies with

Amontons’s law, meaning that friction force is proportional

to both area and stress:

FF ¼
Z

sP dA ð20Þ

He decomposed the contact area in two components: The

shear area is the center of the contact and the sliding area, the

periphery. The energy needed to move the contact is only

stored by shear or dissipated by friction. If one considers

only the first harmonic of the signal and neglect the others

harmonics, the in-phase and out-of-phase components of the

lateral force are proportional to the stored and dissipated

energy, respectively. The excellent agreement between

experiments and theory shows that the experimental dissi-

pated and stored energy is similar to those predicted by the

Mindlin theory. In conclusion, the ratio of the shear area to

the sliding area follows those predicted by the Mindlin

theory and friction force complies with Amontons’s law as

experimentally observed (see Appendix for details).

These experimental results are quite easy to obtain,

reproducible, and are not affected by changes in the applied

load or frequency. It is especially true at low frequencies

for which the data are integrated on a few numbers of

cycles. No change of behavior was observed for low

applied forces for which the contact could be a multi

asperities contact. The principal reason is that it was not

possible to achieve experiments under negative load due to

snap-off (contact are maintained only by adhesive force).

Further experiments will be conducted in a liquid envi-

ronment to resolve this technical problem.

The Mindlin and Savkoor theories are not universal as

they do not consider adhesion forces. Johnson has proposed

theoretical model about the influence of the adhesion force

on the friction force [34, 35]. He shows that the contact

radius is not constant from static to sliding friction leading

to a different mechanism of the initiation of sliding than the

Mindlin or Savkoor theory. Initiation of sliding experi-

ments conducted on a polycarbonate surface shows a poor

agreement with the Mindlin or Savkoor theory [30], sug-

gesting that the Savkoor–Briggs and Johnson models

should be considered. Further works on the initiation of

sliding on polymer will be done to investigate the validity

of these models.

In the present experimental case the adhesion is mainly

due to capillary force. Adhesion forces are not able to

deform the surface and the contact still complies with an

extended Hertz theory (DMT model, see Appendix for

details). Experimentally, there is no evidence that the

capillary force changes from shear to sliding even for

displacement well higher than the contact radius. As the

two bodies in contact are rigid, the contact radius (about

3 nm) is about three times lower than the radius of the

circular wet area r1 (about 9 nm).

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffi

2 rKR
p

ð21Þ

The agreement between the Mindlin theory and experi-

ments being excellent, we can conclude that the adhesion

force is constant during the experiments. This means that

the meniscus bridge between the two surfaces slides as the

contact slides without significant change of the contact area

or that the sliding velocity of the contact is lower than the

velocity of (re)formation of the water meniscus. Never-

theless, for higher frequencies (6 kHz) and higher

amplitudes (few tens of nanometers) and then higher slid-

ing velocities, discrepancies were observed between the

Mindlin theory and experiments. This discrepancy is

characterized by a fall of the in-phase and out-of-phase

components of the lateral force with an increasing velocity.

These falls could be related to a decrease of the total

applied load due to a fall of the adhesion force. This aspect

has been developed in another article [42].

5 Conclusion

Experimental results show that in our operating conditions

and for a nanometer-size contact between two silicon

nitride surfaces, the DMT and Amontons’s laws are still

valid. A dynamic method to investigate the initiation of

sliding is used by submitting the contact to an oscillating

displacement d = d0 cos(xt) of increasing amplitude. The

in-phase and out-of phase components of the first harmonic

of the lateral force signal are measured and compared with

the theoretical values of a Mindlin and Savkoor model. A

relatively good agreement between our experiments and

these theories is observed. For our particular experimental

conditions, the Mindlin’s model gives a slightly better

8 Tribol Lett (2008) 30:1–11
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agreement than the Savkoor’s model. This study shows that

macroscopic concepts remain valid at the nanoscale, at

least for the particular case studied here.

Appendix: Conditions for using DMT Theory

and Amontons’s Law in a Nanoscale Contact

We seek to establish a contact that complies with both

Hertz theory and Amontons’s law theories with a SFM

probe. It is thus necessary that some assumptions are

checked:

1. The contact must be perfectly elastic without plastic

deformation. For that, it is necessary that the hardness

of surfaces is large compared to the contact pressure.

2. Surfaces must be sufficiently flat to not modify the

Hertzian geometry of the contact. The Hertz theory is

based on surfaces without roughness that is difficult to

valid at a nanometer scale. It is thus necessary to check

that the surface roughness can be neglected. We

propose to compare the roughness of the surfaces of

the theoretical contact area with the theoretical inden-

tation depth (Fig. 7). If the roughness of the theoretical

contact area is weak compared to the theoretical

indentation depth, the surface asperities are deformed

elastically and that the contact is governed by the

Hertz theory. On the other hand, if the roughness is

large compared to the theoretical indentation depth, it

is difficult to imagine that the surface asperities are

deformed elastically to form a single asperity contact:

The contact will thus be done between the asperities of

the two surfaces. The Hertz law can thus be validated.

3. The presence of a capillary meniscus generates the

presence of adhesive force that can form an adhesive

neck. This neck increases the contact area and

generates a contact that complies with the JKR theory.

It is thus necessary to check that the elastic deforma-

tion is negligible compared to the range of the

capillary forces.

4. Lastly, the Mindlin theory is based on a linear relation

between the friction force and the normal force

(Amontons’s law). It is thus necessary to check that

the friction force is proportional to the normal force.

Elasticity of the Contact

In order to confirm the elastic nature of the contact, the

theoretical contact stress is compared to the hardness of the

sample. If one supposes that the contact complies with

the Hertz theory, the required force Flim to have a maximal

contact stress equal to the hardness H is:

Flim ¼
p3H3R2

6E�2
ð22Þ

If we take the measured mechanical properties of the sili-

con nitride (H = 25 GPa, E* = 75.5 GPa taking m = 0.27

[23]) and the nominal probe radius (R = 26 nm), the

required force to generate plastic flow is equal to 9,600 nN.

This force is well superior to the highest force used during

the experiments and the hypothesis that the contact remains

fully elastic is valid.

Validity of the Hertzian Theory for Rough Surfaces

We propose to compare the theoretical indentation depth

with the roughness of the theoretical contact area. Indeed,

roughness parameters are highly dependent on the consid-

ered area [43]. For large considered area, the roughness

parameters like the Arithmetic Roughness RA and the Mean

Square Roughness RMS are generally constant. For low

considered area, the roughness parameter follows a power

relationship to the considered area. The measurement of the

surface roughness in the contact area is particularly difficult

due to its very small value. The theoretical contact radius is

of the order of a few nanometers. At this scale, it is difficult

to measure accurately the topography for two reasons: first,

the probe radius is big compared to the considered area

leading to an artifact known as dilation [38]; second, for low

roughness the noise-to-signal ratio becomes high. These

two phenomena do not allow measuring the true topography

of the surfaces. Nevertheless, we propose to estimate the

roughness of the contact area by extrapolating the rough-

ness measured at larger scales.

A topographic image of the silicon nitride surface was

made using a sharp probe (TESP-NCL, Nanosensors,

Switzerland) in order to reduce the dilation phenomenon.

The so-called Soft Tapping imaging mode was used and

servo loop parameters were fixed as low as possible to

optimize the noise-to-signal ratio.

The parameter RMS is then computed as a function of the

considered area: The image is cut up in square part of

Fig. 7 Comparison between the indentation depth and the contact

roughness. The theoretical indentation is calculated for a contact

between a sphere and a flat surface and is compared with the total

roughness in the same area. If the total roughness is well lower than

the indentation depth, it becomes obvious that the asperities are

flattened out and that the contact could be considered as a single

asperity contact. At the opposite, if the total roughness is high

compared to the indentation depth, the asperities are not flattened out

and the contact should be considered as a polyasperities contact

Tribol Lett (2008) 30:1–11 9
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decreasing size. For each part of the image, the RMS is

computed. Then, for all parts of the image of similar size,

the median values of the RMS are calculated and plotted as

a function of the considered area.

As the height of the surface follows a Gaussian distri-

bution, six times the RMS roughness corresponds to 99.7%

of the distribution and could be considered as a good

approximation of the value of the total roughness RT (dif-

ference between the highest and the lowest point). Then, it

is judicious to compare this value to the theoretical

indentation depth h of a contact of same area A. The

indentation depth is equal for a Hertzian contact to:

h ¼ a2

2R
¼ A

2pR
ð23Þ

Figure 8 shows on the same graph the estimated

roughness RT = 6 RMS and the theoretical indentation

depth h of a contact area A as a function of its contact

radius a (a = (A/p)1/2). The indentation depth is superior to

the roughness for a limit value of 2.7 nm. This value

corresponds to an applied force equal to about 100 nN. The

probability to generate a single asperity contact is superior

to 1/2 for a force superior to 100 nN.

Obviously, due to the very small-scale value of the

contact area, the estimation of the roughness in this area is

poorly accurate and underestimated by the high noise-to-

signal ratio. For forces superior to 100 nN, the probability

to have a single asperity contact superior to 1/2 is

concluded.

Capillary Adhesion in an Elastic Contact

The Hertz theory showed its robustness in many experi-

mental cases [44] including at the nanometer scale [2–7].

However, in some experimental cases, the adhesion force

cannot be neglected. In ambient air, the presence of water

generates the formation of a capillary meniscus around

contacts [45–47], the main adhesion force is due to the

attractive force generated by this capillary meniscus.

As a function of the ratio of the elastic strain with the

range of the adhesion force, the JKR theory [47] or the

DMT theory [48] governs the contact. Maugis [49] has

studied the transition between the DMT and JKR theories

using a Dugdale model [50] for which the depression due

to adhesion r0 is constant if the distance between surfaces

is lower than a threshold value and null beyond that.

Maugis introduces a dimensional parameter k:

k ¼ 2r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9R

16pwE�2
3

r

ð24Þ

and shows that the DMT and JKR theories are valid if

k\ 0.1 and k[ 3, respectively. The Dudgale model is

perfectly adapted to capillary condensation. If one modifies

the parameter of Maugis to the case of capillary

condensation (r0 = DP = -cLV/rK and w = 2cLV), one

obtains:

k ¼ � 1

rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi

9Rc2
LV

4pE�2
3

r

ð25Þ

In the case of capillary adhesion, the numerical

applications show that the Maugis criterion is close to

zero for current relative humidity (30–60%) and current

SFM probes (R = 10–40 nm). Exception occurs for very

low Young’s modulus (E \ 1 GPa) for which the Maugis

or JKR theories are more adapted.

During experiments, the humidity was typically between

30 and 60% leading to a Kelvin’s radius between -1 and

-2.3 nm, the nominal probe radius 20 nm and the combined

Young’s modulus equal to 75.5 GPa. The calculation of the

Maugis parameter k applied to a capillary force has been

done using Eq. 25 and a value between 0.010 and 0.024 has

been found. This value shows us without ambiguity that the

DMT theory is valid in our experimental conditions.

Validity of the Amontons’s Law

The relationship between the friction force and the normal

force is measured by means of the present method with

displacement half-amplitude well higher than the contact

radius (d* � D). At these displacement half-amplitudes,

the value of the half-amplitude of the first harmonic of the

lateral force signal is close to 4/p the value of the friction

Fig. 8 Comparison between the theoretical indentation depth (black

line) and the average total roughness by means of six times the RMS

roughness (gray line) in a contact of area A as a function of the

contact radius a. The roughness is computed from the inset SFM

image. The theoretical indentation depth becomes superior to the total

roughness for contact radius equals to approximately 2.7 nm. This

contact radius is theoretically achieves for a total applied force close

to 100 nN
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force [25, 28, 29]. The friction force by means of the half-

amplitude of the lateral force divided by p/4 is proportional

to the normal force (Fig. 9). The friction force is not equal

to zero at snap-off. This phenomenon is due to the oscil-

lating displacements that generate a premature snap-off:

The adhesive force was measured to be well lower when

the probe is submitted to a lateral oscillating displacement.

The Amontons’s law is then valid in our experiments.
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Fig. 9 Dynamic friction force as a function of the applied load. The

friction force (by means of the half-amplitude of the lateral force

divided by p/4) is proportional to the normal force but not equal to

zero at snap-off. This phenomenon is due to the oscillating

displacement that generates a premature snap-off
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