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Determination of mechanical properties by
nanoindentation in the case of viscous materials

A mechanical model based on a generalized Kelvin–Voigt
model has been developed to explain and fit the nanoinden-
tation curves realized on three amorphous polymers (PC,
PMMA and PS). This model includes the responses of
quadratic elastic (spring), viscoelastic (two Kelvin–Voigt
elements), plastic (slider) and viscoplastic components
(dashpot). It is able to fit nanoindentation curves during
loading, unloading and hold time periods. With the values
of the model parameters and the value of the contact area
calculated with the Oliver and Pharr method, it is possible
to calculate the values of the mechanical properties of the
polymers. A good agreement is found between these values
and those obtained with conventional methods.
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1. Introduction

The determination of the mechanical properties of bulk ma-
terials or thin films by instrumented indentation at a nan-
ometer scale was developed and has been widely used dur-
ing the last two decades [1, 2]. This technique is now
currently used to determine the hardness, the elastic modu-
lus or other mechanical properties on sufficiently low vol-
umes to obtain a local measurement of the mechanical
properties. Methods that allow determining the hardness H
and the elastic modulus E by taking into account the elastic
return of material during the unloading stage have been de-
veloped [3–5]. In the case of isotropic elastoplastic materi-
als, the elastic modulus and the hardness can be given with
excellent precision [3]. Nevertheless, in the case of materi-
als whose mechanical response is time-dependent, such as
polymers or biological materials, the description of the me-
chanical behavior by these two mechanical properties is ob-
viously inadequate [6–19].

The development of the continuous stiffness measure-
ment (CSM) method allows the continuous measurement
of three parameters (load, contact stiffness and phase), then

the calculation of the storage and loss moduli as well as the
hardness of the material. It is an interesting opportunity but
it remains limited to models with three parameters which
are generally insufficient to describe the mechanical beha-
vior of a material whose behavior depends on time [10, 14,
16, 18–21]. Another approach consists in fitting load–dis-
placement curves using various mechanical models includ-
ing viscous behavior [8, 10, 14, 16–17]. These models are
based on the combination of elastic, viscoelastic, plastic
and viscoplastic behaviors, modeled by springs, Kelvin–
Voigt elements (spring in parallel to a dashpot), sliders and
dashpots respectively [22].

These models allow fitting of experimental curves and de-
termination of some mechanical properties with more or less
convincing results in the quality of the fits and of the me-
chanical values that have been computed. In this work, an
elastic viscoelastic plastic viscoplastic model (EVEPVP)
(Fig. 1) is proposed to fit the indentation curves and to deter-
mine the mechanical properties of the indented materials.
Each element of the model has an independent quadratic re-
sponse: The root square of the load is proportional to the in-
dentation depth and/or the indentation depth rate (Table 1).
This model makes it possible to suitably adjust the displace-
ment curves during the loading and unloading stage, as well
as the hold load periods, after the loading and the unloading
stages on three massive amorphous polymers: polycarbonate
(PC), polymethyl methacrylate (PMMA) and polystyrene
(PS). From the estimate of the contact area, it is possible to
determine the relation between the displacements of each
element and to go back to the material mechanical properties.
Moreover, it shows that the values of the mechanical proper-
ties determined by our method are in good agreement with
the quasi static values determined by the Oliver and Pharr
method [5] and the values obtained from tensile tests.

2. Materials

Three amorphous polymers (PC, PMMA, PS) were tested.
The amorphous polymers were preferred to semi-crystal-
line polymers to prevent any heterogeneity of crystallinity
and thus of the mechanical properties.
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Fig. 1. Kelvin–Voigt generalized model with
quadratic elements. The model is composed
of a spring (elasticity), two Kelvin–Voigt ele-
ments (viscoelasticities), a slider (plasticity)
and a dashpot (viscoplasticity).
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The PC was provided by AxxisTM under the denomina-
tion AxxisTM PC and is ductile. The nominal mechanical
properties (tensile modulus ETensile, yield strength Re, ten-
sile strength Rm and Poisson's ratio m) are the following:
ETensile = 2.3 GPa, Re = 60 MPa and m = 0.4. The PMMA
was provided by AltuglasTM under the denomination Altu-
glasTM Ex and is brittle. The nominal mechanical properties
are ETensile = 3.3 GPa, Rm = 74 MPa, m = 0.39. The PS was

provided by GoodfellowTM and is ductile. The nominal me-
chanical properties are ETensile = 2.3–4.1 GPa, Re = 30–
100 MPa, m = 0.35. Tensile tests were performed with the
use of a ZwickTM Z010 tensile test machine at a strain rate
of 0.011 s–1. The elastic moduli obtained from the tensile
tests were 2.24, 3.10 and 3.23 GPa for PC, PMMA and PS
respectively.

3. Experimental protocol

All the indentation tests were carried out with a Nanoinden-
ter XP from MTSTM using the continuous stiffness mea-
surement (CSM) method with a frequency of 45 Hz and dis-
placement amplitude of 2 nm. A Berkovich indenter was
used. The indentation depth is calculated by including the
defect tip (missing end of the tip compared to a perfect Ber-
kovich geometry) using the method proposed by Hoeschet-
ter et al. [6]. The calibration factor C that connects the con-
tact area A to the contact depth hc:

A ¼ C h2c ð1Þ

was calibrated using a fused silica sample (C = 24.44).
The contact depth hc was calculated by using the Oliver

and Pharr method [5]:

hc ¼ ht � e
F

S
ð2Þ

With ht the indentation depth, F the load, S the contact stiff-
ness and e a geometrical coefficient equal to 0.75.

In order to make reliable use of the mechanical model
and in particular the determination of the mechanical prop-
erties, it is therefore important to carry out indentation tests
by using appropriate experimental protocols (sequence of
load, unload and hold load periods) and parameters (load
rate, hold load time).

3.1. Loading and unloading

The test is conducted at a constant loading rate/load ratio in
order to obtain a constant strain rate during the loading
stage, thanks to the application of the principle of geometri-
cal similarity for pyramidal indenters [23]. For the unload-
ing phase, it is extremely difficult to obtain a constant strain
rate because the principle of geometrical similarity is not
applicable due to the non-reversibility of the plastic defor-
mation. Nevertheless, we put forth the hypotheses that an
unloading process at a constant unloading rate/load ratio is
i) closest to the experimental conditions leading to a con-

stant strain rate as compared to experiments at constant
unloading rate

ii) that the strain rates obtained during the loading and un-
loading phase are equal if the loading rate/load and un-
loading rate/load are equal.

In addition, the strain rate must be sufficiently high to ob-
tain a delayed response making it possible to describe the
viscous behavior during the hold load plateaus and must
be sufficiently low so that the material viscosity only mod-
erately affects the indentation test and that the methods of
analysis remain valid. The fact of using a constant unload-
ing rate/load in our experimental conditions leads to a high
initial unloading rate (typically of the mN · s–1) at the be-
ginning of the unloading, in good agreement with the speci-
fication imposed for viscous materials [9, 11–13].

3.2. Hold periods

Indentation curves in the case of the polymers often show
an increase in the indenter depth (we will speak about sec-
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Table 1. Relation between load and displacement and determination of the mechanical properties from the model parameters. k, n and p

are the elastic, viscous and plastic parameters respectively that connect displacement or displacement rate to load. d, E, g and H are the
displacement, the elastic modulus, the viscosity and the hardness respectively.

Behavior Model Mechanical law Calculus of the mechanical
properties

Elastic (E)
ffiffiffiffi

F
p

¼ kE dE S ¼ 2 E�
ffiffiffi

A

p

r

E� ¼ k2E dE

ffiffiffi

p

A

r

Plastic (P) ffiffiffiffi

F
p

¼ p dP F ¼ H A
H ¼ p2 d2P

A

Viscoelastic
(VE) S ¼ 2 k2VE þ 2 kVE nVE _"

� �

dVE
S ¼ 2 E�

VE þ g�VE _"
� �

ffiffiffi

A

p

r

E�
VE ¼ k2VE dVE

ffiffiffi

p

A

r

g�VE ¼ 2 kVE nVE dVE

ffiffiffi

p

A

r

Viscoplastic
(VP)

ffiffiffiffi

F
p

¼ nVP _dVP F ¼ A gVP _" gVP ¼
n2VP dVP

_dVP

A
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ondary penetration) during the hold load plateaus after
loading or the presence of the so called phenomenon of
\nose" [6–9, 11] during the beginning of the unloading
curve if the hold time is not sufficiently large. Thus, the Oli-
ver and Pharr method is not perfectly adapted for viscous
materials. Too short a hold load period before unloading,
as compared to the unloading rate, leads to a too high mea-
sured slope of the unloading curve as compared to the slope
that should be obtained for a pure elastic response. If the
measured slope is too high, one obtains a too high elastic
modulus. Thus, for polymers, the values of the elastic mod-
ulus measured by nanoindentation are generally higher than
those measured by tensile test. It has been shown that the
slope of the unloading curve should be recalculated to take
into account the creep of the materials [9, 11–13]. For ex-
periments conducted with a monotonic loading and hold
depth period before unloading, Cheng et al. [12, 13] have
proposed recomputing the correct elastic slope S from the
experimental slope SExp. Ngan et al. [9, 11] proposed a sim-
ilar correction formula for experiments conducted with a
monotonic loading and hold load period before unloading,
(which is the conventional case):

1

S
¼ 1

SExp
�

_hh¼hmax

_Fh¼hmax

ð3Þ

Where _hh¼hmax and _Fh¼hmaxare the tip displacement rate just
before unloading and the unloading rate respectively. This
correction is valid for both viscoplastic [11] and viscoelas-
tic materials [9]. This equation shows that the correction is
not necessary if the displacement rate is low compared to
the unloading rate. Thus, it explains why it is necessary to
choose a long hold load period [7, 16, 19] and/or a high un-
loading rate [6]. Experimental results show on various sam-
ples that the values of hardness and elastic modulus become
constant if the hold load period is more than a few minutes
[6–7, 16, 19].

The presence of the \nose" is evidence that the mechani-
cal behavior of the indented material depends on time. This
phenomenon can be interpreted as a viscoelastic and/or vis-
coplastic phenomenon. To discriminate the kind of beha-
vior, it is thus important to check that the phenomenon is re-
versible (viscoelastic) or irreversible (viscoplastic) at the
observation scale of time, by imposing on the test a hold
load plateau after unloading. Then, it should be made sure
that the secondary penetration is almost completed before
beginning the unloading phase to ensure that a continuation
of the penetration during the hold load plateaus after un-
loading is not due to the continuation of a viscoelastic re-
sponse to the loading phase. Thus, the tests should be car-
ried out with a sufficiently large duration of the hold load
plateau so that the material relaxation times can be high-
lighted. Figure 2 shows a viscoelastic return of the material
during the hold load periods after unloading which makes it
possible to confirm that the behavior is mainly viscoelastic.

According to these considerations, all the tests were car-
ried out with the following procedure. The material was in-
dented with a constant loading rate/load ratio equal to
0.03 s–1 until an indentation depth of 3000 nm. The load
was then maintained constant for a period of 600 s in order
to be able to observe the secondary penetration. This value
is generally high enough as polymers show relaxation times
of a few minutes [8, 10, 14, 17]. The material was then un-

load at a constant unloading rate/load ratio (and equal at
the loading rate/load) in order to obtain a quasi constant
strain rate until a load value equal to 50% of the maximum
load was reached. After unloading, the load was maintained
constant for a period of 600 s. These experimental condi-
tions lead to a ratio _hh¼hmax= _Fh¼hmax that is typically two
orders of magnitude lower than the inverse of SExp, thus
the Oliver and Pharr method [5] could be used directly
without the need of the correction equation proposed by
Ngan et al. [11].

4. Modeling of the indentation test

4.1. Fitting the experimental curves with EVEPVP model

EVEPVP models are classically used to describe and fit
time-dependent experiments conducted on polymers. They
are based on a combination of a linear spring(s), dashpot(s)
and slider(s) either in parallel or in series [22]. To further
extend this model to nanoindentation experiments, this kind
of model should be modified to give a quadratic response as
nanoindentation experiments are generally conducted with
pyramidal indenters leading to a quadratic dependence be-
tween load and displacement.

For perfectly rigid conical or pyramidal indenters on a
elastic material, the relation between load and indentation
depth is given by [24]:

F ¼ 2

p
E� h2t ð4Þ

Where E* is the reduced modulus. This equation is similar
to the response of a quadratic spring:

ffiffiffiffi

F
p

¼ kE dE ð5Þ

Where kE and dE are the stiffness and the displacement of
the quadratic spring respectively. Furthermore, if the inden-
tation is purely elastic one can assume that the elastic re-
sponse could be modeled by a quadratic spring taking
ht = dE.

As well, according to the Oliver and Pharr model, the de-
finition of hardness for conical or pyramidal indenters on a
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Fig. 2. Load as a function of the indentation depth in the case of a
PMMA sample ( _F=F ¼ 0:03 s�1). One can see an increase and a de-
crease of the indentation depth during the hold load plateaus.
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perfectly plastic material (hc = ht) gives:

F ¼ H A ¼ H C h2t ð6Þ

This equation is similar to the response of a quadratic slider:

ffiffiffiffi

F
p

¼ p dP ð7Þ

Where p is the parameter connecting the load and the dis-
placement of the plastic element and dP is the displacement
of the plastic element. However, because plasticity is not
reversible, dp could not be less than

ffiffiffiffiffiffiffiffiffiffi

FMax

p
=p, where FMax

is the maximum load applied from the beginning of the test.
For viscoplastic behavior, the relation could be described
by a quadratic dashpot [8, 17]:

ffiffiffiffi

F
p

¼ nVP _dVP ð8Þ

Where nVP and dVP are the viscosity and the displacement of
the viscoplastic element. Furthermore, viscoelastic beha-
vior like a quadratic Kelvin–Voigt element (spring and
dashpot in parallel), leads to the following equation:

ffiffiffiffi

F
p

¼ kVE dVE þ nVE _dVE ð9Þ
Where kVE, nVE and dVE are the stiffness, viscosity and dis-
placement of the viscoelastic element respectively.

All these elements have a quadratic response: The root
square of the load is proportional to the elementary indenta-
tion depth and/or the elementary indentation depth rate (Ta-
ble 1). These equations are simple and could be easily used
to compute the elementary displacement whatever the
load– time history. Then it is possible to construct an analy-
tical quadratic model with these quadratic elements in ser-
ies to reproduce indentation curves taking:

ht ¼ dE þ dVE þ dP þ dVP ð10Þ

Schiffman [14] shows that a generalized Kelvin–Voigt mod-
el (n Kelvin–Voigt elements in series) is much better than a
Burger model (a Maxwell and a Kelvin–Voigt element in
series) to fit experimental curves. This means that the viscoe-
lastic behavior could not be modeled by only one Kelvin–
Voigt element. Furthermore, creep compliance tested by con-
ventional tensile tests show that amorphous polymers with
high molecular weight and narrow molecular distributions
present two relaxation times [25]. Two relaxation times or
more are also used to fit nanoindentation curves [10, 14].

Our EVEPVP model (Fig. 1) contains an elastic (spring),
two viscoelastic (two Kelvin–Voigt elements), a plastic
(slider), and a viscoplastic component (dashpot). In accor-
dance with our operating conditions, two Kelvin–Voigt
elements are sufficient to describe the viscoelastic behavior
of the three indented polymers. The use of one Kelvin–
Voigt element leads to a poor quality fit of the experimental
curves and the use of a third Kelvin–Voigt element is not
necessary to fit the experimental curves very well. The fact
that the model is based on two Kelvin–Voigt elements does
not means that the material has only two relaxation times. A
short relaxation time (much less than the (un)loading stage
time) cannot be distinguished from the elastic behavior
and a long relaxation time (much more than the hold load
time) cannot be distinguished from viscoplastic behavior.
Thus, it is uncertain if the mechanical behavior fitted by
the viscoplastic element is viscoplastic or viscoelastic beha-

vior with a very long relaxation time. It has already been
shown that polymers present very long recovery times after
unloading [26, 27] and the authors have notice that the re-
sidual imprints on PMMA samples disappear with time.

The fitting of the experimental curve is realized by the
following procedure: First of all, the load as a function of
time is extracted from experimental data and converts into
analytical load– time equations for the load, unload and
hold load periods in order to be
i) able to compute the displacements of all the elements as

a function of time
ii) check that the analytical load– time equations reproduce

perfectly the experimental curve.
Then, the elementary displacements are computed and
summed to obtain the indentation depth as a function of
time. This curve is then compared to the experimental one
and the difference between the two curves is computed by
the integration of the gap between them. The difference be-
tween the two curves is then minimized by adjusting manu-
ally the model parameters one by one. For each material,
three experimental curves are fitted: The difference be-
tween the values of the same model parameters computed
from two different curves is generally less than 5% except
for the viscoplastic element for which the difference could
be larger than 50%. This difference is explained by the fact
that the indentation test is conducted over too long a time
(typically half an hour) to prevent any drift. Then, the visco-
plastic element fits both the drift and the viscoplastic beha-
vior of the material. Nevertheless, the displacement of the
viscoplastic element is small as compared to the other ones,
and we can conclude that the materials have very little vis-
coplastic behavior as compared to their viscoelastic behav-
ior. Nevertheless, the fitting of the experimental curves by
this model is very satisfactory as observed in Fig. 3. Indeed,
one can see for the three indented polymers that the experi-
mental curves are very well fitted even for partial unloading
going up to 50% of the maximum loading. This shows that
this easy-to-use model could be used with confidence.

4.2. Model limitations

When a quadratic elastic –plastic model is used, one would
obtain a quadratic unloading curve. This would not allow
reproducing the experiments of unloading curves observed
for elastoplastic material: Indeed, Oliver and Pharr showed
that the experimental unloading curves for elastoplastic ma-
terials can be adjusted by a power law for which the expo-
nent is close to 1.5. This value corresponds to the unloading
curve of a perfectly elastic material indented by a parabolic
indenter [5]. Later, Bolshakov and Pharr [28] confirmed by
numerical simulation that the unloading curves for elasto-
plastic material should have an exponent power close to
1.5. This phenomenon is due to the fact that the pressure
distribution is similar in an elastoplatic material indented
by a pyramid and in an elastic material indented by a para-
bolic indenter. It has been shown that the unloading curves
in the case of a viscoelastic material can be fitted by a
power law whose exponent is much more than 1.5 [19]
which means that the exponent of the unloading curve is
also governed by the viscoelastic behavior of the material
or that the pressure distribution is probably not similar to
those found for elastoplastic-material. Nevertheless, by
using the EVEPVP model, it is perfectly possible to repro-
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duce the general shape of the unloading curves of a viscoe-
lastic material because they present exponents that can be
much higher than 1.5 and close to those observed experi-
mentally.

To validate the model it would be interesting to practice
several strain rates to check that the model parameters are
quite constant whatever the strain rate. Unfortunately, the ap-
plicable strain rates making it possible to obtain reproducible
indentation curves do not cover an important domain. Indeed,
for strain rates higher than 0.1 s–1, the curves are generally
not very reproducible and are strongly disturbed. With low
strain rates (lower than 0.01 s–1), the drift of the apparatus be-
comes almost equal to the indentation rate in particular dur-
ing the hold load plateaus. Thus, it is very hard to obtain
reproducible curves using a low strain rate. In these condi-
tions, applicable strain rates cover less than one decade.

Obviously, the proposed mechanical model does not
make it possible to adjust in a perfect way all indentation
curves. Furthermore, the same curve can be adjusted by sev-
eral sets of parameters with slightly different parameter val-
ues leading to approximately the same fit quality. It is thus
difficult to know if a set of parameters or another one is most
appropriate. It would be necessary to reproduce the indenta-
tion tests by varying the operating conditions and in particu-
lar the strain rates on great intervals to fix the problem but it
is not possible to conduct them in the actual condition.

In addition, the stresses applied during an indentation test
are triaxial. During the loading stage at a constant loading
rate/load ratio, the principle of geometrical similarity
makes it possible to say that the stress field is geometrically
equivalent whatever the indentation depth and that the con-
tact radius is proportional to the indentation depth. As a
consequence we can affirm that a quadratic EVEPVP mod-
el is valid during the loading phase but probably not valid
for the unloading phase.

During hold load plateaus, the penetration increases or de-
creases. The stress field is modified. Nevertheless it is noted
in our experiments that the contact stiffness remains roughly
proportional to the indentation depth during the hold load
plateaus after loading and during the unloading stage until a
load equal to about 25% of the maximum load value is
reached (Fig. 4). This allows us to make the hypothesis,
thanks to Sneddon's equation, that the contact area is propor-
tional to the square of the indentation depth and that a quad-
ratic model remains relevant for most of the unloading stage.

4.3. Comparison with other methods

The EVEPVP model presented in this article could be con-
sidered as a synthesis of the models and methods proposed
in the literature. Our approach is close to the method pro-
posed by Oyen and Cook [8, 17]. Their model is adapted
to their experiments that do not include a hold load plateau
after unloading. This model does not include Kelvin–Voigt
elements and will then fail to fit the viscoelastic return dur-
ing hold load plateaus after unloading. Liu et al. [16] and
Dub and Trunov [18] used a Burger model with just one
Kelvin–Voigt element. Schiffmann [14] proposed both a
Burger model and a generalized Kelvin–Voigt model.
Yang et al. [10] used an EVEPVP model but failed to com-
pute all the mechanical properties of the material.

5. Calculation of the mechanical properties

The parameters of the mechanical model allow connecting
the load to displacements of the various elements. These pa-
rameters make it possible to fit the experimental curves
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(a)

(b)

(c)

Fig. 3. Indentation depth as a function of time in the case of the inden-
tation of a PC sample ( _F=F ¼ 0:03 s�1). (a) An excellent agreement is
found between the experimental curve and the EVEPVP model fit. The
horizontal lines mark the beginning of the hold load plateaus. (b) The
total displacement of the model is the sum of the elementary displace-
ments of the model components. (c) Zoom on the viscous elementary
displacements of the model.
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very satisfactorily, which makes us trustful on the relevance
of the model. Nevertheless, they are of limited interest if it
is not possible to calculate the mechanical properties of in-
dented materials. To make the transition between the model
parameters and the mechanical properties, it is necessary to
connect the usual mechanics laws to the model equations.

Equation (5) models the elastic element. If this equation
is squared and differentiated, the stiffness is given by:

S ¼
_F

_dE
¼ 2 k2E dE ð11Þ

With identification with the Sneddon equation [24],

S ¼ 2 E�
ffiffiffi

A

p

r

ð12Þ

It follows that:

E� ¼ k2E dE

ffiffiffi

p

A

r

ð13Þ

Equation (9) models the viscoelastic element. The strain
rate is defined by:

_e ¼
_dVE

dVE
ð14Þ

So Eq. (9) becomes:
ffiffiffiffi

F
p

¼ kVE þ nVE _eð Þ dVE ð15Þ

If this equation is squared and differentiated and the strain
rate is maintained constant, the stiffness is given by:

S ¼
_F

_dVE
¼ 2 kVE þ nVE _eð Þ2 dVE

¼ 2 k2VE þ 2 kVE nVE _eþ n2VE _e2
� �

dVE ð16Þ

If the strain rate is small as compared to the other terms of
the equation, it becomes:

S ¼ 2 k2VE þ 2 kVE nVE _e
� �

dVE ð17Þ

Sneddon’s equation is extended to the viscoelastic behavior
by admitting that the contact stiffness is proportional to the
contact radius multiplied by the sum of the elastic compo-
nent E�

VE and of the strain rate multiplied by the viscous
component g�VE of the viscoelastic modulus:

S ¼ 2 E�
VE þ g�VE _e

� �

ffiffiffi

A

p

r

ð18Þ

With identification with Eq. (17), one obtains:

E�
VE ¼ k2VE dVE

ffiffiffi

p

A

r

ð19Þ

g�VE ¼ 2 kVE nVE dVE

ffiffiffi

p

A

r

ð20Þ

Equation (7) models the plastic element and the hardness is
defined by:

H ¼ F

A
ð21Þ

Combining the two equations, it becomes

H ¼ p2 d2P
A

ð22Þ

Lastly, Eq. (8) models the viscoplastic element. If we com-
pare to viscoplastic behavior:

F ¼ A gVP _e ð23Þ

Where gVP is the viscoplasticity. The strain rate is defined
by:

_e ¼
_dVP

dVP
ð24Þ

Leading to

gVP ¼
n2VP dVP _dVP

A
ð25Þ

Because the model parameters and the displacements are
known, it is thus possible to determine the values of the var-
ious mechanical properties of the model if the contact area
is known (Table 1). At the beginning of the unloading, the
contact area could be calculated from the Oliver and Pharr
method. As pointed out previously, the Oliver and Pharr
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(a)

(b)

Fig. 4. (a) Contact stiffness as a function of the indentation depth for a
PC sample ( _F=F ¼ 0:03 s�1). (b) Ratio of the contact stiffness to in-
dentation depth as a function of the relative load. One can see that the
contact stiffness is proportional to the indentation depth since the un-
loading load is more than 25 % of the maximum load.
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method could be used without any correction according to
our operating conditions. Then, we are able to compute all
the mechanical properties of our three polymers; this is
one of the major points of interest of this method.

Table 2 presents the values resulting from this calcula-
tion and shows that the values resulting from the EVEPVP
model are in conformity with less than 30% of the values
determined by tensile test (_e = 0.011 s–1) and nanoindenta-
tion ( _F=F = 0.01 s–1 and hold load period = 600 s) by using
the Oliver and Pharr method: The equivalent reduced elas-
tic modulus is the apparent elastic modulus computed with
the generalized Kelvin–Voigt model using the mechanical
properties calculated from the EVEPVP model and a strain
rate equal to 0.01 s–1 according to the following equation:

1

E�
Equivalent

¼ 1

E�
E

þ 1

E�
VE1 þ _e g�VE1

þ 1

E�
VE2 þ _e g�VE2

ð26Þ

Then, the equivalent elastic modulus is computed with the
bulk nominal value of the Poisson’s ratio:

EEquivalent ¼ E�
Equivalent 1� �2

� �

ð27Þ
The value of the equivalent modulus is then compared to
the value of the elastic modulus obtained using the classical
Oliver and Pharr method and tensile test. One can see that
the values of the elastic moduli and hardnesses are in rela-
tive good agreement whatever the method. Thus, these val-
ues make the authors confident in the fact that the EVEPVP
model is able to determine in a relatively reliable way the
mechanical behavior under our experimental conditions
and moreover the values of the viscous properties of the
material, values that cannot be computed easily with na-
noindentation experiments. It should be noted that the val-
ues of the viscoplastic component are high, which means
that the viscoplastic behavior is very modest. Furthermore,
it is not possible to be sure if this behavior is viscoelastic
with a very long time relaxation time or viscoplastic. One
can thus consider that the three polymers have essentially

elastic, viscoelastic, plastic behavior and that the use of an
elastic-plastic-viscoplastic model would be inadequate for
these polymers. The elastic and viscoelastic components of
the EVEPVP model are similar to a generalized Kelvin–
Voigt model. They are used to compute the viscoelastic be-
havior of the material as a function of the frequency using
the classical generalized Kelvin–Voigt model equations.
Figure 5 presents the complex elastic modulus and the
tan(d) of the 3 indented polymers as a function of the fre-
quency. One can see that the curve of tan(d) as a function
of the frequency is similar to tan(d) versus temperature
curves already published in the literature for amorphous
and semi-crystalline PET [29]. Thus, the authors are confi-
dent in the fact that nanoindentation experiments are able
to give frequency dependent elastic properties. The two re-
laxation times of the three materials are typically of half a
minute and 10 min whatever the polymers (Table 2). Even
if the relaxation times are dependent on the molecular
weight, these values are in relative good agreements with
values extracted from nanoindentation experiments [10,
14]. For example, in the case of the PC, the values of the
two relaxation times computed in this study are 27 and
445 s, which are very close to the values found by Schiff-
man [14] (34 and 448 s).

In further work, values of the viscoelastic properties de-
termined by our method will be compared with values ob-
tained with classical dynamic mechanical analysis experi-
ments for the same samples. It will help to refine and
validate our approach. Furthermore, a generalized Kevin–
Voigt model will be integrated in finite element simulation
to check if it is possible by reverse approaches to fit experi-
mental curves and compute the values of the mechanical
properties of such polymers by this way.

6. Conclusion

We showed that a simple analytical mechanical model is
able to fit very well the indentation curves carried out on
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Table 2. Value of the mechanical properties calculated from the EVEPVP model, the Oliver & Pharr method and by tensile test. The
equivalent elastic modulus is the apparent elastic modulus computed using the mechanical properties calculated from the EVEPVP mod-
el for an indentation test conducted at a loading rate/load equal to 0.01 s–1.

Method Mechanical behavior Mechanical
properties

Polymer

PC PMMA PS

Nanoindentation with EVEPVP model Elastic E�
E (GPa) 4.84 9.98 9.48

1st viscoelastic E�
VE1 (GPa) 7.83 5.18 8.29

g�VE2 (GPa s) 214 213 178

Relaxation time (s) 27 41 21

2nd viscoelastic E�
VE2 (GPa) 30.3 13 20.8

g�VE2 (GPa s) 13500 9940 8450

Relaxation time (s) 445 767 406

Plastic Hp (GPa) 0.16 0.186 0.235

Viscoplastic gVP (GPa s) 108 124 156

Reduced equivalent modulus E�
Equivalent (GPa) 3.20 4.07 4.66

Poisson’s ratio m 0.4 0.39 0.35

Equivalent modulus EEquivalent (GPa) 2.68 3.45 4.10

Nanoindentation with Oliver & Pharr
method

Elastic EOP (GPa) 2.22 3.34 3.90

Plastic HOP (GPa) 0.157 0.192 0.186

Tensile test Elastic ETensile (GPa) 2.24 3.1 3.23
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three amorphous polymers. This model is composed of in-
dependent, viscoleastic, plastic and viscoplastic elements
whose response is proportional to the root square of the
load. The data of the mechanical model could be converted
into mechanical properties by establishing a relation be-
tween the specific displacement of each element and the
contact area determined by the Oliver and Pharr method.
One then observes a good agreement between the values
determined by this method and the values resulting from
the traditional Oliver and Pharr method and from the tensile
test. It comes out from this analysis that the EVEPVP mod-
el and the method described in this article could be useful to
establish the mechanical behavior and compute with a rea-
sonable accuracy the values of the mechanical properties
of viscous materials.
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(a)
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Fig. 5. (a) Complex modulus and (b) tan(d) computed from the values
of the elastic and the viscoelastic properties as a function of the fre-
quency.
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