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Abstract

The Hidden semi-Markov models (HSMMs) have been introduced to overcome the constraint of a
geometric sojourn time distribution for the different hidden states in the classical hidden Markov models.
Several variations of HSMMs have been proposed that model the sojourn times by a parametric or a
nonparametric family of distributions. In this article, we concentrate our interest on the nonparametric
case where the duration distributions are attached to transitions and not to states as in most of the
published papers in HSMMs. Therefore, it is worth noticing that here we treat the underlying hidden
semi–Markov chain in its general probabilistic structure. In that case, Barbu and Limnios (2008) proposed
an Expectation–Maximization (EM) algorithm in order to estimate the semi-Markov kernel and the
emission probabilities that characterize the dynamics of the model. In this paper, we consider an improved
version of Barbu and Limnios’ EM algorithm which is faster than the original one. Moreover, we propose
a stochastic version of the EM algorithm that achieves comparable estimates with the EM algorithm in
less execution time. Some numerical examples are provided which illustrate the efficient performance of
the proposed algorithms.

Key words and phrases: Hidden semi-Markov models; Maximum likelihood estimation; EM algorithm;

Stochastic EM algorithm.

1 Introduction

The last decades, the Hidden Markov Models (HMMs) have become one of the most powerful and popular

techniques in several scientific fields such as speech recognition [Rabiner (1989), Rabiner and Juang (1993)],

biology [Krogh et al. (1994a,b)], image processing [Li and Gray (2000)] and several other fields [Bhar and

Hamori (2004), Sansom (1998)]. The interested reader can find a well-documented review in Ephraim and

Merhav (2002). For an overview of recent advances in HMMs see Cappé et al. (2005).

The first who made statistical inference for HMMs were Baum and Petrie (1966) and since then they are

widely used. In the original setting a HMM consists of a bidimensional stochastic process (Zn, Yn)n∈N, where

the first component forms a finite Markov chain (MC) not directly observed and the second one conditioned

on the MC forms a sequence of conditionally independent random variables (r.v.) with a finite alphabet. By

observing a trajectory of a certain length the main goal is to estimate the transition probabilities of the MC

and the conditional distributions that characterize the relationship between the observable and the hidden

process.

Although the HMMs can be proved useful in several cases, they suffer from an important limitation. They

do not allow other distribution for the sojourn times in the states of the hidden process than the geometric
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one. Such a model can be proved improper to describe several real data problems [see Levinson (1986)]. A

natural generalization of the HMMs are the Hidden Semi-Markov Models (HSMMs). In this case, the hidden

process (Zn)n∈N, is no longer a MC but a semi-Markov chain (SMC). Contrary to HMMs, the HSMMs allow

any distribution (beyond the geometric) for the sojourn times in the different states of the hidden process,

in order to achieve a better description of a real problem dataset.

HSMMs were introduced by Ferguson (1980). Since then, several variations of HSMMs have been proposed

that model the sojourn times by a parametric or a nonparametric family of distributions. In any case we

are interested in estimating the semi-Markov kernel (SM kernel) that governs the evolution of the hidden

semi-Markov chain and the conditional distributions that generate the observed data. In order to obtain

the maximum likelihood estimator (MLE) of the parameters of the HSMMs, an Expectation–Maximization

(EM) algorithm can be employed, due to the incompleteness of the data. Ferguson (1980) proposed an EM

algorithm for a HSMM. Since then, a lot of research has been done in this direction. Levinson (1986), Guédon

and Cocozza-Thivent (1990), Durbin et al. (1998), Sansom and Thomson (2001), Guédon (2003, 2005), Bulla

and Bulla (2006) and Barbu and Limnios (2008) are few typical references that presented EM algorithms

for parametric and nonparametric cases. Moreover, Barbu and Limnios (2006, 2008) proved consistency

and asymptotic normality of the MLE for the nonparametric HSMM. Trevezas and Limnios (2009) proved

consistency and asymptotic normality of the MLE for the general HSMM with backward recurrence time

dependence, where the emission law of every observed state, conditioned on the SMC, depend not only on

the underlying state of the SMC but also on the time that has elapsed from the last jump of the SMC.

In this paper we concentrate our interest on the nonparametric MLE of the HSMMs in their full generality,

where the sojourn (duration) times are attached to transitions and not to states. We will present an improved

EM algorithm that runs in significantly less time than the original Barbu and Limnios’ EM algorithm [Barbu

and Limnios (2008)]. Moreover, we propose stochastic versions of the EM, that give additional computational

advantages. In order to illustrate the performance of the proposed algorithms we used simulated data. The

stochastic version of the EM algorithm gives almost the same estimates as EM at the same level of accuracy

but it converges faster and needs even less CPU time per iteration than the proposed EM algorithm. This

offers the opportunity to use even longer trajectories in order to have better accuracy in a reasonable time

period, something really useful especially for real data problems.

The rest of this paper is organized as follows: In Section 2, we introduce the mathematical notations and we

state the conditions in order to specify the subclass of HSMMs to be considered. In Section 3, we present an

EM algorithm for the nonparametric HSMMs. The proofs of the Forward-Backward algorithm are presented

in Section 4. In Section 5, we present a class of stochastic EM algorithms for the nonparametric HSMMs. In

Section 6, the performance of the proposed algorithms is illustrated in several examples. Finally, we conclude

by providing a short discussion.

2 Preliminaries and assumptions

Let the couple (Z,Y) := (Zn, Yn)n∈N be a hidden semi-Markov chain defined on a probability space

(Ω,A , Pθ), where θ ∈ Θ, and Θ is a euclidean subset that parametrizes our model and will be speci-

fied in the sequel. We assume that the SMC Z has finite state space E = {1, 2, . . . , s} and SM kernel
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qθ := (qθ

ij(k))i,j∈E,k∈N. If we denote by (J,S) := (Jl, Sl)l∈N the associated Markov renewal process to Z,

then for each l ∈ N,

qθ

ij(k) = Pθ(Jl+1 = j, Sl+1 − Sl = k | Jl = i).

The process S keeps track of the successive time points that changes of states in Z occur (jump times), and

J records the visited states at these time points (embedded MC). By convention, we take S0 = 0, i.e., the

initial observation is taken on a jump time, and also qθ

ii(k) = 0, i.e., we do not allow direct transitions of J

to the same state (self-transitions). We note here that the exclusion of self-transitions (virtual transitions) is

always possible when we have irreducible SMCs, by considering a simple transformation of the semi-Markov

kernel [Pyke (1961)]. Let also N := (N(n))n∈N be the discrete time counting process of the number of jumps

of Z until time n, where

N(n) = max{l ∈ N | Sl ≤ n}.

It is clear that SN(n) expresses the time that the last jump before time n took place. The sequence X :=

(Xl)l∈N, where X0 = 0 and Xl = Sl −Sl−1 for l ∈ N
∗ represents the sojourn times in the successively visited

states. Additionally, we will use the notation Zn2
n1

to denote the vector (Zn1
, Zn1+1, . . . , Zn2

), for n1 ≤ n2,

and i for a vector that every component equals to the element i ∈ E. The dimension of i is implied by the

dimension of Zn2
n1

. The observable process Y has finite state space A = {1, . . . , d} and given the process Z

and the observed vector Yn−1
0 , the conditional probability function of Yn depends only on Zn, that is, for

any n ∈ N, α ∈ A and i ∈ E, we have

Pθ(Yn = α | Zn = i,Zn−1
0 ,Yn−1

0 ) = Pθ(Yn = α | Zn = i) := Rθ

i;α.

For each i ∈ E, we denote by Rθ

i := (Rθ

i;α)α∈A the vector of emission probabilities from the hidden states

to the observed states, and Rθ := (Rθ

i )i∈E .

We state the following conditions concerning the subclass of HSMMs to be considered:

(A1) The parameter of the model is selected to be θ = (q,R), and therefore we choose a nonparametric

framework and identify qθ and Rθ with q and R respectively.

(A2) If we denote by θ(0) the initial value of the EM and the stochastic version of EM algorithm that we

present in the sequel, then under P
θ(0) the corresponding constants ñij := max{k ∈ N : q

(0)
ij (k) > 0},

should not exceed the observation length M .

(A3) The embedded MC J is irreducible.

Remarks: i) By condition (A1) we make clear our intention to deal only with nonparametric cases, where no

knowledge is available for the underlying distributions. Condition (A2) implies that the conditional sojourn

time distributions for the different hidden states, conditioned on the next visited state, are considered

initially as discrete distributions concentrated on finite sets of time points. Condition (A3) renders the

SMC Z irreducible as well. By using conditions (A1) and (A2) we obtain the dependence relations for the

parameters, where for each i ∈ E we have :

∑

j 6=i

ñij∑

k=1

qij(k) = 1 and
∑

α∈A

Ri;α = 1. (1)
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ii) If we denote by ñi := maxj ñij , then for each i ∈ E the constants ñi express the maximum time period

of the sojourn times in state i.

We pinpoint that the majority of works that concern HSMMs treat the case where the sojourn times are

attached to states [see for example Guédon (2003, 2007), Bulla and Bulla (2006)]. We illustrate the difference

by describing the dynamics of the first transition for the SMC Z from a state i to a state j in k time units.

Let us define pij the corresponding transition probability of the embedded MC J and fij(k) the conditional

probability to have a transition from state i to state j in k time units. Then, we have

pij = Pθ (ZS1
= j | Z0 = i) and fij(k) = Pθ (S1 = k | ZS1

= j, Z0 = i) , (2)

where we recall that S0 = 0.

When sojourn times are attached to transitions the following decomposition holds for the elements of the

SM kernel:

qij(k) = Pθ

(
Zk = j,Zk−1

1 = i | Z0 = i
)

= Pθ (ZS1
= j, S1 = k | Z0 = i)

= Pθ (ZS1
= j | Z0 = i) Pθ (S1 = k | ZS1

= j, Z0 = i) = pijfij(k),

whereas in the case that sojourn times are attached to states the probability fij(k) does not depend on the

next visited state j, therefore leading to the decomposition

qij(k) = Pθ (ZS1
= j | Z0 = i) Pθ (S1 = k | Z0 = i) = pijfi(k).

Note that in this framework when a sojourn time in a state i expires, we can determine the next visited state

j by using only the probabilities of the embedded MC, whereas in the framework of attached transitions,

the next visited state depends also on the duration of this time. This shows that the HSMMs with duration

times attached to transitions are more general. Nevertheless, for many applications the dependence on the

next visited state could be a restriction since we have an important increase in the number of unknown

parameters.

3 An improved EM algorithm for nonparametric HSMMs

The EM algorithm is a very popular estimation method that has been applied in several scientific fields.

Its present general form was given by Dempster et al. (1977) although it has already been mentioned ear-

lier in the literature as a method for estimation in HMMs [Baum et al. (1970)]. It consists an iterative,

deterministic method designed to find the MLE in incomplete data problems. Each iteration of the EM

algorithm comprises two steps. The first step is the expectation step (E–step), where the conditional ex-

pectation of the complete data log–likelihood conditioned on the data and the current parameter estimate

(called Q–function) is calculated. The second step is the maximization step (M–step), where the parameters

are updated by maximizing the Q–function of the E–step. Thus, by starting from an arbitrary initial value,

under some regularity conditions, the EM algorithm produces a convergent sequence of parameter estimates

[Boyles (1983), Wu (1983)]. For an extensive literature on the EM, see McLachlan and Krishnan (2008) and

the references therein.
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In this section we present an EM algorithm for the nonparametric HSMMs, which are defined in Section

2 and satisfy conditions (A1)–(A3), that consists an improvement of the corresponding algorithm of Barbu

and Limnios (2008). This improvement can be summarized as follows:

i) This version of the EM is significantly faster. Indeed, the complexity of our proposed Forward–Backward

algorithm is O(M2s2) in time in the worst case, instead of O(M3s2) in Barbu and Limnios’ algorithm. In

the case of HSMMs with duration times attached to states, Guédon (2003) derived an EM algorithm with

complexity O(M2s + s2M). The difference in time complexity from the proposed algorithm is due to the

additional dependence of the sojourn time in the hidden states on the next visited state, something that can

not be relaxed by the nature of our model, since we treat a more general dependence structure.

ii) Instead of using an approached MLE by taking the approached likelihood function, we derive the exact

MLE that we obtain directly from the likelihood function without neglecting the part that corresponds to

the sojourn time in the last visited state. For the derivation of the exact MLE in the case of HSMMs that

duration times are attached to states see Guédon (2003) and Bulla (2006).

iii) The algorithm of Barbu and Limnios does not take into account the support of the conditional distribu-

tions that appear in the initial value θ(0). A direct transition from a state i to a state j of the SMC Z, occurs

at a maximum period of ñij time units. Therefore, the support of the transition laws should be limited by

this barrier during all iterations. This fact reduces considerably the execution time of the algorithm.

We note also here that the construction of the initial algorithm of Barbu and Limnios is based on the pa-

rameterization (p,f) of the SM kernel q, where p is the vector of transition probabilities of the embedded

MC J and f is the probability vector that characterize the conditional sojourn times in the different hidden

states and are given by (2). In our analysis, we use directly the SM kernel.

More specifically, in the HSMMs case, based on a sample sequence {YM
0 = yM

0 }, our main goal is to find

the MLE of the parameter θ = (q,R) of the model. The likelihood function LM (θ) := Pθ(ZM
0 ,YM

0 ) of the

complete data has the form

LM (θ) = a(Z0)




N(M)∏

l=1

q
Jl−1Jl

(Xl)




(
M∏

n=0

RZn;Yn

)
H̄JN(M)

(M − SN(M)),

where a(·) is the initial distribution and H̄i(·) is the survival function in state i for the SMC Z, and for

u ∈ N is given by

H̄i(u) = 1 −
∑

j 6=i

u∑

k=1

qij(k). (3)

Now, we define the following counting processes:

Nij(k,M) :=

M−1∑

n=k−1

1{Zn+1=j,Zn
n−k+1=i,Zn−k 6=i}, i, j ∈ E, i 6= j, 1 ≤ k ≤ ñij ,

Ni;α(M) :=

M∑

n=0

1{Zn=i,Yn=α}, i ∈ E, α ∈ A,
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where by convention {Z0 = i, Z−1 6= i} = {Z0 = i}, well adapted to our assumption that S0 = 0. We can

reformulate the likelihood function as follows:

LM (θ) = a(Z0)




∏

i,j,k
i6=j

qij(k)Nij(k,M)







∏

i,α

R
Ni;α(M)
i;α


 H̄ZM

(M − SN(M)),

where SN(M) is the time of the last jump of Z before time M .

Thus, the log–likelihood ℓM (θ) := logLM (θ) of the complete data is then equal to

ℓM (θ) = log a(Z0) +
∑

i,j,k
i6=j

Nij(k,M) log qij(k) +
∑

i

∑

α

Ni;α(M) log Ri;α

+ log H̄ZM
(M − SN(M)).

Instead of maximizing the log–likelihood of the complete data which is not known, the EM algorithm

maximizes the conditional expectation of the log–likelihood of the complete data conditioned on the event

{YM
0 = yM

0 } and on the current value θ(m) of the parameter. For simplicity we refer to the above event by

y when it causes no confusion. The first term corresponds to the initial distribution and since in our context

does not depend on θ it can be excluded from the maximization function. Consequently, the function that

has to be maximized is given by:

Q(θ | θ(m)) =
∑

i,j,k
i6=j

log qij(k)
M−1∑

n=k−1

P
θ(m)

(
Zn+1 = j,Zn

n−k+1 = i, Zn−k 6= i|y
)

+
∑

i

∑

α

log Ri;α

M∑

n=0

1{Yn=α}Pθ(m)

(
Zn = i | y

)

+ E
θ(m)

(
log H̄ZM

(M − SN(M)) | y
)
. (4)

Barbu and Limnios (2008) used an approached MLE by considering an approached likelihood function

Q̃(θ | θ(m)) that results from Q(θ | θ(m)) by neglecting the last term of the righthand member of equation

(4). This last term involves the survival function at the last visited hidden state and for ergodic systems,

for a large M , its contribution to the likelihood function is small. Therefore, for HSMMs that the survival

functions of the sojourn times in the different hidden states decrease rapidly and the observation length is

big, an approached MLE can be satisfactory. For the maximization of Q̃(θ | θ(m)) and the corresponding

approached MLE of the SM kernel and the emission probabilities see pp. 157-158, Barbu and Limnios (2008).

Nevertheless, it would be wishful to derive the exact MLE by maximizing directly equation (4). For this

reason notice that

E
θ(m)

(
log H̄ZM

(M−SN(M)) | y
)
=

∑

i

ñi−1∑

u=1

log H̄i(u) P
θ(m)(ZM

M−u =i, ZM−u−1 6= i | y).

Since this conditional expectation depends on survival functions, and each survival function by (3) depends

only on q, we have

Q(θ | θ(m)) = Q1(q | θ(m)) + Q2(R | θ(m)),
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where

Q1(q | θ(m)) =
∑

i,j,k
i6=j

log qij(k)
M−1∑

n=k−1

P
θ(m)

(
Zn+1 = j,Zn

n−k+1 = i, Zn−k 6= i | y
)

+
∑

i

ñi−1∑

u=1

log H̄i(u) P
θ(m)(ZM

M−u =i, ZM−u−1 6= i | y),

Q2(R | θ(m)) =
∑

i

∑

α

log Ri;α

M∑

n=0

1{Yn=α}Pθ(m)

(
Zn = i | y

)
.

Thus, starting from an arbitrary initial value θ(0), at each EM step, the conditional probabilities needed

above are calculated by a Forward–Backward algorithm which will be presented in the rest of this section

and the updated value θ(m+1) is obtained by maximizing the Q–function with respect to θ.

In the sequel, we define some quantities upon which will be based the recursive relations for the EM algorithm

and its stochastic version. In particular, for the forward procedure we will need for each n ∈ N and i ∈ E:

P0 := Pθ(Y0 = y0),

Pn := Pθ(Yn = yn | yn−1
0 ), n 6= 0,

Bn(i) := Pθ(Zn = i, Zn−1 6= i, Yn = yn | yn−1
0 ). (5)

For the backward procedure we will need additionally for each n ∈ N, u ∈ N
∗ and i ∈ E the following

posterior probabilities:

Ln(i) := Pθ(Zn = i | y),

L1;n(i) := Pθ(Zn = i, Zn−1 6= i | y),

L1;n(i, u) := Pθ(Zn
n−u = i, Zn−u−1 6= i | y), (6)

L2;n(i) := Pθ(Zn = i, Zn−1 = i | y), n 6= 0, (7)

and for i 6= j the auxiliary quantity

Gn(i, j, u) := Pθ(Zn+1 = j,Zn
n−u = i, Zn−u−1 6= i | y). (8)

Moreover, we denote for each i ∈ E and α ∈ A, the initial probabilities of the couple (Z,Y)

µ(i, α) := Pθ(Z0 = i, Y0 = α),

which will be identified with the term B0(i).

In order to simplify the notation for the products of the form
∏n

p=n−k+1 Ri;yp
that will appear in the sequel

we define the term

Tn,k(i) :=

n∏

p=n−k+1

Ri;yp
,

and also we use the standard notation x ∧ y = min{x, y}. For empty sums and products we assume that

they are equal to zero and one respectively.

In the rest of this section we will present a detailed description of the EM algorithm for the HSMM case.
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Estimation step

Forward step

• For n = 0, we have B0(i) = µ(i, y0), P0 =
∑

i B0(i).

• For n = 1, . . . ,M, we have

Bn(i) =
∑

j 6=i

ñji∧n∑

t=1

qji(t)Bn−t(j)Ri,yn
Tn−1,t−1(j)∏n−1

p=n−t Pp

, (9)

Pn =
∑

i

( ñi−1)∧n∑

u=0

H̄i(u)Bn−u(i)Tn,u(i)
∏n−1

p=n−u Pp

. (10)

Backward step

• For n = M, we have L1;M (i) = BM (i)/PM , L1;M (i, ñi) = 0.

2 For u = 1, . . . , ñi − 1,

L1;M (i, u) =
H̄i(u)BM−u(i)TM,u(i)

∏M
p=M−u Pp

, (11)

L2;M (i) =

ñi−1∑

u=1

L1;M (i, u), (12)

LM (i) = L1;M (i) + L2;M (i). (13)

• For n = M − 1,M − 2, . . . , 0, we have

2 For u = 0, . . . , ñij − 1 and u ≤ n,

Gn(i, j, u) =
qij(u + 1)Bn−u(i)L1;n+1(j)Rj,yn+1

Tn,u(i)

Bn+1(j)
∏n

p=n−u Pp

. (14)

2 For u = 1, . . . , ñi − 1 and u ≤ n,

L1;n(i, u) = L1;n+1(i, u + 1) +
∑

j: j 6=i
ñij≥u+1

Gn(i, j, u), (15)

L1;n(i, ñi) = 0, (16)

L1;n(i) = L1;M (i,M − n) +
∑

j 6=i

ñij∧(M−n)∑

v=1

Gn+v−1(i, j, v − 1), (17)

L2;n(i) =

(ñi−1)∧(n−1)∑

u=1

L1;n(i, u), (18)

Ln(i) = L1;n(i) + L2;n(i). (19)
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Maximization step

The iterative procedure of the estimation of the parameter is given as follows:

q
(m+1)
ij (k) =

[
k−1∏

u=1

(
1 +

L
(m)
1;M (i, u)

∑M−1
n=0 L

(m)
1;n (i, u)

)] ∑M−1
n=0 G

(m)
n (i, j, k − 1)

∑M−1
n=0 L

(m)
1;n (i)

, (20)

R
(m+1)
i;α =

∑M
n=0 δynαL

(m)
n (i)

∑M
n=0 L

(m)
n (i)

. (21)

The complexity of the proposed Forward–Backward algorithm is O(M2s2) in time and O(Ms) in space in

the worst case. It is significantly faster than the one which is proposed by Barbu and Limnios (2008), since

its complexity in time is O(M3s2).

Remark: (SM-M1 case) In many applications it is more natural to assume that the observed sequence

Y conditioned on Z forms a sequence of Markovian dependent r.v.. It is straightforward to see that the

corresponding Q-function that we denote by Qd similarly to (4) equals

Qd(θ | θ(m)) =
∑

i,j,k
i6=j

log qij(k)
M−1∑

n=k−1

P
θ(m)(Zn+1 = j,Zn

n−k+1 = i, Zn−k 6= i|y)

+
∑

i

∑

α,β

log Ri;α,β

M∑

n=1

1{Yn−1=α,Yn=β}Pθ(m)(Zn = i | y)

+E
θ(m)

(
log H̄ZM

(M − SN(M)) | y
)
.

The iterative procedure of the estimation of the parameter by maximizing the function Qd, given as above,

is the same for the semi-Markov kernel for both cases (see relation (20)), while for the emission probabilities

gives :

R
(m+1)
i;α,β =

∑M
n=1 1{Yn−1=α,Yn=β}Pθ(m)(Zn = i | y)

∑M
n=1 P

θ(m)(Zn = i | y)
.

This enables us to construct the EM algorithm for the conditional Markovian case as a simple extension of

the conditionally independent case (compare with (31)) and therefore we will not enter into details.

4 Proofs for the Forward–Backward algorithm

We will prove the expression (9) referring to the term Bn(i) which is given by (5). For i, j ∈ E, i 6= j, u ∈

N, v ∈ N
∗, we define

Bn(i, j, u, v) := Pθ(Zn+v = j,Zn+v−1
n−u = i, Zn−u−1 6= i, yn−u | yn−u−1

0 ).

Note that
Bn(i, j, u, v) = Pθ(Zn−u = i, Zn−u−1 6= i, yn−u | yn−u−1

0 )

×Pθ(Zn+v = j,Zn+v−1
n−u+1 = i | Zn−u = i, Zn−u−1 6= i,yn−u

0 )

= Bn−u(i)qij(v + u), (22)
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since the probability Pθ(Zn+v = j,Zn+v−1
n−u+1 = i | Zn−u = i, Zn−u−1 6= i,yn−u

0 ) does not depend on the vector

yn−u
0 .

For n = 1, . . . ,M, and i ∈ E, we have

Bn(i) = Pθ(Zn = i, Zn−1 6= i, yn | yn−1
0 )

=
∑

j 6=i

ñji∧n∑

t=1

Pθ(Zn = i,Zn−1
n−t = j, Zn−t−1 6= j, yn | yn−1

0 )

∑

j 6=i

ñji∧n∑

t=1

Pθ(Zn = i,Zn−1
n−t = j, Zn−t−1 6= j, yn−t,y

n
n−t+1 | yn−t−1

0 )

Pθ(Yn−1
n−t = yn−1

n−t | yn−t−1
0 )

=
∑

j 6=i

ñji∧n∑

t=1

Bn−t(j, i, 0, t)Ri,yn
Tn−1,t−1(j)∏n−1

p=n−t Pp

. (23)

By relations (22) and (23), we get (9).

Now we proceed to analyze the term Pn and for n = 1, . . . ,M, we have

Pn = Pθ(Yn = yn | yn−1
0 )

=
∑

i

( ñi−1)∧n∑

u=0

Pθ(Zn
n−u = i, Zn−u−1 6= i, yn | yn−1

0 )

=
∑

i

( ñi−1)∧n∑

u=0

Pθ(Zn
n−u = i, Zn−u−1 6= i, yn−u,yn

n−u+1 | yn−u−1
0 )

Pθ(Yn−1
n−u = yn−1

n−u | yn−u−1
0 )

. (24)

If we denote by An(i, u) the numerator of equation (24), we have

An(i, u) = Pθ(Zn−u = i, Zn−u−1 6= i, yn−u | yn−u−1
0 )

×Pθ(Zn
n−u+1 = i | Zn−u = i, Zn−u−1 6= i)

×Pθ(Yn
n−u+1 = yn

n−u+1 | Zn
n−u+1 = i)

= Bn−u(i)H̄i(u)Tn,u(i). (25)

By (24) and (25) we deduce the expression (10).

In the sequel, we will give the proofs that correspond to the recursive relations that appear in the backward

step. For the validity of (11) note that for u = 1, . . . , ñi − 1,

L1;M (i, u) =
AM (i, u)

∏M
p=M−u Pp

.

Equations (12) and (13) are special cases of (18) and (19) respectively for n = M . Equations (18) and (19)

can be verified directly.

Now we proceed to the proof for the expression of Gn(i, j, u) that is given by (14). For u = 0, . . . , ñij − 1,

and u ≤ n, by (8) we have

Gn(i, j, u) =
Pθ(Zn+1 = j,Zn

n−u = i, Zn−u−1 6= i,y)

Pθ(YM
0 = y)

. (26)

10



If we denote by N1 and N2 the numerator and the denominator respectively of the righthand member of

(26), then

N1 = Pθ(Yn−u−1
0 = yn−u−1

0 )Pθ(Zn−u = i, Zn−u−1 6= i, yn−u | yn−u−1
0 )

×Pθ(Zn+1 = j,Zn
n−u+1 = i | Zn−u = i, Zn−u−1 6= i)

×Pθ(Yn+1
n−u+1 = yn+1

n−u+1 | Zn+1 = j, Zn
n−u+1 = i)

×Pθ(YM
n+2 = yM

n+2 | Zn+1 = j, Zn 6= j), (27)

and

N2 =
Pθ(Yn

0 =yn
0 ) Pθ(Zn+1=j,Zn 6= j, yn+1 | yn

0 ) Pθ(YM
n+2=yM

n+2 | Zn+1 =j,Zn 6=j)

Pθ(Zn+1 = j, Zn 6= j | y)
. (28)

Since by (26) the term Gn(i, j, u) = N1/N2, by combining (27) and (28) we get (14).

In order to deduce equation (15) we remark by (6) and (8) that

L1;n(i, u) = Pθ(Zn+1
n−u = i, Zn−u−1 6= i | y) +

∑

j 6=i

Gn(i, j, u), (29)

and the first term of the righthand member of the above equality equals L1;n+1(i, u + 1).

Finally, we infer relation (17) by using that

L1;n(i) =
∑

j 6=i

ñij∧(M−n)∑

v=1

Pθ(Zn+v = j, Zn+v−1
n = i, Zn−1 6= i | y)

+Pθ(ZM
n = i, Zn−1 6= i | y). (30)

At the last part of this section we will justify equations (21) and (20) that refer to the maximization step. The

maximization problem of the Q-function can now be decomposed into two separate maximization problems

of the Q1-function and of the Q2-function in order to obtain the MLE q(m+1) and R(m+1) of q and R

respectively. The maximization of Q2 with respect to R and under the corresponding constraints given by

(1) yields easily that

R
(m+1)
i;α =

∑M
n=0 1{Yn=α}Pθ(m)(Zn = i | y)

∑M
n=0 Pθ(m)(Zn = i | y)

. (31)

This justifies (21). The maximization of the Q1-function is a more demanding task since the survival

functions that appear have to be taken into account as functions of the SM kernel. By using for example

the Lagrange method (Lagrange multipliers) it can be verified that the MLE is indeed given by (20).

5 A stochastic EM algorithm for nonparametric HSMMs

Although the EM algorithm is a popular tool, it suffers from some shortcomings such as slow convergence

and/or convergence in sub-optimal solutions. An alternative class of algorithms that were proposed to

overcome the above problems and also the calculation of intractable, high–dimensional integrals at the E–

step, is the class of stochastic EM algorithms. There are many stochastic versions of the EM algorithm but

they are all based on the idea to replace the calculation of the expectation in the E–step by a simulation

step.

11



The simplest stochastic version of EM algorithm is the Stochastic EM (SEM), which was proposed by Celeux

and Diebolt (1985). The SEM algorithm estimates the Q-function by

Q̂(θ | θ(m)) = log f(ZM
0 (ω),y | θ),

where ZM
0 is simulated by P

θ(m)(· | y).

Monte Carlo EM (MCEM) [Wei and Tanner (1990)] is a natural generalization of the SEM. In each simu-

lation step m of the MCEM algorithm, the Q-function is estimated by averaging nm SEM estimates drawn

independently, i.e.,

Q̆(θ | θ(m)) =
1

nm

nm∑

i=1

log f(ZM
0 (ωi),y | θ). (32)

So, by the strong law of large numbers Q̆ will be a reasonable estimate of Q if the sample size is large enough.

Moreover, it is important to mention that MCEM converges only if the Monte Carlo sample size increases

in each iteration [see Booth et al. (2001), Chan and Ledolter (1995)]. Thus, the sample size must be deter-

mined at each iteration. The problem of selecting a proper sample size at each iteration is data–dependent.

Actually, a specific choice of the sequence of nm could be proper for one problem but really inefficient for

another problem. Thus, the need of data–driven sample size rules arises in order to implement MCEM in an

automatic way. Several authors have proposed automatic methods in order to specify the proper sample size

in each iteration (see Booth and Hobert (1999), Levine and Casella (2001), Levine and Fan (2004), Caffo

et al. (2005)), nevertheless it remains a hard task.

Another stochastic version of the EM algorithm is the Stochastic Approximation EM (SAEM) algorithm

[Delyon et al. (1999)]. It could be thought of as a generalization of MCEM. In the SAEM the Q-function is

estimated recursively by weighting the estimated function of the previous step and a Monte Carlo approxi-

mation in the current step. Consequently, the SAEM algorithm uses all the simulated data, contrary to the

MCEM that drops the simulated values during the previous iterations and is based only on the current data.

More specifically, the Q-function is estimated by

Q̌(θ | θ(m)) = γm Q̆(θ | θ(m)) + (1 − γm) Q̌(θ | θ(m−1)),

where Q̆(θ | θ(m)) is given by (32).

The choice of the sample size nm of the simulated data does not affect the convergence of the algorithm, but

an appropriate choice of nm could lead to a faster convergence. In general, as nm increases, the correlation

between successive estimates of the parameters reduces. Thus, a large nm decreases the number of iterations

that the algorithm requires in order to achieve convergence.

The weights γm are typically chosen to form a positive decreasing sequence across the iterations and they

have crucial importance for the rate of convergence. Polyak and Juditsky (1992) proved that for step size

γm ∝ m−α with 1/2 < α ≤ 1, SAEM converges at an optimal rate. Nonetheless, by choosing a large step size

(α ≈ 1/2), the convergence is faster but the Monte Carlo error increases. On the other hand, if a small step

size is chosen (α ≈ 1) the Monte Carlo error decreases but this is also the case for the rate of convergence.

A more challenging way for the selection of the sequence of γm is proposed by Jank (2006b).

The main advantage of SAEM is that it converges with a constant, and usually small, value of sample size,

12



contrary to MCEM that requires a new value of nm in each iteration. Thus, the only decision that we have

to make in order to implement a SAEM algorithm is the choice of the step size γm. For a recent extension of

the SAEM algorithm, referred to as PX–SAEM, in order to increase further its performance by a parameter

expansion method see Lavielle and Meza (2007)

A main feature of all stochastic versions of the EM algorithm is that they do not converge pointwise.

They generate a Markov chain whose stationary distribution is concentrated around the MLE. A reasonable

estimator could be the ergodic mean after a burn–in period. Moreover, contrary to the EM algorithm the

increase in log-likelihood is not guaranteed at each iteration due to the Monte Carlo error that is introduced

in the simulation step. Nevertheless, under some regularity conditions [see for example Chan and Ledolter

(1995)], the stochastic versions of the EM algorithm still converge to the MLE.

One of the most challenging topics in the implementation of the stochastic versions of the EM algorithm is

to find a proper stopping rule. The stopping rule of the EM algorithm could not be applied in that case due

to the stochastic nature of the algorithm, since small differences in the absolute difference of two successive

values of the Q–function and/or the parameter estimates can come by chance. Booth and Hobert (1999)

proposed to apply the deterministic stopping criterion of the EM algorithm for a predefined number of times

in order to reduce the probability of a premature stop of the algorithm. For more sophisticated stopping

rules see Gu and Zhu (2001), Caffo et al. (2005) and Jank (2006b). A detailed review on the stochastic

versions of the EM algorithm is presented by Jank (2005, 2006a).

In the rest of this section we present a stochastic version of the EM algorithm for finding the MLE in

nonparametric HSMMs.

As we mentioned above, using any stochastic version of the EM algorithm, at each iteration m, firstly we

have to simulate ZM
0 from the conditional distribution P

θ(m)(· | y) and then we maximize the log–likelihood

of the complete data with respect to θ.

The simulation starts by sampling the last visited state ZM and the last jump time SN(M). So, for any i ∈ E

and 0 ≤ u ≤ ñi − 1 we have

Pθ(ZM = i, SN(M) = M − u | y) = Pθ(ZM
M−u = i, ZM−u−1 6= i | y) = L1;M (i, u),

where L1;M (i, u) is given by (11).

For the intermediate steps, the recursive relation that gives us the previous visited state and the corresponding

jump time (Jl−1, Sl−1) conditioned on the sequence
(
J

N(M)
l ,S

N(M)
l ,YM

0

)
can be obtained by noting that

Pθ

(
Jl−1 = i, Sl − Sl−1 = u | J

N(M)
l+1 ,S

N(M)
l+1 , Sl = n, Jl = j,y

)

= Pθ

(
Zn−1

n−u = i, Zn−u−1 6= i | Sl = n,Zn = j,ZM
n+1,y

)

=
Pθ(Zn−1

n−u = i, Zn−u−1 6= i, Sl = n,Zn = j,ZM
n+1,y)

Pθ

(
Sl = n,Zn = j,ZM

n+1,y
) . (33)

13



The numerator N1 of equation (33) can be written as:

N1 = Pθ(Yn−u−1
0 = yn−u−1

0 )Pθ(Zn−u = i, Zn−u−1 6= i, yn−u | yn−u−1
0 )

×Pθ(Zn = j,Zn−1
n−u+1 = i | Zn−u = i, Zn−u−1 6= i)

×Pθ(Yn
n−u+1 = yn

n−u+1 | Zn = j,Zn−1
n−u+1 = i)

×Pθ(ZM
n+1,y

M
n+1 | Zn = j, Zn−1 6= j). (34)

The denominator N2 of equation (33) can be written as:

N2 = Pθ(Yn−1
0 = yn−1

0 ) Pθ(Zn = j, Zn−1 6= j, yn | yn−1
0 ) Pθ(ZM

n+1,y
M
n+1 | Zn = j, Zn−1 6= j). (35)

Finally, by equations (33)–(35) and the quantities defined already in Section 3 we get

Pθ(Jl−1 = i, Sl − Sl−1 = u | J
N(M)
l+1 ,S

N(M)
l+1 , Sl = n, Jl = j,y) =

qij(u)Bn−u(i)Rj;yn
Tn−1,u−1(i)

Bn(j)
∏n−1

p=n−u Pp

. (36)

Remark: In the special case where the state space of Z has only 2 states, after we sample the last state

ZM we have a deterministic change in the states of the embedded MC J and all we have to sample are the

sojourn times in each state.

A similar approach in order to sample from P
θ(m)(· | y) is proposed by Guédon (2007), but in his algorithm the

author suggests to draw sequentially the current state and then conditionally on that and on the observations,

the state occupancy is drawn.

The main advantage of the stochastic version of the EM algorithm is that in order to implement it we need

only the forward procedure, that means significantly less CPU time per iteration. This gives a computational

advantage, especially in real data problems with huge trajectories.

6 Simulation studies

In order to illustrate the performance of the proposed algorithms, they were applied on several examples.

In this section we present some selected results. The algorithms were implemented in Fortran 95 on a PC

equipped with an Intel Core 2 Duo E6400 processor at 2.3 GHz and 1 GB of memory. All the variables were

of double precision and the operating system was Ubuntu Linux. Figures were created using Mathematica.

Since the implementation of the SAEM seems to be the most straightforward, we used this variation in our

examples.

The stopping criterion that is used is based on the absolute difference of two successive values of the log–

likelihood function as it is used by Bulla et al. (2008) and for the SAEM algorithm we applied the same

criterion three successive times [Booth and Hobert (1999)]. Moreover, in that case, we used the ergodic

mean for the parameter estimation after a burn–in period. More specifically, we discard the first 75% of the

estimated values and the rest simulated sequence is averaged.

Case 1: Let us consider the hidden SMC (Z,Y), where the state space of both Z and Y is the set {0, 1}.

We denote by W(q, b) the discrete–time Weibull distribution, i.e., X ∼ W(q, b) if

P(X = n) = q(n−1)b

− qnb

, n ∈ N
∗.
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We use one truncated trajectory YM
0 , with M = 50000, that was generated by using the SM kernel that

consists of q01(·) := W(0.7, 0.9) and q10(·) := W(0.5, 0.7) and the vectors of emission probabilities R0 :=

(0.8, 0.2) and R1 := (0.2, 0.8). Three different initial values θ(0) :=
(
q

(0)
01 , q

(0)
10 ,R

(0)
0 ,R

(0)
1

)
have been used

for both EM and SAEM algorithms:

(1α) : q
(0)
01 =

(
0.3, 0.2, 0.1, 0.4

ñ01−3 , . . . , 0.4
ñ01−3

)
, q

(0)
10 =

(
0.5, 0.2, 0.1, 0.2

ñ10−3 , . . . , 0.2
ñ10−3

)
,

R
(0)
0 = (0.8, 0.2), R

(0)
1 = (0.2, 0.8),

(1β) : q
(0)
01 = 1

ñ01
1ñ01

, q
(0)
10 = 1

ñ10
1ñ10

, R
(0)
0 = (0.8, 0.2), R

(0)
1 = (0.2, 0.8),

(1γ) : q
(0)
01 = 1

ñ01
1ñ01

, q
(0)
10 = 1

ñ10
1ñ10

, R
(0)
0 = (0.6, 0.4), R

(0)
1 = (0.4, 0.6),

where 1s, s = ñ01, ñ10, represents the s-dimensional vector of ones and as support (ñ01, ñ10) we used (15, 10)

and (20, 15).
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Figure 1: Left: The true values (solid line) and the estimated values using EM for q01(k) are presented. Right:
The true values (solid line) and the estimated values using EM for q10(k) are presented. The estimates, that
are obtained by using (1α) as initial values, are depicted by boxes, using (1β) by triangles and using (1γ)
by stars (M = 50000, support (ñ01 = 15, ñ10 = 10)).

As we can see in Figure 1, with chosen support (ñ01 = 15, ñ10 = 10), the estimates are really close to the

true values of almost all model parameters for the two accuracy levels ǫ = 10−2 and ǫ = 10−3. Moreover,

we implemented the above example by using a different support (ñ01 = 20, ñ10 = 15). In that case we have

very good estimates for all the aforementioned accuracy levels (see Figures 2). In Figures 3, we can see a

comparison of the estimates that are obtained by using different supports. It is clear that by using a larger

support we have better estimates in the tail of the distribution. On the other hand, if the support is further

increased, there is a risk that the observed trajectory will not have a sufficient length in order to obtain

good estimates. Moreover, we mention that, by using as stopping criterion ǫ = 10−3 we have slightly better

estimates in the tail of the distribution than the ones obtained by using as stopping criterion ǫ = 10−2, but

on the other hand we need much more EM steps in order the stopping criterion to be satisfied (see Table

1). Thus, in order to balance between the accuracy and the computational cost, we have to choose a proper
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Figure 2: Left: The true values (solid line) and the estimated values using EM for q01(k) are presented. Right:
The true values (solid line) and the estimated values using EM for q10(k) are presented. The estimates, that
are obtained by using (1α) as initial values are depicted by boxes, using (1β) by triangles and using (1γ) by
stars (M = 50000, support (ñ01 = 20, ñ10 = 15)).

(I) (II)

(1α) (1β) (1γ) (1α) (1β) (1γ)

ǫ = 10−2 107 210 224 217 439 446

ǫ = 10−3 200 371 387 720 1071 1076

Table 1: Numbers of EM steps in order the stopping criterion to be satisfied [M = 50000, (I) for support
(ñ01 = 15, ñ10 = 10) and (II) for (ñ01 = 20, ñ10 = 15)].

ǫ and ñij ’s.. In the rest of this section, we use as accuracy level ǫ = 10−2 because by using ǫ = 10−3 we do

not have any great improvement in the estimates and the computational cost is extremely large. Another

key point is to choose proper ñij ’s, in such a way that they are large enough in order to cover the most

significant part of the original support and on the other hand, small enough compared to the length of the

observed sequence. For the rest of this section we use as support ñ01 = 15 and ñ10 = 10.

We also implemented SAEM for the above data sets. We run 10 times SAEM algorithm for each initial

value. The estimates are similar in each run and very close to the true values as Figure 4 depicts. It is

important to mention here that, an iteration of SAEM needs not only less CPU time than an iteration of

EM algorithm (18.87 and 31.65 seconds in average per iteration correspondingly), but also converges faster

in almost all cases as we can see in Table 2.

Thus, we conclude that SAEM converges faster than EM. Moreover, we can further increase the conver-

gence rate of SAEM by a proper choice of the step size γm.
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Figure 3: Left: The true values (solid line) and the estimated values using EM for q01(k) are presented. Right:
The true values (solid line) and the estimated values using EM for q10(k) are presented. The estimates are
obtained by using (1γ) as initial values. The boxes depict the estimates that are obtained by using as
support (ñ01 = 15, ñ10 = 10) and the triangles depict the estimates that are obtained by using as support
(ñ01 = 20, ñ10 = 15) (ǫ = 10−3, M = 50000).
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Figure 4: Left: The true values (solid line) and the estimated values using SAEM for q01(k) are presented.
Right: The true values (solid line) and the estimated values using SAEM for q10(k) are presented. The
estimates, that are obtained by using (1α) as initial values, are depicted by boxes, using (1β) by triangles
and using (1γ) by stars (ǫ = 10−2, M = 50000).

min max mean

(1δ) 89 160 119.6

(1ǫ) 150 347 242.0

(1ζ) 178 299 222.6

Table 2: Numbers of SAEM steps in order the stopping criterion to be satisfied (ǫ = 10−2,M = 50000),
support (ñ01 = 15, ñ10 = 10).

Case 2: Let us consider the HSMM (Z,Y), where Z has state space {0, 1} and Y has {0, 1, 2, 3}. Moreover,

let us assume that we have an observed sequence YM
0 with M = 70000 that has been simulated with a

SM kernel given by q01(·) := W(0.7, 0.9) and q10(·) := W(0.5, 0.7) (discrete–time random variables) and

emission probabilities given by R0 := (0.4, 0.3, 0.2, 0.1) and R1 := (0.1, 0.2, 0.3, 0.4). We use as initial values
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for EM and SAEM the following vectors:

(2α) : q
(0)
01 =

(
0.3, 0.2, 0.1, 0.4

12 , . . . , 0.4
12

)
, q

(0)
10 =

(
0.5, 0.2, 0.1, 0.2

7 , . . . , 0.2
7

)
,

R
(0)
0 = (0.4, 0.3, 0.2, 0.1), R

(0)
1 = (0.1, 0.2, 0.3, 0.4),

(2β) : q
(0)
01 = 1

15115, q
(0)
10 = 1

10110,

R
(0)
0 = (0.4, 0.3, 0.2, 0.1), R

(0)
1 = (0.1, 0.2, 0.3, 0.4),

(2γ) : q
(0)
01 = 1

15115, q
(0)
10 = 1

10110,

R
(0)
0 = (0.35, 0.3, 0.25, 0.1),R

(0)
1 = (0.1, 0.25, 0.3, 0.35).

In Figures 5–6 the estimated values that where obtained from EM and SAEM algorithms respectively, are

depicted. Moreover, in Tables 3–4, we can see the corresponding number of iterations that were needed in

each case.
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Figure 5: Left: The true values (solid line) and the estimated values using EM for q01(k) are presented. Right:
The true values (solid line) and the estimated values using EM for q10(k) are presented. The estimates, that
are obtained by using (2α) as initial values, are depicted by boxes, using (2β) by triangles and using (2γ)
by stars (ǫ = 10−2, M = 70000).
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Figure 6: Left: The true values (solid line) and the estimated values using SAEM for q01(k) are presented.
Right: The true values (solid line) and the estimated values using SAEM for q10(k) are presented. The
estimates, that are obtained by using (2α) as initial values, are depicted by boxes, using (2β) by triangles
and using (2γ) by stars (ǫ = 10−2, M = 70000).
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(2α) (2β) (2γ)

ǫ = 10−2 304 525 540

ǫ = 10−3 705 953 969

Table 3: Numbers of EM steps in order the stopping criterion to be satisfied (M = 70000), support (ñ01 =
15, ñ10 = 10).

min max mean

(2α) 57 271 175.7

(2β) 243 482 359.1

(2γ) 261 427 356.8

Table 4: Numbers of SAEM steps in order the stopping criterion to be satisfied (ǫ = 10−2,M = 70000),
support (ñ01 = 15, ñ10 = 10).

7 Conclusion

In this paper we proposed an EM and stochastic versions of EM algorithm for finding the MLE for nonpara-

metric HSMMs. Our method is directly applicable to the cases that the support of the improper distributions

of the semi–Markov kernel is finite or when the error of approximation by an appropriate finite support is

small. This is not the case for heavy tailed distributions. Our experimental results are encouraging and

promising for further investigation. We have taken good estimates in feasible time by using EM and SAEM

algorithms. The proposed algorithms can find straightforward applications in biostatistics, operation re-

search, reliability, queuing theory and several other fields. Concluding, we would like to mention some

interesting problems that have arisen during this study. A main problem is to estimate appropriate barriers

for the support of the improper distributions when they are unbounded. Moreover, the finding of proper

weights γm for the SAEM algorithm in order to achieve faster convergence and also proper stopping rules

are issues of great importance.
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