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A magnetic force modulation microscope (FMM) has been employed to measure the dynamic behavior of a contact between a
scanning force microscope (SFM) tip and a surface. Our experimental results show the inefficiency of the classical models (two
Kelvin^Voigt elements in parallel). A new model which takes into account the normal and tangential stiffness of the contact, and
also the geometrical and mechanical properties of the cantilever which hold the tip, is proposed. This model shows that the natural
frequency is sensitive to the normal stiffness, only if the ratio of the normal contact stiffness to the cantilever stiffness is between 0.2
and 200.Above this domain, the natural frequency is sensitive to sliding (Mindlin theory).
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1. Introduction

Since its invention in 1986, the scanning force micro-
scope (SFM) [1] has become a routine instrument for sur-
face investigations [2,3]. In addition to topographic
features, SFM was developed to produce image maps of
mechanical properties of materials at the nanometer
scale. Quantitative friction force [7^11] and adhesive
force imaging [12^16] has been realized. Furthermore,
force curves have been employed to measure the Young
modulus of surfaces with coherent results [17^21] and
force modulation microscopes (FMM) have supposedly
enabled the elastic imaging of surfaces [4,22^25].

The principle of FMM is to create a harmonic modu-
lation force on the contact and to measure the response
of the cantilever. Two types of FMM, direct and indirect
mode, can be used [4,5]. In the case of direct FMM, the
force acts directly on the cantilever. Alternatively, for
indirect FMM, the modulation is done via a vertical
modulation of the sample (or cantilever) position. Some
limitations are related to FMM. In both types the tilt of
the cantilever causes a horizontal displacement of the
contact point. The consequence is that the response of
the cantilever is influenced by both indentation and fric-
tion. Due to the lack of a suitable model no relation can
be given correlating the amplitude of vibration of the
cantilever and thematerial properties of the sample.

Furthermore some drawbacks are relevant to indirect
FMM in particular:

(i) The cantilever stiffness must be at least of the same
order of magnitude as that of the normal contact stiff-
ness. This leads to a major limitation at high applied
forces.

(ii) There is always a horizontal displacement when
the piezo ismodulated in a vertical direction.

(iii) For a constant driving voltage, the vertical displa-
cement amplitude of the piezo is dependent on the fre-

quency. The natural frequency peak of the cantilever is
not clearly visible on a frequency response curve because
it is mixed with the natural frequency peaks of the piezo
(fig. 1). Furthermore, the response of the piezo depends
on the amplitude of the driving voltage and of the mass
of the sample.

In order to overcome these drawbacks, we have cho-
sen to built a FMM where the modulation is applied
directly to the cantilever [4]. Direct FMM presents great
advantages:

(i) The natural frequencies of the cantilever without
contact are known.

(ii) The amplitude of vibration, and thus the sensitiv-
ity, is one or two orders of magnitude higher near the
natural frequency compared to low frequencies.

(iii) The natural frequency is not sensitive to variation
of the ``AÿB'' signal (variation of the laser beam inten-
sity, electronic noises, piezo vibrations at low
frequencies. . .).
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Fig. 1. Response frequency curve of the cantilever with a driving vol-
tage by a piezo electric ceramic. The natural frequency peak of the can-

tilever is not clearly visible.
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(iv) The band width of the natural frequency peak
gives information about the damping of thematerial.

The challenge of FFM is to realize quantitative elastic
imaging of a surface. We believe that it is possible by
acquiring the natural frequency of the cantilever. The
aim is to study the differences between the elastic proper-
ties of small volumes (nanometer scale) and bulk proper-
ties, the elastic properties of thin layers (from organic
films to oxide layers) or local heterogeneity of the Young
modulus.

2.Materials andmethods

2.1.Magnetic forcemodulationmicroscope

The principle of our instrument could be compared
with systems developed recently [4,26^28]. The instru-
ment is a commercial SFM (Autoprobe CP, Park
Scientific Instruments, USA) with a lateral force micro-
scope (LFM) head and a ``signal access module''. The
cantilever is made magnetic by a coating of cobalt. A
magnetic field is generated by a coil (Sigma SC30 1 mH,
resistance � 60 
, inductivity � 0:8 mH), which cre-
ates a force acting on the cantilever. The frequency is
generated and analyzed with an impedance/gain-phase
analyzer (Solartron 1260, Schlumberger, Germany)
piloted by home-made software via an IEEE interface
(KPC-488.2, Keithley, USA) (fig. 2). This enables us to
work in a frequency range of 1^300 kHz. At lower fre-
quencies, the response of the cantilever is noisy due to
piezo vibrations. At higher frequencies the amplitude of
vibration of the ``A^B'' signal becomes too low due to
the impedance of the coil, the band width and noise of
the SFM pre-amplifier. The modulation force is about
20 nN at low frequencies but could be easily increased by
one order ofmagnitude.

The response frequency curves are generated by
sweeping the driving voltage frequency.

2.2.Magnetic cantilever

The classical technique to give magnetic properties to
a cantilever is to glue a magnet onto the cantilever [4,26^
28]. This technique has some drawbacks:

(i) The glued magnet changes the mechanical proper-
ties of the cantilever. There is a lack of information
about the stiffness and themass of the cantilever.

(ii) These cantilevers are not easy to produce in a rou-
tineway.

(iii) The cantilevers made by this technique are not
reproducible because the gluedmagnet is made by crush-
ing a bigger one [4]. The geometry of the magnet is
unknown, which leads to a lack of information about its
magnetic behavior and the localization/orientation of
the modulation force (normal or/and lateral excita-
tion).

For these reasons we chose to coat the cantilevers
with a thin layer of cobalt. Our cantilevers are Si3N4
commercial cantilevers (Young modulus 130^150 GPa,
density 2.8^3.1 [29,30]) (Microlever, Park Scientific
Instrument, USA) with a pyramidal tip (H � 3 �m,
R � 50 nm). We used both rectangular and triangular
shape cantilevers with different stiffnesses (table 1). A
cobalt layer is deposited on the backside of the cantilever
under low argon pressure using cathodic sputtering.
This layer is about 30^40 nm thick.

3. Theory of forcemodulation

3.1.Hertz theory

The elastic contact between two bodies has been mod-
eled byHertz [6]. In the case of a sphere of radiusR and a
plane pressed together with a normal force Fn, the radius
of contact a, the indentation depth �, and the normal
contact stiffness kn;c are equal to:

a � 3FnR
4E�

� �1=3

; �1�

� � 9F 2
n

16RE�2

� �1=3

; �2�

kn;c � 2aE� � �6FnRE�2�1=3 ; �3�
with

E� � 1ÿ �21
E1

� 1ÿ �22
E2

� �ÿ1
�4�

and E1, E2 and �1, �2 are the Young modulus and the
Poisson ratio of the two surfaces respectively.

3.2.Model

It is said that the equivalent model of the tip/surface
contact, for direct force modulation, is a parallel
arrangement of two Kelvin^Voigt elements [4,5] (fig. 3).
The normal contact stiffness kn;c adds to the cantilever
linear stiffness kl;t resulting to an increasing of the nat-
ural frequency fc. For a cantilever of constant effectiveFig. 2. Schematics of themagnetic FMM.
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massM and no damping, the relative resonant frequency
fr, ratio of fc to the natural frequency in vacuum fv,
should be equal to:

fr � fc
fv
� kl;t � kn;c

M

� �1=2 M
kl;t

� �1=2

� �kl;r � 1�1=2 ; �5�

with

kl;r � kn;c
kl;t

: �6�

4. Experimental results

The first stage of our approach was to measure the
natural frequency of the cantilever without contact fa
and when the tip is in contact with the surface fc. The aim
is to measure the normal stiffness kn;c of the contact
between the tip and the surface in order to see the ability
of our system to probe the Young modulus of the sur-
face.

4.1.Cantileverwithout contact

The natural frequencies of a cantilever without con-
tact, fa, have been measured. The first natural frequency
was found to be less than the theoretical value. The
cobalt coating causes a decreasing of the natural fre-
quencies of the cantilever. Theoretically, the natural fre-
quencies of a homogeneous beam of length L, Young
modulus E, moment of inertia I and of mass M, are
equal to [31]:

fv � Cn
EI
ML3

� �1=2

; �7�

with

M � �WTL �8�
and Cn a coefficient available for each mode (which
depends on the boundary conditions) given in table 2
[31]. In the case of a rectangular beam:

fv � Cn�����
12
p T

L2

E
�

� �1=2

: �9�

In the case of a cantilever made with two layers of
thickness Ta and Tb of two different materials of Young
modulusEa andEb,EI is equal to [32]:

EI � WT3
bTaEaEb

12�TaEa � TbEb�C ; �10�

with

C � 4� 6
Ta

Tb
� 4

Ta

Tb

� �2

�Ea

Eb

Ta

Tb

� �3

�EbTb

EaTa
: �11�

The natural frequencies found are close to the theoretical
values. Fig. 4a shows the response of a rectangular canti-
lever (type B) as a function of the frequency. The 1st,
2nd, 3rd and 5th peaks are respectively corresponding to
the four first modes of flexion vibration, the 4th peak is
probably a torsion mode of vibration, as shown in
fig. 4b.

Table 1
Geometrical andmechanical characteristics of the cantilevers used (taken from themanufacture sheet)

Cantilever Shape L (�m) W (�m) T (�m) kl;t (N/m) fa (kHz)

A triangular 180 18 0:6� 0:1 0.03^0.08 22� 4
B rectangular 200 20 0:6� 0:1 0.01^0.03 15� 3
C triangular 320 22 0:6� 0:1 0.006^0.015 7� 1
D triangular 220 22 0:6� 0:1 0.02^0.05 15� 3
E triangular 140 18 0:6� 0:1 0.06^0.15 38� 6
F triangular 85 18 0:6� 0:1 0.3^0.8 100 � 20

Fig. 3. Schematic of the ``two Kelvin^Voigt'' mechanical equivalent
model. The two Kelvin^Voigt elements correspond to the cantilever

and the contact stiffness.

Table 2
CoefficientsCn for the natural frequencies of a beam

Mode

1 2 3 4 5

``clamped-free'' beam
Cn 0.56 3.50 9.82 19.26 31.83
``clamped^hinged'' beam
Cn 2.45 7.96 16.55 28.33 43.29
``clamped^clamped'' beam
Cn 3.50 9.82 19.26 31.83 47.46
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4.2. Tip in contact

4.2.1. Influence of the cantilever
The frequency response curve, when the tip is in con-

tact with the surface, shows several peaks indicating a
system with n degrees of freedom. The first natural fre-
quencies for different cantilevers, for the same surface of
glass and a constant force has been measured (fig. 5).
The ratio of the first natural frequency in contact to the
first natural frequency without contact fr is about 4.1 for
a triangular shape cantilever, whatever the cantilever
stiffness kl;t may be, and about 4.7 for a rectangular
shape cantilever (table 3). This indicates that fr is more
influenced by the geometrical shape than its stiffness.

Furthermore in air for a cantilever of type C, the
amplitude of vibration is about 2 �m for a driving vol-
tage of about 20 nN. When the tip is in contact with a
glass surface with a force of about 50 nN, the contact
stiffness should be about 300 N/m (Hertz theory). With
the same driving voltage, the amplitude of the ``A^B''

signal is two orders of magnitude lower at low frequen-
cies (fig. 5). If we consider that the amplitude of the
``AÿB'' signal is only due to indentation, the indentation
modulation depth must be about 20 nm, requiring a
modulation force of about 6 �N, which is two orders of
magnitude higher than the real modulation force.
Because the ``AÿB'' signal is sensitive to the changes in
position angle of the edge of the cantilever, two move-
ments or a combination of them, can be measured: the
vertical or the horizontal displacement (in the axis of the

a

b

Fig. 4. (a) Response frequency curve of a rectangular cantilever (type
B) without contact. The different peaks could be associatedwith the dif-
ferent modes of vibration. (b) Response frequency curve of the ``AÿB''
(black line) and ``LFM'' (grey line) signal for a cantilever (typeD)with-
out contact. The LFM peaks are clearly visible on the AÿB signal
arrows. The decreasing of the intensity of the LFM signal (and also the
AÿB signal) before the first peak is due to the band width (10 kHz) of

the SFMpre-amplifier.

a

b

Fig. 5. Response frequency curves for (a) a cantilever (type C) without
contact; (b) the same cantilever in contact with a surface of glass for the
same driving voltage. Note the noisy response at low frequencies due to
piezo vibration, and at high frequencies due to the SFMpre-amplifier.

Table 3
Natural frequencies for a cantilever without contact and the same can-
tilever in contact with a surface of glass (applied force � adhesive
force)

Cantilever

C D A E F B

kl;t (N/m) a 0.01 0.03 0.05 0.1 0.5 0.02
fa (kHz) 5.82 13.00 11.93 28.54 92.85 13.17
fc (kHz) 23.24 52.81 48.49 117.96 > 300 61.43
fc=fa 3.99 4.06 4.06 4.13 4.66

a Taken from themanufacture sheet.
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beam) of the tip. In this case, thismeans that themodula-
tion amplitude of the ``AÿB'' signal is mostly influenced
by horizontal motion of the tip and then friction.

4.2.2. Influence of the surface
The first natural frequency of the rectangular cantile-

ver (type B), when the tip is in contact with a surface, fc
has been measured for different materials. We chose a
rectangular cantilever because it is more easy to describe
mechanically. The surfaces have been chosen for their
flatness and to be a representative sampling of surfaces
(Young modulus, hardness, density, nature of the mate-
rial) [33]. The values of the fc are indicated in fig. 6, for
different forces and surfaces. It is notable that the first
natural frequencies are close together, whatever the sur-
face or the applied force may be, and could not be
directly linked to the mechanical properties of the sam-
ple (table 4).

5.Discussion

5.1. Inefficiency of the ``twoKelvin^Voigt''model

The inefficiency of the ``two Kelvin^Voigt'' is due to
the fact that themodulation force is not perfectly applied
in the same axis as the applied force. This model could
not explain our results for six reasons:

(i) fc is between 60 and 63 kHz whereas it should be
between 300^2300 kHz (table 5).

(ii) For Fn greater than 5 nN, fc decreases with the
applied forcewhereas it should increase.

(iii) For constant force, fc could not be directly linked
to the Young modulus of the surface whereas it should
increasewith theYoungmodulus of the surface.

(iv) For constant Fn and the same surface, fr remains
stable with an increasing of kl;t whereas it should
decrease.

(v) There are several resonance peaks whereas there
should be a single peak.

(vi) fr is sensitive to the geometry of the cantilever
whereas it should not be sensitive.

Nota bene: Because the first natural frequency
decreases with the applied load, we could imagine that
this is due to an increase of the effective vibrating mass
caused by an addition of part of the sample, near the con-
tact point, to the cantilever mass. This is true if the sam-
ple is unable to evacuate the kinetic energy transmitted
by the tip. However, in our case:

Esample

�sample

� �1=2

� 2�fAv ; �12�

with Av, amplitude of vibration and f, frequency.
Furthermore to influence the effective mass, this volume
must be of the same order of magnitude as the cantilever
dimension (� 2400 �m3) which represents a half sphere
of about 10 �m in radius!?

5.2.Newmodel

From these considerations, a new 2D model which
takes into account the geometrical andmechanical prop-
erties of the cantilever and the normal and tangential
contact stiffness has been built (fig. 7). This model does
not take into account the damping of the system, the tor-
sion of the cantilever, its static deformation, or the angle
between the cantilever and the sample.

In our model the cantilever is decomposed into n ele-
ments, of equal length, defined by geometrical nodes.
Each node has two degrees of freedom (flexion and rota-
tion). The edge of the cantilever is linked with a coil
spring (for the normal contact stiffness) and a spiral
spring (for the lateral contact stiffness). We have calcu-
lated the first natural frequencies of the cantilever using
finite element analysis.

Fig. 6. First natural frequency of a cantilever when the tip is in contact
with a surface as a function of the applied force for several materials

(fa � 13:17 kHz).

Table 4
Youngmodulus, hardness and density of the surface used

Material

sapphire steel gold glass PET

Youngmodulus (GPa) 400 200 80 70 3
hardness (MPa) 5000 � 1000 40 7200 � 20
density (kg/m3) 3900 7800 19300 2500 � 1200

Table 5
Predicted first natural frequencies (kHz) by the ``two Kelvin^Voigt''
model taking kl;t � 0:02 N/m, R � 50 nm, Etip � 130 GPa and
fa � 13:17 kHz

Force (nN) Sapphire Steel Gold Glass PET

5 1482 1384 1186 1153 462
20 1876 1744 1494 1452 582
40 2106 1917 1677 1630 654
60 2253 2094 1794 1744 699

P.-E.Mazeran, J.-L. Loubet /Forcemodulationwith aSFM:an analysis 129



5.2.1.Case of a beam linkedwith two springs
The first natural frequency of the cantilever when

the edge of the cantilever is linked to a linear spring kl
and a rotational spring k� has been estimated by compu-
ter calculation. This model shows that fr depend only on
kl;r and k�;r. Simulation results are presented in fig. 8. fr
does not exceed 6.25, the value corresponding to the
ratio of the first natural frequency of a ``clamped^
clamped'' beam to the first natural frequency of a
``clamped^free'' beam [31].

5.2.2.Case of a cantilever in contactwith an elastic
surface
The tangential stiffness of an elastic contact between

a sphere and a plane has been studied by Mindlin [6]. If
there is no sliding the tangential stiffness kt;c is equal to:

kt;c � Ft
dx
� 8aG� � 4kn;c

G�

E�
; �13�

with

G� � 2ÿ �1
G1

� 2ÿ �2
G2

� �ÿ1
� 2�1� �1��2ÿ �1�

E1
� 2�1� �2��2ÿ �2�

E2

� �ÿ1
: �14�

IfE1 � E2 the relation between kt;c and kn;c becomes:

kt;c � 2�1ÿ �1�
�2ÿ �1� kn;c : �15�

The Poisson ratio �1 varies from 0.1 (for diamond) to
0.5 (for rubber). So the ratio of kt;c to kn;c varies from 2/3
to 18/19 with an average value of 0.85. The first natural
frequency of a cantilever in contact with a surface for an
elastic contact could be calculated (fig. 9) with the
equivalent rotation stiffness k� equal to (if � � 0):

k� � sin �
�

Hkt;c � Hkt;c : �16�

It is interesting to see that the first natural frequency is
sensitive to normal stiffness or tangential stiffness only
for some values of kl;r. fc is no longer sensitive to kl;r if the
natural frequency exceed a limit value fl equal to:

fl � 4:375 fv ; �17�
with fv � 1:02 fa [30] and 4.375 the value corresponding
to the ratio of the first natural frequency of a ``clamped^
hinged'' beam to the first natural frequency of a
``clamped^free'' beam.

In our experiments, fa � 13:17 kHz, the calculation
leads to fl equal to 58.8 kHz. fc was at least equal to 60.2
kHz, a value only sensitive to the tangential stiffness. In
this domain, if there is a partial slip the relative displace-
ment dx is equal to:

dx � 3�Fn
16aG�

1ÿ 1ÿ Ft
�Fn

� �2=3
" #

: �18�

For a modulation of force which leads to an amplitude
of vibration of 1 �mwithout contact, the sliding distance
would be about 5 nm. If we consider that the apparent
tangential stiffness is equal to the tangential force
divided by the total displacement, the apparent tangen-
tial stiffness is considerably lower than the value given
by the formula (13). For example for a sliding distance of
10 nm, the apparent tangential stiffness is equal to 1/10
of the tangential stiffness without sliding (fig. 10).
Furthermore, if there is sliding, a part of the energy is
dissipated, introducing a damping effect.

These two phenomena could explain why the first nat-
ural frequency decreases with the applied load. An
increase of the sliding distance or an increase of the
damping leads to a decrease of the natural frequency.

6. Conclusions

Experimental results of direct FMMshow:
(i) The inefficiency of the ``two Kelvin^Voigt''

model.
(ii) That the amplitude of vibration of the ``AÿB'' sig-

nal is not, as usually said, representative of the vertical
movement of the tip. It is mostly influenced by the hori-
zontal movement (in the axis of the beam) of the tip. The

Fig. 7. Schematics of our mechanical equivalent model. The edge of
the cantilever is linked to a spiral spring and a coil spring. The arrows

represent the possiblemovement of each node.

Fig. 8. Predicted first natural frequency of a cantilever corresponding
to the schematic of fig. 7 as a function of kl;r and k�;r with n � 7. The four
plateaux are corresponding to the values of the first natural frequency
of a ``clamped^free'', ``clamped^guided'', ``clamped^hinged'', and

``clamped^clamped'' beam.
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contrast of direct FMM image is essentially due to fric-
tion and could not be used for elastic imaging.

A new model which is able to explain our experiment
is proposed. This model shows that direct FMM should
be able to probe the Young modulus of a surface by

measuring the first natural frequency of the cantilever.
The important information is that the first natural fre-
quency is sensitive to the normal stiffness of the contact
only if it is of the same order of magnitude as the cantile-
ver stiffness. For SFM classical experiments (Si3N4 can-
tilever, Young modulus of the tip � 130 GPa, tip
curvature radius � 20^50 nm, applied force � 1^200
nN, Young modulus of the sample � 0.1^1000 GPa) the
normal contact stiffness estimated by the Hertz theory is
equal to 1^1000 N/m. The stiffness of the cantilever (in
the case of a rectangular beam) must be equal to 5 N/m
to be able to give the normal stiffness of the contact. If
the stiffness of the cantilever is too small, the natural fre-
quency is sensitive to the friction and could not be
exploited tomeasure elastic properties ofmaterials.

In the case of indirect force modulation, the classical
model (two Kelvin^Voigt elements in series) is probably
not correct because it does not take into account the geo-
metrical and the mechanical properties of the cantilever
and the tangential contact stiffness. We believe that the
response of the cantilever is also mostly influenced by
friction, especially for low cantilever stiffness. Some
models of indirect force modulation have been realized,
andwill be presented in a following paper.
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Appendix: nomenclature

a radius of contact circle

Fig. 9. First natural frequency of a rectangular beam in the case of a hertzian contact predicted by the ``two Kelvin^Voigt'' model (dashed line)
and our model with n � 7 and kt;c � 0:85 kn;c (no sliding, black solid line) and kt;c � 0:085 kn;c (sliding � 10 nm, grey solid line). The square repre-

sents the domain of experimental and theoretical values if we consider that there is no sliding.

a

b

Fig. 10. (a) Tangential force as a function of the displacement for a sur-
face of glass with a force of about 50 nN; (b) apparent tangential stiff-
ness of the contact as a function of the displacement. The greater the

sliding, the lower the apparent tangential stiffness.
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Av vibration amplitude
C coefficient
E Young modulus
E� reduced Young modulus
f frequency
fa first natural frequency of cantilever without con-

tact in air
fc first natural frequency of cantilever when the tip

is in contact with a surface
fr ratio of fc to fv
fv first natural frequency of cantilever without con-

tact in vacuum
Fn normal force
Ft tangential force
G shear modulus
G� reduced shear modulus
H tip height
I moment of inertia
kl linear stiffness
k� rotational stifness
kl;t cantilever linear stiffness
k�;t cantilever rotational stiffness
kn;c contact normal stiffness
kt;c contact tangential stiffness
kl;r ratio of kn;c (or kl) to kl;t
k�;r ratio of k�;c (or k�) to k�;t
L cantilever length
M cantilever mass
R (tip curvature) radius
T (cantilever) thickness
W cantilever width
� indentation depth
� density
� angle
� friction coefficient
� Poisson ratio
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