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Normal and lateral modulation with a scanning force microscope,
an analysis: implication in quantitative elastic and friction imaging
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Results and an analysis are presented on elastic and friction imaging by indirect force modulation with a scanning force microscope.
Two techniques are compared, normal modulation (Z-modulation, perpendicular to the surface of the sample) and lateral modulation of
the contact (X-modulation in the plane of the sample, perpendicular to the axis of the cantilever). Theoretical and experimental results
show that lateral modulation offers great advantages compared to normal modulation: the images are free of artifacts and can be easily
quantified.
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1. Introduction

Since its invention in 1986 [1], the scanning force micro-
scope (SFM), also called atomic force microscope (AFM),
has been developed to produce image maps of mechani-
cal properties at the nanometer scale. The most notable
extension of contact SFM is probably the development of
the lateral force microscope (LFM), which is able to meas-
ure quantitatively the friction force between the tip and the
sample [2–8], and the development of the force modula-
tion microscope (FMM) technique which opened the field
of qualitative analysis of the elasto-plastic properties of the
sample [9–15].

The principle of FMM is to create a harmonic mod-
ulation force on the contact, of some amplitude on top
of the static applied force, and to measure the harmonic
response of the cantilever. Two types of FMM, indirect
[9–12] or direct [13–15] mode, can be used. In the case
of direct FMM, the force acts directly on the cantilever
whereas for indirect FMM, the modulation is achieved via
a vertical modulation of the sample (or cantilever) posi-
tion. In indirect FMM, the modulation could be normal
(Z-modulation) or lateral (X-modulation) to the sample
(figure 1), but only Z-modulation is commercially avail-
able and currently used. Nevertheless, some limitations of
the Z-modulation technique can be noticed:

(1) The major default of the Z-modulation technique is due
to the laser beam detection system. The Z-modulation
induces a tilt of the cantilever and then a Y -modulation
of the tip. The Y -movement of the tip leads to a lat-
eral force. Because the “A-B” signal is sensitive to
the change of angle at the edge of the cantilever, the
“A-B” signal is sensitive to the normal and lateral force
applied on the tip. It is why lateral stiffness and/or fric-

tion forces could influence FMM experiments [15,16].
So in the simplest case, three regimes can be obtained
depending on the Z-modulation operating conditions:
first an elastic indentation regime, second a lateral elas-
tic regime and third a lateral friction regime. These
three regimes are not well separated and the response
of the cantilever is a complex combination of them.
The influence of the operating conditions (amplitude,
angles between the lever and the surface, geometrical
and mechanical properties of the lever and the mechan-
ical properties of the material) on these three regimes
are not well known. So, due to the lack of a model
that takes into account the lateral force, no relation
could be given between the response of the cantilever
and the elasticity of the surface. These limitations lead
to much difficulty to realize quantitative imaging and
sometimes true elastic imaging. As an example strong
friction influence has been discussed [16].

Figure 1. Schematic of FMM. The sample is modulated in the z or
x axis. The response of the cantilever depends on normal or lateral con-
tact stiffness (if the excitation is small enough) for Z-modulation and

X-modulation, respectively.
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Figure 2. In Z-modulation, the cantilever response is amplified by the
servo-loop and re-injected in the scanner so added to the original exci-
tation. The consequence is that the cantilever is solicited by a complex

input and leads to poor quality imaging.

Figure 3. Schematic of the “two Kelvin–Voigt” mechanical equivalent
model. The two Kelvin–Voigt elements (built with a spring of stiffness k
and a damper of damping constant C correspond to the mechanical prop-

erties of the cantilever and of the contact.

(2) The excitation of the contact leads to a response of the
cantilever and then, to the appearance of a harmonic
signal on the “A-B” signal. Because the “A-B” is the
input of the servo loop, the piezo is also excited by this
signal which creates a sub excitation of the piezo (fig-
ure 2). This phenomenon leads to poor quality imaging
due to noise. This is why higher quality FMM imaging
is obtained with a two-piezo system at high frequency.
In this system, two piezos are used; the first one is used
to monitor the position of the sample whereas the other
one is only used for the excitation of the contact. The
frequency is chosen to give a good response on the ex-
tra piezo and a low response on the monitor position
piezo.

Nomenclature

a: contact radius
A: ratio of the lateral contact stiffness on the normal contact stiffness
d: lateral movement
d∗: amplitude of a harmonic lateral movement
C: LFM calibration parameter
D: limit displacement between partial slip and total slip

∆S: Z-movement of the sample
∆Y : Y -movement of the tip
∆Z: Z-movement of the lever
∆Θ: angle change of the lever
e: meniscus radius
E: Young modulus
E∗: reduced Young modulus
f : first flexion resonance frequency of the cantilever

FCap: capillary force
FF: friction force
FL: lateral force
FN: normal force
g: liquid film thickness
G: shear modulus
G∗: reduced shear modulus
H: tip height
I: moment of inertia
kB: buckling cantilever stiffness
kF: flexion cantilever stiffness
kL: lateral contact stiffness
k∗L: lateral system stiffness
kN: normal contact stiffness
k∗N: normal system stiffness
kT: torsion cantilever stiffness
L: length of the cantilever
n: ratio of the normal contact stiffness to the flexion cantilever stiff-

ness
M : applied couple
M∗: equivalent mass of the cantilever
N : normal force
Pm: average pressure
R: radius
R∗: equivalent radius
α: angle between the cantilever and the sample in the Y -direction
β: angle between the cantilever and its substrate
δ: elastic deformation
ξ0: atomic equilibrium distance
γ: angle between the cantilever and the sample in the X-direction

γLV: surface tension of a liquid
λ: Maugis parameter
ν: Poisson ratio
w: work of adhesion

(3) The equivalent model proposed for indirect FMM,
is a series arrangement of two Kelvin–Voigt ele-
ments [13,17] (figure 3). The system compliance is
equal to the sum of the compliance of the two springs
modeling both contact stiffness and cantilever stiffness.
For Z-modulation experiments:

k∗N =

(
1
kN

+
1
kF

)−1

, (1)

with kN the normal contact stiffness and kF the can-
tilever stiffness.

According to the “two Kelvin–Voigt” model the vertical
movement of the tip ∆Z, for quasi-static measurement with
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a low modulation and without damping [9] should be equal
to

∆Z =
n

n+ 1
∆S, (2)

with ∆S the Z-modulation of the sample, and n the ratio
of the normal contact stiffness kN to the cantilever flexion
stiffness kF:

n =
kN

kF
. (3)

As a consequence, for a good sensitivity the cantilever
stiffness must be at least of the same order of magnitude
of the normal contact stiffness which is typically about 10–
1000 N m−1. For example, according to the DMT the-
ory (see section 3), if the equivalent radius R∗ is equal
to 50 nm, the normal force equal to 1 nN, and the equiva-
lent elastic modulus E∗ equal to 3 GPa, the normal contact
stiffness kN is close to 14 N/m.

Recently Rabe et al. [18] have shown the limitation of
the “two Kelvin–Voigt” model and proposed a model which
integrates the mechanical properties of the lever. Still more
recently, Mazeran and Loubet [15] have proposed a similar
model that also integrates the tangential properties of the
contact.

In this paper, we discuss some artifacts and introduce
a model that takes into account the lateral contact stiff-
ness and the friction force. This model, as well as exper-
imental results, shows that it is difficult to obtain true and
quantitative elastic imaging using Z-modulation. In order
to improve this limitation, we proposed the X-modulation
technique that gives true and quantitative elastic imaging.

2. Contact theories

We consider two elastic spheres in contact, of radius R1

and R2, made of isotropic materials of Young modulus E1

and E2, and Poisson ratio ν1 and ν2. We define R∗ as the
reduced radius, E∗ as the reduced Young modulus and G∗

as the reduced shear modulus:

R∗ =

(
1
R1

+
1
R2

)−1

, (4)

E∗ =

(
1− ν2

1

E1
+

1− ν2
2

E2

)−1

(5)

and

G∗ =

(
2− ν1

G1
+

2− ν2

G2

)−1

(6)

with

G =
E

2(1 + ν)
. (7)

In the case of an elastic contact where surface forces
act, two theories should be considered if the load is com-
parable to the adhesive force. In the Johnson, Kendall and

Roberts (JKR) theory [19], adhesion forces outside the con-
tact are neglected whereas for the Derjaguin, Muller and
Toporov (DMT) theory [20] the adhesion force acts outside
the contact area and is not able to deform the surface. Re-
cently, Maugis proposed a continuous transition between
the JKR theory and the DMT theory using the Dugdale
approximation [21]. Maugis proposed a non-dimensional
parameter λ to establish the domains of validity of the
JKR-DMT theories. This parameter compares the elastic
deformation δ due to adhesive force to the atomic equilib-
rium distance ξ0:

λ =
8

3
√

3
3

√
4
3
R∗w2

πE∗2ξ3
0

≈ 3
2
δ

ξ0
, (8)

with w the work of adhesion.
Maugis shows that the JKR theory is valid if λ is greater

than 3 and the DMT theory should be applied if λ is less
than 0.1.

During a SFM experiment in air, a capillary force FCap

is added to the surface force:

FCap = 4πR∗γLV, (9)

with γLV the surface tension.
As done by Maugis for the DMT-JKR transition, we

proposed to compare the elastic deformation due to the
meniscus pressure to the equilibrium atomic distance. The
average pressure pm due to the meniscus is equal to

pm =
FCap

πe2
=

4R∗γLV

e2
, (10)

where e is the radius of the meniscus. This depression leads
to an elastic deformation δ of the two surfaces [22]:

δ =
4pme

πE∗
=

16R∗γLV

πeE∗
. (11)

If the thickness of the liquid film on the surface is equal
to g on the two surfaces (g � R∗) we are able to find the
radius of the meniscus using the Chord theorem:

e = 2
√
R∗g. (12)

The equation becomes

δ =
8γLV

πE∗

√
R∗

g
(13)

and the DMT/JKR transition criterion becomes

λ ≈ 12γLV

πξ0E∗

√
R∗

g
. (14)

We consider a silicon nitride tip (E = 140 GPa [23] and
ξ0 equal to 0.23 nm), a reduced elastic modulus between 3
and 100 GPa, a tip radius equal to 50 nm, the surface ten-
sion of water (0.072 N/m), and a water film thickness esti-
mated to 1 nm. For high Young modulus (E∗ = 100 GPa),
λ is equal to 0.08 and the DMT theory is valid. For low
elastic modulus (E∗ = 3 GPa), λ is close to 2.7, we are in
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the Maugis transition. Nevertheless, to simplify the prob-
lem we propose to consider that the DMT theory is always
valid.

In this case of the DMT theory, the normal contact stiff-
ness kN and the lateral contact stiffness kL are equal to

kN = 2E∗a, (15)

kL = 8G∗a, (16)

where a is the radius of contact:

a =
3

√
3
4
R∗(FN + FCap)

E∗
. (17)

For isotropic homogeneous materials, the Poisson ratio
varies from 0.1 to 0.51 [24]. So the ratio of the lateral
stiffness to the normal stiffness varies from 2/3 to 18/19
with a typical value of 4/5,

2
3
6 kL

kN
6 18

19
.

3. X-modulation

The technique is similar to Z-modulation but imposes
only a lateral excitation of the contact. This technique has
been first proposed by Maivald et al. [9]. Later, this tech-
nique has been developed for friction imaging (high am-
plitude) [8,25,26] and for elastic measurement (low ampli-
tude) [27–31]. The piezo is modulated in the plane, per-
pendicularly to the axis of the cantilever. The torsion of
the beam is measured via the LFM signal. Because there
is no rejection of the LFM signal on the servo loop (if we
assume that the LFM signal is only sensitive to the torsion
of the cantilever), this technique does not need an other
piezo and could be used at lower frequency as compared
to Z-modulation.

The “two Kelvin–Voigt” model could be applied for
X-modulation experiments; in this case the system lateral
stiffness is equal to

k∗L =

(
1
kL

+
1
kT

)−1

, (18)

where kT is the cantilever torsion stiffness and kL the lateral
contact stiffness. The advantages of lateral modulation have
been discussed by Carpick et al. [28]. The major one is
to replace, in the “two Kelvin–Voigt” model, the flexion
stiffness by the torsion stiffness which is well higher than
the flexion stiffness (see below) whereas the lateral and
normal contact stiffness are of the same order of magnitude
(see section 2).

The relation between the torsion cantilever stiffness kT

and the flexion cantilever stiffness kF for a rectangular beam
is given by the following formula:

kT

kF
=

2
3(1 + ν)

(
L

H

)2

≈ 0.5

(
L

H

)2

, (19)

1 For composite or biological materials, the Poisson ratio could be nega-
tive. See, for example, [24].

where ν the Poison ratio (ν = 0.27 [32] for silicon ni-
tride cantilever), L the length of the cantilever and H the
height of the tip. Recently Noy et al. [33] have proposed
an equation that gives the relation between the flexion and
the torsion stiffness for triangular shape cantilever:

kT

kF
=

2
6 sin2(β) + 3(1 + ν) cos2(β)

(
L

H

)2

≈ 0.35

(
L

H

)2

, (20)

with β the angle between the cantilever and its substrate
(typically 65◦) (figure 1). This formula has been validated
experimentally by Ogletree et al. [32].

The ratio of the length of the cantilever to the tip height
is typically between these two limits:

100 6 L

H
6 20.

Then the torsion stiffness is generally two or three orders
of magnitude higher than the flexion stiffness. Typically
kT/kF = 100 for high cantilever flexion stiffness, and 4000
for low cantilever flexion stiffness (see table 1 for details).

4. Experimental

4.1. Materials and methods

We used a commercial contact SFM (Autoprobe CP,
Park Scientific Instruments, USA) with a LFM head and
a “signal access module” option. The cantilevers used are
silicon or silicon nitride cantilevers (Microlever and Ultra-
lever, Park Scientific Instruments, USA) with flexion stiff-
ness from 0.01 to 18 N m−1. The nominal radii of the tips
are 20 and 50 nm, respectively (see table 1 for details).

The SFM piezo tube or an extra piezo (PXE5, Philips,
The Netherlands) achieves the excitation of the contact.
A frequency generator feeds the piezo and a lock-in ampli-
fier analyzes the output signal (“A-B” or LFM signal). All
images presented are untreated.

A composite material made of carbon fibers (E =
40 GPa) and an epoxy matrix (E = 3 GPa) has been used
as sample. The two materials are amorphous and supposed
to be isotropic. The values of the elastic modulus have
been estimated using a nanoindentation experiment. The
sample has been polished in order to limit the topographic
artifacts.

4.2. Z-modulation imaging

Z-modulation images realized with high cantilever stiff-
ness (kF = 13 N m−1) present the contrast predicted by
the “two Kelvin–Voigt” model. The carbon fibers give
a higher response (figure 4). Nevertheless, contrast in
Z-modulation image is obtained with low cantilever stiff-
ness (kF = 0.1 N m−1), whereas the “two Kelvin–Voigt”
model predicts no contrast in FMM images (figure 5):
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Table 1
Geometrical and mechanical properties of cantilevers. Microlevers are silicon nitride cantilevers (E = 140± 10 GPa) with a pyramidal tip (radius 50 nm,
H = 3 µm). Ultralevers are silicon cantilevers (E = 125 GPa) with a conical tip (radius 20 nm, H = 4 µm). Data are reported from the manufacturer

sheet, except for angle and torsion stiffness.

Cantilever Shape Length Width Thickness Flexion stiffness Angle Torsion stiffness
(µm) (µm) (µm) (N m−1) (◦) calculated using

formula (20) (N m−1)

Microlever A Triangular 180 18 0.6± 0.1 0.03–0.08 67 32–82
Microlever B Rectangular 200 20 0.6± 0.1 0.01–0.03 19–54
Microlever C Triangular 320 22 0.6± 0.1 0.006–0.015 71 20–48
Microlever D Triangular 220 22 0.6± 0.1 0.02–0.05 72 31–75
Microlever E Triangular 140 18 0.6± 0.1 0.06–0.15 64 40–94
Microlever F Triangular 85 18 0.6± 0.1 0.3–0.8 65 73–184
Ultralever A Triangular 180 25 1.8± 0.2 1.3–2.6 64 650–1210
Ultralever B Triangular 180 38 1.8± 0.2 2.0–3.8 65 1000–1760
Ultralever C Triangular 85 18 1.8± 0.2 9–18 63 1010–1880
Ultralever D Triangular 85 28 1.8± 0.2 13–25 63 1470–2610
Microlever A∗ Triangular 170 36 0.6± 0.1 0.06–0.15 64 59–139
Microlever B∗ Triangular 85 16 0.6± 0.1 0.3–0.8 63 74–186

for example, if we apply the DMT model (equations (4),
(5), (15) and (17)) we find that the contact stiffness for
the epoxy matrix should be equal to about 83 N m−1

(FN = 0, FCap = 70 nN, R = 50 nm, E∗ = 3 GPa)
and 296 N m−1 (FN = 0, FCap = 30 nN, R = 50 nm,
E∗ = 31 GPa) for the carbon fibers. The difference of the
cantilever response (equations (2) and (3)) for the epoxy
matrix and for the carbon fibers should be about 0.1% and
could not be detected. Furthermore, the contrast is inverted
and the image is very close to the friction image (figure 5).
In this last case (kF = 0.1 N m−1), we deduce that the
contrast in this Z-modulation image is only due to friction
forces.

4.3. X-modulation imaging

Some limitations occur with the X-modulation tech-
nique.

(i) The image is noisy at frequency lower than 10 kHz,
probably due to piezo resonance. Typical values of
the frequencies used in this study are 10–40 kHz.

(ii) The tip velocity generated by X-modulation should be
much higher than the velocity generated by the scan.
Two solutions are possible: reduce the scan velocity
or scan in the Y -direction. We have chosen to scan in
the Y -direction.

(iii) It is important to check if the response is due to elastic-
ity or friction. The best solution is to obtain a friction

Figure 4. Topographic (a) and Z-modulation (b) images on a composite
material, carbon fibers (white) in epoxy matrix (black), using high can-
tilever stiffness (kF = 13 N m−1). The jagged island on the bottom of
the image is due to a residue of a thin gold layer. The contrast is cor-
rect as predicted by the “two Kelvin–Voigt” model: the higher the Young
modulus, the higher the response is. The relative response of the can-
tilever for the two materials is 4–3. Notice the influence of topography on
Z-modulation image (10 µm scan, Z-modulation by the monitor piezo,

frequency = 10.3 kHz, ultralever type C).

(a)

(b)
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image with a high amplitude excitation, to be in a dy-
namic friction regime, and to measure the response of
the cantilever. Then using excitations, which leads to
a response ten times lower, we are sure to be in an
elastic regime.

In these conditions, we have not observed artifacts using
X-modulation or high topographic influence (figure 6). Im-
ages obtained with this technique never show inverted con-
trast (except if the modulation is too high). Furthermore,
we are able to observe local changes on the carbon fibers,
and also on the epoxy matrix. We believe that these lo-
cal changes are due to local variations of the elasto-plastic
properties of the materials for low modulation and for local
changes of the friction properties for high modulation.

4.4. Quantification of the lateral system stiffness

To realize a quantitative experiment three parameters
should be known: the stiffness of the cantilever, the ra-
dius of the tip and the lateral force.

The stiffness of the cantilever is estimated by measur-
ing the first resonance frequency of the cantilever. We as-
sume that only the thickness of the cantilever is not well
known [34]. By measuring the first resonance frequency f ,
we are able to estimate the flexion stiffness of the cantilever:

f =

√
kF

M∗
, (21)

where M∗ is the equivalent mass of the cantilever.
The radius of the tip is not directly measured but esti-

mated using a topographic image. During a scan, the tip
dilates the features of the surface so that the topographic im-
age is highly influenced by the tip radius. So it is possible
to extract the geometry of the tip from a topographic image
and to estimate its radius using various techniques [35–37].
We have developed two methods to extract the tip radius
from a topographic image [38]. The first method, called
maxima method, is based on the principle of erosion. We
consider that the features of the SFM image are envelopes
of the tip. We used the maxima in height of the feature of
the SFM image, which are the only known common points
between the image and the surface, as a landmark. Using
all the features we obtain an image of the tip, which allows
us to eliminate the non-spherical tip and to estimate the
tip radius with a precision of a few nanometers. The sec-
ond method is based on an analysis of the curvature radius
of the image. We obtain a radius curvature image from a
topographic one and analyze the dominant curvature of this
image.

Figure 5. Topographic (a), Z-modulation (b) and LFM (trace minus re-
trace) (c) on composite material, carbon fibers and epoxy matrix, as im-
aged by low cantilever flexion stiffness (kF = 0.1 N m−1). The contrast
of Z-modulation image is inverted in comparison to the contrast predict
by the “two Kelvin–Voigt” model. The correlation between LFM and
Z-modulation images makes us think that the same information is con-
tained in the images. (10 µm scan, Z-modulation by the monitor piezo,

frequency = 10.3 kHz, microlever type E).

(a)

(b)

(c)
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Topographic (a), LFM (trace minus retrace) (b), X-modulation with a low excitation (10 mV) (c), corresponding phase image (d),
X-modulation with an higher excitation (100 mV) (e) and corresponding phase image (f) of carbon fibers/epoxy composite. Images (b) and im-
ages (e) are friction images whereas image (c) is an elastic image. Note changes of the elastic contrast in image (b) (10 µm scan, X-modulation by

the monitor piezo, frequency = 37 kHz, microlever type B∗).
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Figure 7. Typical friction loop obtained on the carbon fibers (black line). The slope at the start of the friction loop (gray line), when the tip begins to
slip, gives the lateral system stiffness. In this case k∗ = 87 N m−1.

The lateral force is calibrated by measuring the influence
of the topography on the lateral force signal [32]. During a
scan, the slope of the sample changes so that a component
of the normal force FN is imposed on the lateral force FL:

FL ≈ FN tan γ + FF, (22)

with FF the friction force and γ the angle between the
sample surface and the cantilever in the direction X . This
equation is only valid if tan γ∗FF/FN is small compared to
one. So the contrast in LFM images contains both informa-
tion from friction force and from the slope of the surface.
Furthermore, the LFM signal is a direct function of the
lateral force applied to the tip:

LFM = C(FN tan γ + FF), (23)

with C the parameter to be calibrate. Assuming the fric-
tion force to be constant and the normal force known, the
comparison between the topographic image derived in the
X-direction and the LFM image gives the value of C and
the ability to calibrate the LFM signal.

An X-modulation image with a low excitation could be
quantified in terms of lateral system stiffness and Young
modulus. Using a friction loop (figure 7) and the Mindlin
theory [39] (there is no clue that the Mindlin theory is valid
and we do not want to discuss about which theory should
be applied since this would exceed the scope of this paper),
we are able to estimate the system stiffness: The ratio of the
variation of the lateral force to the variation of the lateral
displacement, when the tip begins to slip, gives the lateral
system stiffness. We measure a system stiffness of 87 and
59 N m−1 for the carbon fibers and the matrix, respectively,
for a cantilever deflection equal to zero. The total force is
then equal to the capillary force.

The flexion cantilever stiffness was estimated to be
about 0.5 N m−1 and we assume that the cantilever tor-
sion stiffness was about 130 N m−1. Then we find a lateral

Table 2
Estimation of the properties of the contact and of the material, using the

X-modulation experiments.

Material Carbon fibers Cyano matrix

Lateral system stiffness (N m−1) ∼87 ∼59
Lateral contact stiffness (N m−1) ∼263 ∼108
Capillary force (nN) ∼30 ∼70
Equivalent Young modulus (GPa) ∼30 ∼5
Estimated Young modulus (GPa) ∼38 ∼5
Young modulus (nanoindentation) (GPa) 40 3
Contact radius (nm) ∼4 ∼11

contact stiffness of 263 and 108 N m−1 (equation (17)) for
the carbon fibers and the matrix, respectively. The radius of
the tip was measured to be about 45 nm. We find a capillary
force of about 30 nN for the carbon fibers and about 70 nN
for the epoxy matrix. If we apply the DMT theory for a
normal force equal to zero, an equivalent radius equal to the
radius of the tip and a Poisson ratio equal to 1/3, we find
the following relation between the lateral contact stiffness
and the equivalent modulus:

kL =
4
5
kN =

8
5
E∗a ≈ 3

√
3E∗2R∗FCap. (24)

The equivalent Young modulus was measured to be
about 30 and 5 GPa, corresponding to a Young modulus
of about 38 and 5 GPa (taking a Young modulus of the tip
equal to 140 GPa and equation (5)) for the carbon fibers
and the epoxy matrix, respectively.

There is a quite good agreement between the measured
values and the values measured by nanoindentation experi-
ments (see table 2 for details). The difference between real
and measured values could be explained by all the approx-
imations used for the calculations, especially the cantilever
stiffness, and by the fact that we are measuring the extreme
surface elastic modulus at a nanometer scale.
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5. Discussion

5.1. Z-modulation

In order to explain the inverted contrast on the Z-mod-
ulation image, we proposed a model that integrates the
influence of the lateral force in the Y -axis. This model
shows that it is difficult to have a true and quantitative
elastic imaging using Z-modulation imaging. This model
is based on a rectangular cantilever linked to two springs
that model both the normal contact stiffness and the lateral
contact stiffness (figure 8). This model does not include
viscoelastic effects unlike the works of Frétigny et al. and
Wahl et al. [29–31]. The lateral spring is linked to a shield
meaning that the lateral force could not be higher than the
friction force. The angle α between the surface and the
lever (in the static position) has been taken into account,
nevertheless in this paper, we present the equations of a
particular case (α = 0) to simplify them. We make two ap-
proximations: first, the tip is at the edge of the cantilever
and second, the change of angle measured by the “A-B”
signal is the change of angle at the edge of the cantilever.

If the movement of the sample ∆S (and then the change
of angle at the edge of the lever ∆Θ and the lateral displace-
ment of the tip ∆Y (figure 8)) is small the lateral force is
dominated by the lateral system stiffness. The amplitude of
vibration of the cantilever is given by the following formula
(see appendix A for details):

∆Θ =
− 3

2L

(
n
n+1

)
1 + 3nA

(
H
L

)2(
1− 3

4
n
n+1

)∆S. (25)

If ∆S is high, the lateral movement of the tip ∆Y is high
enough to be in total slip. The lateral force is equal to the
friction force. The relation becomes

∆Θ =− 3
2L

(
n

n+ 1

)
∆S

+ 3
H

L2kF

(
1− 3

4
n

n+ 1

)
FF. (26)

It is important to note that the real value is always be-
tween the values given by formulas (25) and (26). Figure 9
shows the response of the cantilever as the function of the
relative contact stiffness. The response could be decom-
posed in two domains: For the first domain (n < 10 for
α = 15◦), the response of the lever is dominated by the
normal contact stiffness. The mechanical behavior of the
cantilever is corresponding to a clamped-free beam. In the
second domain (n > 10 for α = 15◦) the lateral force is
not negligible in front of the buckling stiffness. The me-
chanical behavior of the cantilever is corresponding to a
clamped-hinged beam. For very low excitation (∆S infe-
rior to a few nanometers, see appendix 1 for details) the
response is close to the gray line (figure 9). For very high
excitation, the lateral force becomes negligible and the re-
sponse reaches to the black line. In the real conditions, the
response of the cantilever is close to the gray line because

(a)

(b)

(c)

Figure 8. (a) The Z-modulation model is built with a beam linked to two
springs that model the normal contact stiffness kN and the lateral contact
stiffness kL. (b) Forces acting on the cantilever during a Z-modulation.
The movement of the piezo leads to a normal force N and then to the
flexion of the cantilever. The tilt of the cantilever leads to a movement
of the tip and then to a lateral force and an applied couple M . The com-
bination of these two forces is going to change the position ∆Z and the
tilt ∆Θ of the cantilever. Because, in the laser beam detection system, the
“A-B” signal is sensitive to the tilt of the cantilever, the response of the
cantilever is sensitive to normal and lateral forces. (c) Shape of a rec-
tangular beam during a Z-modulation experiment. For low n = kN/kF,
the lateral contact stiffness is low compared to the buckling stiffness. The
influence of the lateral force is negligible; the shape of the cantilever is
corresponding to a clamped-free beam (black line). For high n and small
excitation, the lateral contact stiffness is high compared to the buckling
stiffness. The tip could not slip freely in the Y -direction. The shape of
the cantilever is corresponding to a clamped-guided beam (gray line). In
reality the shape of the cantilever is always between the clamped-free and
the clamped-guided shape. Then lateral contact stiffness and/or friction

force influence the response of the cantilever.

the excitation ∆S is generally small. So the contrast in
the image could be due to lateral elasticity and/or friction.
As a consequence, the elastic indentation interpretation of
the Z-modulation image should be reconsidered for low
cantilever stiffness.

From this model we can see that FMM gives an elastic
indentation imaging only in the domain where the ratio
of the cantilever stiffness to the normal contact stiffness
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Figure 9. Relative response of the cantilever (change of angle) as a function of the relative contact stiffness n = kN/kF. The “two Kelvin–Voigt”
model (black line) is unable to explain contrast inversion. According to our model, the theoretical response is between the black line and the gray
lines. The black line corresponds to infinite modulation; in this case the lateral force becomes negligible. The gray lines correspond to infinite low
modulation; in this case the lateral force induced by the lateral contact stiffness is not negligible. The model (A = kL/kN = 0.8, H/L = 0.03, gray
solid line for α = 0◦, gray dashed line for α = 15◦) shows that the response of the cantilever could be decomposed in two domains: if n is small,

the response is only sensitive to indentation elasticity, if n is high, the response is both sensitive to lateral elasticity and to friction.

is inferior to ten. Typically contact stiffness estimated by
the DMT theory is between 10 and 1000 N m−1 leading
to cantilever stiffness of about 10 N m−1 value higher than
conventional cantilever flexion stiffness. So for classical
FMM images, realized with too low cantilever stiffness,
we believe that the contrast cannot be attributed to normal
contact stiffness but to friction force and/or to the lateral
contact stiffness.

Now assume that the Z-movement of the piezo is cou-
pled with a small movement in the Y -direction. A Y -
movement of the piezo, in the opposite direction to the
direction of sliding induced by the tilt of the cantilever,
could change the sign of the lateral force applied on the
cantilever. This phenomenon would change the contrast
in the Z-modulation image. It is why we believe that the
response of the cantilever is highly dependent of the exper-
imental conditions. As the function of them, the amplitude
and the sign of the lateral movement changes as well as the
response of the cantilever cannot be interpreted.

5.2. X-modulation

During X-modulation the phase signal will not be in-
terpreted as a viscoelasticity effect [29–31] but interpreted
as a consequence of the high non-linearity between the lat-
eral force and the lateral displacement. In order to do a
good interpretation of the X-modulation signal, we present
a theoretical interpretation of the amplitude and phase sig-
nal. As an example, we choose the macroscopic Mindlin
theory without stick–slip phenomena that seems to be valid
experimentally. The same analysis could be realized taking
into account other theories [40,41].

When the piezo is modulated in the X-direction, the
tip begins to slide only on the periphery of the contact.

According to the Mindlin theory [42] in the case of an os-
cillating displacement d = d∗ cos(ωt), the relation between
the lateral force FL and d becomes

FL

FF
= 2

(
2− d/D − d∗/D

2

)3/2

+

(
1− d∗

D

)3/2

+ 1, (27)

where D is the limit displacement between partial slip and
total slip:

D =
3
2
FF

k∗L
, (28)

for d∗ < D (for d > D then FL = FF). Figure 10 presents
the relation between the lateral force and the displacement
for various d∗/D. Then, during an X-modulation experi-
ments, the LFM signal which feeds the lock-in amplifier is
no more sinusoidal (figure 10). To interpret the amplitude
and the phase images generated during X-modulation ex-
periments, it is important to know how the lock-in amplifier
processes a non-sine signal (see appendix B for details). As
a result of this processing, the lock-in amplifier gives the
amplitude and a phase information that is a function of the
first harmonic component of the signal. Colchero et al. has
proposed an analysis of the LFM signal in the case of high
X-modulation [8]. In the case of low X-modulation, if
we consider that there is no viscous effect, the phase in-
formation is a direct function of the ratio d∗/D. So the
phase image is a direct function of D and then of the ratio
of the friction force divided by the lateral system stiffness.
Furthermore, for every value of the phase, there is a di-
rect relation between, first, the amplitude (as given by the
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(a)

(b)

(c)

Figure 10. Theoretical relative force FL/FF as a function of the relative displacement d/D for various displacements d∗/D (d∗/D = 0.5, 1 and 1.5,
gray to black curve) according to the Mindlin theory (a). For low excitation (d∗/D = 0.1), the tip adheres to the surface, then the displacement and
the lateral force are two sine signals in phase (b). For high excitation (c) (d∗/D = 1000), the tip slips on the surface, and the lateral force raises
abruptly to the friction force. The lateral force becomes a rectangular signal (black dashed line). The lock-in amplifier extracts the first harmonic of

this signal (gray line). The relative ratio of the amplitude to the friction force is then equal to 4/π and the phase is equal to −90◦ .
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Figure 11. Ratio of the apparent stiffness (amplitude divided by the displacement) to the lateral system stiffness (black line) and of the ratio of the
amplitude to the lateral force (gray line) as a function of the phase.

lock-in amplifier) and the friction force FF, and, second,
the apparent stiffness (defined as the ratio of the amplitude
on the displacement d) and the lateral system stiffness. Fig-
ure 11 presents the ratio of the apparent system stiffness to
the lateral system stiffness, and the ratio of the amplitude
to the friction force, as a function of the phase. Then the
phase signal allows us to correct the amplitude given by the
lock-in amplifier. Using the value contained in figure 11,
we are able to correct theoretically the amplitude image
to give both a friction and an elastic image of the surface
whatever the displacement may be.

6. Conclusions

Experimental and theoretical results of indirect FMM
have shown that:

(i) The classical “two Kelvin–Voigt” model is not efficient
to explain experimental results because it does not take
into account the lateral force.

(ii) The influence of the lateral force, in a laser beam de-
tection system, could lead to inverted contrast, com-
pared to contrast predicted by the “two Kelvin–Voigt”
model, and false interpretation of the image.

(iii) Only high cantilever stiffness (kF > 10 N m−1) should
be used to obtain elastic contrast predicted by the “two
Kelvin–Voigt” model.

A new model, which is able to explain experimental
results, is proposed. This model shows that the response of
the cantilever is a complex function of the contact stiffness,
the lateral force and of the geometrical properties of the
cantilever, and shows that Z-modulation imaging could not
be easily used for true and quantitative elastic imaging.

To improve this problem, we propose to replace Z-mod-
ulation experiments by X-modulation experiments. This
technique presents great advantages:

(a) The LFM signal is used to realize imaging. This signal
is only due to lateral force. Furthermore, this signal
does not feed the servo loop. Consequently, no extra
noise is added on images. There is no need of an extra
piezo and it is possible to work at low frequencies.

(b) The torsion stiffness of the cantilever is typically three
orders of magnitude higher than the flexion stiffness.
This property of cantilever allows us to work with low
flexion cantilever stiffness and then low static normal
applied force and low contact radius.

(c) The amplitude and phase signal allows us to realize
both friction and elastic imaging. The elastic and the
friction image are easily quantified.

(d) The normal force and then the contact stiffness is con-
stant compared to Z-modulation. There is no problem
of linearity.

Nevertheless this technique has two disadvantages:

(1) We measure the shear modulus, that means that the
Poisson ratio has a big influence on the determination
of the elastic modulus.

(2) The torsion stiffness should be known which is difficult
for a triangularly shaped cantilever.
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Appendix A. Response of the cantilever for
Z-modulation

A Z-modulation of the sample ∆S leads to a variation
of the normal FN and lateral FL on the contact and then to
the variation of a load ∆N and of the couple ∆M applied
on the cantilever. The two forces are going to change the
edge position ∆Z, the tilt ∆Θ of the cantilever and the
lateral movement ∆Y of the tip (figure 8).

Applying shear, moment, slope and deflection for
beams [22] we can write

∆Θ =−∆NL2

2EI
+

∆ML

EI
, (29)

∆Z =
∆NL3

3EI
− ∆ML2

2EI
, (30)

with I the moment of inertia of the cantilever, E the
Young modulus of the beam and L the length of the can-
tilever.

A.1. Low excitation

If we consider that the excitation is low enough, the
response of the cantilever is sensitive to the lateral system
stiffness:

∆N = kN(∆S − ∆Z), (31)

∆M =HkL∆Y = −AH2kN∆Θ, (32)

with

A =
kL

kN
. (33)

We put

n =
kN

kF
. (34)

Furthermore the flexion stiffness for a rectangular beam is
equal to

kF =
3EI
L3

. (35)

By introducing equations (33)–(35) in equations (29)
and (30) we find

∆Θ =− 3n
2L

(∆S − ∆Z)− 3An

(
H

L

)2

∆Θ, (36)

∆Z = n(∆S − ∆Z) +
3
2
An

H2

L
∆Θ. (37)

If we resolve this system of two equations, we find equa-
tion (25).

A.2. High excitation

If the excitation is high enough, M is no more pro-
portional to the lateral system stiffness but to the friction
force FF:

∆N = kN(∆S − ∆Z), (38)

∆M =HFF, (39)

then we can write

∆Θ =− 3n
2L

(∆S − ∆Z) + 3
H

L2kF
FF, (40)

∆Z = n(∆S − ∆Z)− 3
2

H

L2kF
FF. (41)

By resolving this system of two equations we find equa-
tion (26).

A.3. Limit between low and high excitation

In this chapter we are going to estimate the displace-
ment ∆S which makes the limit between the partial slip
(low excitation) and the total slip (high excitation). The
total sliding is obtained for

∆Y >
3FF

2k∗
, (42)

with ∆Y = H∆θ. Furthermore, whatever n,

∆Θ <
3∆S
2L

, (43)

so we can write

H

L
∆S >

FF

k∗
, (44)

with

k∗ =

(
1
kB

+
1
kL

)−1

, (45)

where kB is the buckling cantilever stiffness. In every case
k∗ < kL then

∆S >
FF

kL

L

H
. (46)

Numerical applications show that the lateral movement
of the tip is in total sliding for a typical value of ∆S equal
to a few nanometers. We deduce that the contrast in
Z-modulation image obtained with low cantilever stiffness
is only sensitive to friction force.

Appendix B. Magnitude and phase as measured by a
lock-in amplifier

To measure the magnitude M and the phase ϕ of a har-
monic signal at the frequency ω, the lock-in amplifier re-
leases a mathematical processing to extract the first har-
monic component of the signal. This processing takes the
signal V (t) and multiplies it by two sine references:

A2 = V (t)∗ cos(ωt), (47)

A1 = V (t)∗ sin(ωt). (48)

The integration of these two signals between 0 and 2π/ω
gives X and Y which are the in-phase and out-phase coef-
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ficients of the signal, respectively. The magnitude M and
the phase ϕ of the signal are equal to

M =
√
X2 + Y 2, (49)

ϕ= atan(Y/X). (50)
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