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Abstract

SFM images are the result of interactions between a sharp tip with a quasi-spherical apex and the surface of a sam-

ple. As a consequence, SFM images are highly influenced by the tip geometry especially when the surface features are

sharper than the probe. For topographic images, this phenomenon is known as dilation. It can result in an image where

the features reflect the tip apex characteristics rather than the sample�s surface. Mathematical algorithms are used to

show the possibility of computing a curvature image from a topographic image to deduce the radius of the tip. In addi-

tion, the interpretation of a surface image obtained with modes other than topography can be achieved by comparing

this image to a curvature image. As an example, the Tapping Mode AFM phase image contrast can show similarities or

discrepancies with the curvature image contrast, leading to a direct relation between the phase and a topographic or a

physical contrast.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Atomic force microscopy; Scanning tunneling microscopy; Morphology; Topography; Tip; Curvature; Radius
1. Introduction

The development of scanning probe microscopy

(SPM) in the 1980s and 1990s has opened new pos-
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sibilities for surface investigations concerning the

nanometer scale. If the scanning tunneling micro-

scopy (STM) [1] is restricted to conductive sur-

faces, the scanning force microscopy (SFM) [2]

especially with the development of tapping mode

AFM [3] and others dynamic modes [4], enables

the observation of nearly any kind of surfaces
within various environments (vacuum, air, fluids).

One of the constraints with the SPM techniques

is the quasi-spherical geometry of the tip apex. An
ed.
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unworn tip is usually conical or pyramidal with

a spherical apex having 5–50 nm curvature

radii [5]. The ideal tip must have both a curvature

radius as small as possible and a half angle as

low as possible. Very sharp tips such as oxide-
sharpened silicon nitride tips, focused ion beam

machined silicon tips, etched silicon tips [5–8],

and carbon nanotube tips [9,10] have been

proposed.

When the tip–surface interaction is limited to a

single atom, atomic resolution can be obtained

[11]. Nevertheless, in most cases, the tip is not

sharp enough to describe the surface features cor-
rectly. At this scale, the AFM image is the result of

the interactions between the tip and the sample

surface, more particularly when the sample slopes

are higher than those of the probe. This phenome-

non, known as dilation, tends to smooth the sur-

face and equalizes the irregularities [12–15]. In

extreme situations, the tip geometry clearly ap-

pears on the image [16–18]. This phenomenon
known as �tip self imaging� can involve so called

double tip artifacts.

Mathematical morphology tools such as erosion

can partially correct this �tip self imaging� if the tip
geometry is known [12–15]. Several methods were

developed to evaluate the tip geometry. The first

method consists of imaging a reference surface

for which the geometry is perfectly known. If the
surface features are sharper than the tip geometry,

an image of the tip will be obtained [19–21]. The tip

geometry can also be characterized using �blind
reconstruction� methods [15,22–25]. The original

method developed simultaneously by Williams

and Villarubia produces a reconstructed tip, which

is the most voluminous geometry that may have

imaged the surface [22,23]. Nevertheless, this meth-
od fails when the image is noisy [15]. Several solu-

tions were proposed to solve this problem but they

are particularly time consuming and can lead to

aberrant results (truncated tip) for which it is

impossible to compute a radius [15,24–26]. If the

geometry of the tip is correctly estimated, the

AFM image can be partially reconstructed, pro-

ducing an image that is closer to reality than the
primary one [12,15,22,27]. This is particularly

interesting in the field of metrology or for image

interpretation.
Furthermore, a significant number of SFM

imaging modes were developed to image surface

properties [28] by measuring the interaction be-

tween the tip and the surface. Different proper-

ties such as magnetic, electrostatic, friction and
adhesion forces, elasticity, electrical or thermal

conductivity can be mapped. For these kinds of

imaging, one can quantify the tip–sample interac-

tion but it is much more difficult or even impossi-

ble to quantify the surface properties, partially

because the tip and the surface interaction geome-

try are unknown in detail. Additional information

is needed. One aim of this paper is to show how
some information about the tip geometry can be

obtained.

Tapping Mode AFM [3] is one of the most

popular SFM imaging modes. In this operating

mode, the cantilever is made to oscillate in the

neighborhood of the sample surface at a fre-

quency close to its resonant frequency (typically

50–300 kHz) with constant amplitude of a few
tens of nanometers. The tip sample interaction

causes a decrease of the vibration amplitude as

compare to the free amplitude. Usually Tapping

Mode AFM is also less damaging for the surface

and gives a better quality imaging than the con-

tact mode. This is mainly due to the reduction of

the capillary force, shear force, and eventually

contact pressure and so visco elastoplastic
strain.

Phase contrast imaging could be associated to

Tapping Mode AFM. The phase signal is related

to the time shift between the oscillation of the can-

tilever and the oscillation of the driver. It is said

that phase imaging can be used to map the change

of sample properties. Tapping Mode AFM and

phase contrast are difficult to model due to the
high non-linearity of both attractive and repulsive

forces applied on the tip when the tip oscillates on

the vicinity of the surface.

Many numerical or analytical models [29–43]

were developed to understand the behavior of

the cantilever. These models solve the equation

of the cantilever displacement when the tip inter-

acts with highly non-linear gradient forces. In a
complementary ways, analytical simulation and

energy approach shows the possibility to connect

phase signal and energy dissipation [29,44–46]:
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Fig. 1. Curvature of the point C of a surface. We consider any

plane which contains the normal vector N to the surface. The

intersection between the plane and the surface could be

described by a curvature q. This curvature q is a function of

the principal curvature q1 and q2.
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sinu ¼ � A
A0

x
x0

ð1þ gÞ ð1Þ

where A is the working amplitude, A0 the free

amplitude,x the working frequency,x0 the free res-

onant frequency and g the ratio between the addi-

tional oscillator damping coefficient due to the
tip/sample interaction and the oscillator damping

coefficient without tip/sample interaction.

In a SFM experiments, the amplitude and the

frequency are maintained constant, the phase sig-

nal is then mostly due to a variation of energy dis-

sipation. The variation of energy dissipation could

be due to a change of the sample properties (i.e.

adhesion, viscosity or plasticity) or to a change of
the tip/sample interaction area due to a change of

topography sample visco-elasticity or surface cur-

vature [47,41]. Experimental results confirmed by

models, shows that the tilt angles [48], topography

[49] or volume properties [50] could be responsible

of an energy dissipation and then of a phase

shift.

In this paper, a technique to compute the curva-
ture of the image from topographic images is pro-

posed. This treatment can be used for several

applications:

(1) The first application is the measurement of

the tip radius. This measurement is limited

to images where the dilation phenomenon

is present. In this case, the image features
are an inverted image of the tip and the mea-

surement of the features curvature gives

directly the radius of the tip.

(2) The second application is the measurement of

the radii of curved surface features such as

spheres or cylinders. This measurement is

limited to data without the dilation phenom-

enon. Quantification of the radius curvature
of nanometer-sized spheres will be shown.

(3) The last application is the interpretation of

non-topographic images. The interaction

between the tip and the surface is highly

dependent on the surface curvature. Compar-

isons between curvature images and the corre-

sponding Tapping Mode AFM phase images

clearly showwhether or not the phase contrast
is related to a curvature contrast.
2. Surface curvature

Mathematically, the curvature of a line or a sur-

face can be computed if the second order deriva-

tive exits and is continuous [51].
For a line, z = f(x), the curvature q, is described

by only one parameter: the curvature radius R:

q ¼ 1

R
¼ zs00x

ð1þ z02x Þ
3=2

ð2Þ

where z0x ¼ oz
ox and z00x ¼ o2z

ox2.

For a surface, the situation is more complex.

The curvature needs to be described by two

parameters. For one point C of a surface, the

normal vector N to the surface is considered.

Any plane P which contains the normal vector

cuts the surface to form a curved section (Fig. 1).

The curvature of the point C in the plane P is
described by a curvature radius R, which is equal

to:

q ¼ 1

R
¼ q1cos

2aþ q2sin
2a ¼ cos2a

R1

þ sin2a
R2

ð3Þ

R1 and R2 are the principal curvature radii.

They are defined as the minimum and the maxi-

mum values of R. The two planes that contains

the curves of radii R1 and R2 are perpendicular

[52]. a is the angle between the plane P and these



Fig. 2. Signature of the tip during the imaging process. We consider a 1 lm2 virtual surface (a), and we present the corresponding SFM

image (b), generated by a virtual spherical tip (20 nm in radius). The comparisons between the average (c) and (d) and gaussian

curvature (e) and (f) of the two images clearly shows the effect of the dilation on the curvature image. The gray scale are 59 nm, 0.03 to

0.03 nm�1 and �0.001 to 0.001 nm�2 respectively.
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Fig. 3. Histogram of the gaussian radius of the convex pixels of

the virtual surface (Fig. 2a) (a) and the corresponding SFM

image (Fig. 2b) (b). During the imaging process, the tip is

enable to accurately image some parts of the surface. As a

consequence, the image reflects the tip geometry rather than the

surface. The comparison of the two histograms shows that the

surface features which have smaller curvature radii than the tip

cannot be mapped accurately. All the features of the surface

which have a lower radius than the tip are shifted to the tip

radius value.

P.-E. Mazeran et al. / Surface Science 585 (2005) 25–37 29
two planes. If the surface is described by the equa-

tion z = f(x,y), R1 and R2 are the solutions of the

2nd degree equation:

ðz00x z00y � z00xyÞR2 þ H ½2z0xz0yz00xy � ð1þ z02x Þz00y
� ð1þ z02y Þz00x �Rþ H 4 ¼ 0 ð4Þ

where z0y ¼ oz
oy, z

00
y ¼ o2z

oy2, z
00
xy ¼ o2z

oxoy and

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02x þ z02y

q
ð5Þ

For any point C, if the two principal radii of
curvature have the same sign, the tangent plane

to the surface does not cut the surface. The surface

is elliptical (or spherical if R1 = R2). If R1 and R2

have different signs, the surface describes a ‘‘horse

saddle’’. The surface is hyperbolic. If R1 and R2

are equal to infinity, the surface describes an

inflexion. The surface is parabolic.

The curvature is generally described by the
average curvature A and the gaussian curvature G:

A ¼ 1

2

1

R1

þ 1

R2

� �

¼
z00xð1þ z02y Þ þ z00y ð1þ z02x Þ � 2z0yz

0
xz

00
xy

2H 3
ð6Þ

G ¼ 1

R1R2

¼
z00x z

00
y � z002xy
H 4

ð7Þ

These two parameters are useful to describe the

shape of the surface at any point. If G is negative,
the surface is parabolic. If G is positive, the surface

is elliptic: The surface is convex (hill) if A is nega-

tive and is concave (valley) if A is positive. It is

important to note that the ratio of the average cur-

vature on the gaussian curvature gives directly the

average radius of the surface:

A
G
¼ R2 þ R1

2
ð8Þ

The difference between the average radius and

the minimum radius (or the maximum radius)

DR can as well be computed using the following

formula:

DR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

G2
� 1

G

s
ð9Þ
In the case of topographic images clearly dilated

by a quasi-ellipsoidal tip, the pixels for which the

surface is convex (G > 0 and A < 0) can be inter-

preted as pixels of an image apex (and so to a tip self

image). They can give information about the tip ra-
dius. For topographic images that are not dilated

by the tip, the average and the gaussian curvature

can be used to measure the radius of the surface fea-

tures. For example, the radius of spheres or cylin-

ders adsorbed on a substrate can be computed.

In the case of a non-topographic image, the

contrast should be sensitive to the curvature of
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the tip. For example, if the signal is sensitive to a

van der Walls force FvdW or to a capillary force

FC force, the signal will depend on the variation

of the equivalent radius R* as shown in the follow-

ing equations:

F vdW ¼ HR�

6d2
ð10Þ

F C ¼ 4pR�cLV ð11Þ
with

1

R� ¼ q� ¼ 1

RTip

þ 1

RSurface

¼ qTip þ qSurface ð12Þ
Fig. 4. 1 lm2 topographic (a), average curvature image (b) and gau

surface by an evaporation process. The gray scale are 10 nm, �0.1 to

show distinct regions that are homogeneous. We interpret this as the
where H is the Hamaker constant, d is the distance

between the tip and the surface, cLV is the surface

tension at the liquid air interface.

If we consider that the tip curvature is constant,

the variation of the equivalent radius is propor-
tional to the variation of the surface radius:

DR� ¼ DRSurface

R�

RSurface

� �2

ð13Þ

If the surface radii are low when compared to

the tip radii, the topographic image is highly di-

lated and does not reflect the sample surface. No

relation can be established between the curvature
ssian curvature image (c) of a gold layer deposited on a glass

0.1 nm�1 and �0.03 to 0.03 nm�2 respectively. The two images

signature of the tip.



Fig. 6. Profiles in the horizontal and vertical directions of

the reconstructed tip using a blind reconstruction method.
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image and the non-topographic image. On the

other hand, if the surface radii are large as com-

pare to the tip radii, the topographic image is only

slightly dilated and more closely represents the

true sample surface. Then, the non-topographic
image is sensitive to the variation of the surface

curvature radius:

1

R� �
1

RSample

ð14Þ

In this case, a correlation can be established be-

tween the curvature images and the non-topo-

graphic images. This is why only a low tip radius

should be chosen for accurate phase imaging
interpretation.

Under the hypothesis that discrete SPM images

are good representations of continuous and deriv-

able functions, the second order derivative and

therefore the curvature of the surface can be com-

puted. Eqs. (6) and (7) show that the average

curvature and gaussian curvature are very sensitive

to the second order derivatives of the surface and
to high frequency topography or noise. Thus,

it is necessary to have a high quality imaging,

with the signal to noise ratio as high as possible

and the sampling in the z direction as low as

possible.

For a lot of surfaces, the interesting parameter

is not the high frequency topography but the gen-
Fig. 5. Histogram of the gaussian radius of the convex pixels of

the Fig. 4. The histogram shows a maximum value of 9–10 nm.

Due to the dilation phenomenon, this value is attributed to the

tip radius.

These two profiles can be fit by 9 nm radius circles, in good

agreement with the value given by the curvature analysis

method (10 nm).
eral shape of the surface features. In addition,

SPM images are generally noisy in the slow scan-

ning direction due to the drift between two follow-

ing lines. So, it is necessary to remove both the

noise and/or the high frequency topography. A

couple of solutions can be chosen:

• A low pass or Fourier filter can be applied to
the topographic images, the derivatives or the

curvature images. Filtering is generally neces-

sary to eliminate the noise and obtain a realistic

value of the curvature.

• A second solution is to compute the derivatives

using a Kernell filter with a 5–5# or a 7–7#



Fig. 7. 1 lm2 topographic (a), average curvature image (b) and gaussian curvature image (c) of glass spheres deposited on a glass

surface. The gray scale are 68 nm, �0.1 to 0.1 nm�1 and �0.01 to 0.01 nm�2 respectively.
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matrix instead of a 3–3# matrix.1 The deriva-

tives computed are less sensitive to noise but

tend to smooth the value of the curvature.
1 The derivatives are computed using a Kernell filter. It is the

sum of all the members of a matrix product of the Kernell filter

and of a matrix of the same size extracted from the image. To

decrease the influence of the noise, the derivatives are computed

with a 3–3#, 5–5# or 7–7# Kernell filter in order to average the

derivatives on a bigger area. For example, the 3–3#, 5–5# and

7–7# Kernell filters for the first derivatives in the x direction are

respectively Dz
2Dx j �1 0 1 j, Dz

8Dx j �1 �2 0 2 1 j and
Dz

36Dx j �2 �3 �6 0 6 3 2 j.
3. Application examples

3.1. Tip and surface curvature measurement

Fig. 2a shows a virtual surface. This surface was
generated by the superposition of gaussian like

features of various widths and heights. If this sur-

face is mapped by a perfect spherical with a radius

of 20 nm radius, the surface will be dilated. The

resulting image is presented as Fig. 2b. From the

two images, we can compute an average and a

gaussian curvature images (Fig. 2c–f). The sharp-

est features of the surface are dilated. Their image
reflects the tip geometry rather than the surface



Fig. 8. Histogram of the gaussian radius of the convex pixels of

Fig. 5. The histogram presents a maximum for a value of

42 nm. This value is attributed to the average sphere radius.
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geometry. These features have the same curvature

as the tip and appear in white in the average cur-

vature image and in black in the gaussian curva-

ture image. From these two curvature images it

is possible to extract a gaussian radius RG and
an average radius RA of the surface:

RA ¼ 1

A
ð15Þ

RG ¼
ffiffiffiffiffiffi
G24

p

G
ð16Þ

Fig. 3 presents the gaussian radius (RG) histo-

gram of the convex pixels (pixels describing a hill:

G > 0 and A < 0) of the virtual surface and its cor-

responding image. The image average radius histo-

gram shows clearly that the image is dominated by

the tip radius. RA histogram gives a similar result
(not shown). The surface convex features that have

smaller radii than the tip are dilated and therefore

become images of the tip. It is not possible to have

convex features with a lower radius than the tip in

the image of the surface. Thus, the histogram

of the average or the gaussian radius is truncated

at the value of the probe radius.

Experimentally, the presence of noise and the
fact that the probe is not perfectly spherical are

limiting factors of the method. The signature of

the tip is not so obvious on the histogram of

the curvature radius of a real image. Fig. 4 pre-

sents topographic, gaussian and average curva-

ture images of a gold layer deposited on a glass

surface using an evaporation process. The topo-

graphic images have been acquired using the Tap-
ping Mode AFM imaging and a silicon cantilever

(TESP, nominal radius 10–20 nm). The computed

curvature images show homogeneous regions espe-

cially over the sharpest features. We interpret this

as evidence that the image is dilated by the tip and

that the curvature images reflect the curvature of

the tip rather than the surface curvature.

Fig. 5 shows clearly that the gaussian radius his-
togram of the convex pixels has a peak at 9–10 nm

which we can attribute to the tip radius. There is

an excellent agreement between this value and

the profile of the reconstructed tip using a modi-

fied �partial tip reconstruction� [22]. Fig. 6 shows

the profile in the horizontal and vertical directions
of the reconstructed tip. The two profiles can be fit

by 9 nm circles.

The main advantage of the present method

(Curvature Analysis method, hereafter called CA

method) as compare to the Blind Reconstruction
methods (hereafter called BR methods) is the com-

puting time required. The CA method can be car-

ried-out in a few seconds whereas BR methods

require a long computing time (few minutes to

few hours) making them not practical. However,

the CA method does not give a reconstructed

tip but an average tip radius of the probe. This

method can be used as a test to control the tip
quality, especially in automated SFM, to detect

the dilation�s influence on the image, to estimate

the tip radius when quantitative measurement are

required, and to validate a reconstructed tip.

Fig. 7 shows topographic, gaussian and average

curvature images of glass spheres (Clariant,

France) adsorbed on a glass surface. The theoreti-

cal radius of the spheres is 35 nm. The histogram
of the gaussian radius deduced from the gaussian

curvature image is centered on 42 nm (Fig. 8). This

radius size is different from the theoretical value

but in good agreement with the average distance

between the center of two spheres in contact

(80 nm) as it could be measured on a profile. Un-

like the previous case, the topographic image is

only slightly dilated and the histogram reflects
the surface curvature instead of the tip curvature.
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This method can therefore be used to characterize

the curvature of objects such as nanotubes and

proteins if their radii of curvature are large enough

compared to the tip radius to prevent the dilation

effect from occurring.

3.2. Phase signal and curvature correlation

When imaging with the Tapping Mode AFM,

there are two cases when the topographic images

and the phase contrast images can be directly

related.
Fig. 9. 0.25 lm2 topographic (a), phase image (b) and average curvatu

22� and 0.02 to �0.02 nm�1 respectively. An excellent correlation bet
(1) In the case of light tapping (ratio set point

close to 1), there is a direct relation between

the phase signal and the amplitude signal. It

can be explained by a servo loop time delay,

which does not maintain a constant vibration
amplitude for the cantilever (Eq. (1)).

(2) In the case of lower ratio set point, and

according to the literature [29,45,46], the

phase signal is sensitive to energy dissipation.

If the material properties do not change,

variations in the phase signal can be inter-

preted as variations of the tip/sample interac-
re image (c) of a polystyrene surface. The gray scale are 19 nm,

ween the last two images is clearly noticeable.
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tions due to variations of the surface sample

curvature. Then, if the sample curvature

radius is small compared to the tip curvature

radius, the curvature and the phase images

will present some similarities.

Fig. 9 presents the topographic image, the

gaussian curvature image and the corresponding

phase image of a polystyrene sample. An excellent

correlation is clearly noticeable between the curva-

ture image and the phase image. In this case, the

phase contrast must be interpreted as a variation
Fig. 10. 4 lm2 topographic (a), phase image (b) and average curvatur

29 nm, 59� and �0.05 to 0.05 nm�1 respectively.
of the sample curvature and not as a variation of

the local sample properties.

Fig. 10 presents the topographic image, the

gaussian curvature image and the corresponding

phase image of a �polypropylene choc� sample.
This material is heterogeneous and contains inclu-

sions of an elastomeric compound. The phase

image clearly shows a high contrast corresponding

to the polypropylene (white) and the elastomere

(black). On the homogeneous part of the sample,

the phase contrast and the curvature contrast are

correlated, but the high contrast between the two
e image (c) of a polypropylene choc surface. The gray scale are
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materials cannot be explained by a change of the

sample curvature. In this case, as expected, we

should conclude that the phase contrast reflects a

change of sample properties.
4. Conclusion

The analysis of the curvature of topographic

images is of great help to interpret SFM data. It

can be used to detect the dilation effect and then

to deduce the radius of the tip. This information

is necessary for quantitative measurements of the
physical properties of a surface. When no dilation

effect exits, the analysis gives quantitative mea-

surements of the curvature of spherical objects

such as spheres, ellipsoids or tubes. In addition,

a curvature image is useful to interpret the origin

of the contrast seen in phase images obtained using

Tapping Mode imaging. If the two images are sim-

ilar, we deduce that the contrast is not due to a
change of sample properties but due to the curva-

ture of the sample. If the two images cannot be

correlated, the interpretation is more difficult.

The contrast can be attributed to a heterogeneous

sample, to a signal not sensitive to the reduced cur-

vature or to a dilation effect. Therefore, before any

images interpretation, it is of major importance to

investigate the role that the tip and sample curva-
ture played on the contrast of SPM images, using

the present method and the conditions required.
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[49] M. Stark, C. Möller, D.J. Müller, R. Guckenberger,

Biophys. J. 80 (2001) 3009.

[50] A. Berquand, P.-E. Mazeran, J.-M. Laval, Surf. Sci. 523

(2002) 125.

[51] A. Gray, The Gaussian and Mean Curvatures §16.5 in

Modern Differential Geometry of Curves and Surfaces

with Mathematica, 2nd ed., CRC Press, Boca Raton, FL,

1997, p. 373.

[52] L. Euler, Mém. de l�Acad. des Sciences, Berlin 16 (1760)

119.


	Curvature radius analysis for scanning probe microscopy
	Introduction
	Surface curvature
	Application examples
	Tip and surface curvature measurement
	Phase signal and curvature correlation

	Conclusion
	References


