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Abstract

This chapter presents the reliability of discrete-time semi-Markov systems. After some basic

definitions and notation, we obtain explicit forms for reliability indicators. We propose non-

parametric estimators for reliability, availability, failure rate, mean hitting times and we study

their asymptotic properties. Finaly, we give a three state example with detailled calculus and

numerical evaluations.
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1 Introduction

In the last fifty years, a lot of work has been carried out in the field of probabilistic and statistical

methods in reliability. We do not intend to provide here an overview of the field, but only to

point out some bibliographical references which are close to the work presented in this chapter.

More precisely, we are interested in discrete-time models for reliability and in models based

on semi-Markov processes which extend the classical i.i.d. or markovian cases approach. The

generality is important as we pass from a geometric distributed sojourn time in the Markov

case, to a general distribution on the set of positive integers N, as the discrete-time Weibull

distribution.

It is worth noticing here that most of the mathematical models for reliability consider the

time to be continuous. But there are real situations when systems have natural discrete lifetimes.

We can cite here those systems which are working on demand, those working on cycles or those

monitored only at certain discrete times (once a month, say). In such situations, the lifetimes

are expressed in terms of the number of working periods, the number of working cycles or the
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number of months before failure. In other words, all these lifetimes are intrinsically discrete. But

even in the continuous-time modeling case, we pass to the numerical calculus first by discetising

the concerned model. A good overview of discrete probability distributions used in reliability

theory can be found in [9].

Several authors have studied discrete-time models for reliability in a general i.i.d. setting

(see [21, 9, 8]). The discrete time reliability modeling via homogeneous and non-homogeneous

Markov chains can be found in [1, 22]. Statistical estimation and asymptotic properties for

reliability metrics, using discrete-time homogeneous Markov chains, are presented in [23]. The

continuous-time semi-Markov model in reliability can be found in [13, 18, 15].

As compared to the attention given to the continuous-time semi-Markov processes and related

inference problems, the discrete-time semi-Markov processes are less studied. For an introduc-

tion to discrete-time renewal processes, see, for instance, [19]; an introduction to DTSMP can

be found in [12], [16], [4]. The reliability of discrete-time semi Markov systems is investigated

in [11, 5, 2, 3].

We give here a detailled modeling of reliability, availability, failure rate and mean up time

with closed form solutions and statistical estimation based on a censured trajectory in the time

interval [0,M ]. The discrete time modeling, presented here, is more adapter for applications

and is numerically easy to implement computer softwars to compute and estimate the abouve

metrics.

The present chapter is structured as follows. In the first part, we define homogeneous

discrete-time Markov renewal processes, homogeneous semi-Markov chains and we establish

some basic notation. In Section 2, we consider a repairable discrete-time semi-Markov system

and we obtain explicit forms for reliability measures: reliability, availability, failure rate and

mean hitting times. Section 4 is devoted to nonparametric estimation. We first obtain estimators

for the characteristics of o semi-Markov system. Then, we propose estimators for measures of

the reliability and we present their asymptotic properties of the estimators. We end this chapter

by a numerical application.

2 Semi-Markov Setting

In this section we define the discrete-time semi-Markov model, introduce the basic notation and

definitions and present some probabilistic results on semi-Markov chains.

Consider a random system with finite state space E = {1, . . . , s}. We denote by ME the set

of non negative matrices on E×E and by ME(N) the set of matrix-valued functions defined on

N, with values in ME . For A ∈ ME(N), we write A = (A(k); k ∈ N), where, for k ∈ N fixed,

A(k) = (Aij(k); i, j ∈ E) ∈ ME . Put IE ∈ ME for the identity matrix and 0E ∈ ME for the

null matrix.

We suppose that the evolution in time of the system is described by the following chains:

• the chain J = (Jn)n∈N with state space E, where Jn is the system state at the n-th jump

time;
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• the chain S = (Sn)n∈N with state space N, where Sn is the n-th jump time. We suppose

that S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . . ;

• the chain X = (Xn)n∈N∗ with state space N
∗, where Xn is the sojourn time in state Jn−1

before the n-th jump. Thus, for all n ∈ N
∗, we have Xn = Sn − Sn−1.

One fundamental notion for semi-Markov systems is that of semi-Markov kernel in discrete time.

Definition 1 (Discrete-time semi-Markov kernel) A matrix-valued function q ∈ ME(N)

is said to be a discrete-time semi-Markov kernel if it satisfies the following three properties:

1. 0 ≤ qij(k) ≤ 1, i, j ∈ E, k ∈ N,

2. qij(0) = 0 and

∞∑

k=0

qij(k) ≤ 1, i, j ∈ E,

3.

∞∑

k=0

∑

j∈E

qij(k) = 1, i ∈ E.

Definition 2 (Markov renewal chain) The chain (J, S) = (Jn, Sn)n∈N is said to be a Markov

renewal chain (MRC) if for all n ∈ N, for all i, j ∈ E and for all k ∈ N it satisfies almost surely

P(Jn+1 = j, Sn+1 − Sn = k | J0, . . . , Jn;S0, . . . , Sn)

= P(Jn+1 = j, Sn+1 − Sn = k | Jn). (1)

Moreover, if Equation (1) is independent of n, (J, S) is said to be homogeneous and the

discrete-time semi-Markov kernel q is defined by

qij(k) := P(Jn+1 = j,Xn+1 = k | Jn = i).

We also introduce the cumulative semi-Markov kernel as the matrix-valued function Q =

(Q(k); k ∈ N) ∈ ME(N) defined by

Qij(k) := P(Jn+1 = j,Xn+1 ≤ k | Jn = i) =

k∑

l=0

qij(l), i, j ∈ E, k ∈ N. (2)

Figure 1 gives a representation of the evolution of the system.

X 1

X 2

X n + 1

S 0 S 1 S 2 S n S n + 1

{ J 0 = i }
{ J 1 = j }

{ J n = k }
.  .  .

.  .  .

.  .  .

.  .  . t i m e

s t a t e s
( X n  )  :  s o j o u r n  t i m e
( J n   )  :  s t a t e s  o f  t h e  s y s t e m
( S n )   :   j u m p  t i m e

Figure 1: A typical sample path of a Markov renewal chain
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Note that, for (J, S) a Markov renewal chain, we can easily see that (Jn)n∈N is a Markov

chain, called the embedded Markov chain associated to the MRC (J, S). We denote by p =

(pij)i,j∈E ∈ ME the transition matrix of (Jn), defined by

pij = P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N.

We also assume that pii = 0, qii(k) = 0, k ∈ N, i ∈ E. We define now the sojourn time

distributions in a given state and the conditional distributions depending on the next state to

be visited.

Definition 3 (Conditional distributions of the sojourn times) For all i, j ∈ E, let us

define:

1. fij(·), the conditional distribution of Xn+1, n ∈ N :

fij(k) = P(Xn+1 = k | Jn = i, Jn+1 = j), k ∈ N. (3)

2. Fij(·), the conditional cumulative distribution of Xn+1, n ∈ N :

Fij(k) = P(Xn+1 ≤ k | Jn = i, Jn+1 = j) =

k∑

l=0

fij(l), k ∈ N. (4)

Obviously, for all i, j ∈ E and for all k ∈ N ∪ {∞}, we have

fij(k) =





qij(k)/pij if pij 6= 0,

1{k=∞} if pij = 0.
(5)

Definition 4 (Sojourn times distributions in a given state) For all i ∈ E, let us denote

by:

1. hi(·), the sojourn time distribution in state i:

hi(k) = P(Xn+1 = k | Jn = i) =
∑

j∈E

qij(k), k ∈ N
∗.

2. Hi(·), the sojourn time cumulative distribution function in state i:

Hi(k) = P(Xn+1 ≤ k | Jn = i) =

k∑

l=1

hi(l), k ∈ N
∗.

Let us also denote by mi the mean sojourn time in a state i ∈ E,

mj := E(S1 | J0 = j) =
∑

n≥0

(1 −Hj(n)).

For G the cumulative distribution function of a certain r.v. X, we denote the survival func-

tion by G(n) := 1 −G(n) = P(X > n), n ∈ N. Thus, for all states i, j ∈ E we put F ij and Hi

for the corresponding survival functions.

The operation which will be commonly used when working on the space ME(N) of matrix-

valued functions will be the discrete-time matrix convolution product. In the sequel we recall its

definition, we see that there exists a neutral element, we define recursively the n−fold convolution

and we introduce the notion of the inverse in the convolution sense.
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Definition 5 (Discrete-time matrix convolution product) Let A,B ∈ ME(N) be two

matrix-valued functions. The matrix convolution product A ∗ B is a matrix-valued function

C ∈ ME(N) defined by

Cij(k) :=
∑

r∈E

k∑

l=0

Air(k − l)Brj(l), i, j ∈ E, k ∈ N.

The following result concerns the existence of the neutral element for the matrix convolution

product in discrete time.

Lemma 1 Let δI = (dij(k); i, j ∈ E) ∈ ME(N) be the matrix-valued function defined by

dij(k) :=





1 if i = j and k = 0,

0 elsewhere.

Then, δI satisfies

δI ∗A = A ∗ δI = A, A ∈ ME(N),

i.e., δI is the neutral element for the discrete-time matrix convolution product.

The power in the sense of convolution is defined straightforward, using Definition 5.

Definition 6 (Discrete-time n−fold convolution) Let A ∈ ME(N) be a matrix-valued func-

tion and n ∈ N. The n−fold convolution A(n) is a matrix-valued function in ME(N) defined

recursively by:

A
(0)
ij (k) :=





1 if k = 0 and i = j,

0 elsewhere ,

A
(1)
ij (k) := Aij(k)

and

A
(n)
ij (k) :=

∑

r∈E

k∑

l=0

Air(l)A
(n−1)
rj (k − l), n ≥ 2, k ∈ N.

For a MRC (J, S), the n−fold convolution of the semi-Markov kernel has the property ex-

pressed in the following result.

Lemma 2 Let (J, S) = (Jn, Sn)n∈N be a Markov renewal chain and q = (qij ; i, j ∈ E) ∈
ME(N) be its associated semi-Markov kernel. Then, for all n, k ∈ N such that n ≥ k + 1 we

have q(n)(k) = 0.

This property of the discrete-time semi-Markov kernel convolution is essential for the sim-

plicity and the numerical exactitude of the results obtained in discrete time. We need to stress

the fact that this property is intrinsic to the work in discrete time and it is not valid any more

for a continuous-time Markov renewal process.

Definition 7 (Left inverse in the convolution sense) Let A ∈ ME(N) be a matrix-valued

function. If there exists a B ∈ ME(N) such that B ∗A = δI, then B is called the left inverse of

A in the convolution sense and it is denoted by A(−1).
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It can be shown that given a matrix-valued function A ∈ ME(N), if detA(0) 6= 0, then the left

inverse B of A exists and is unique (see [4] for the proof).

Let us now introduce the notion of semi-Markov chain, strictly related with that of Markov

renewal chain.

Definition 8 (Semi-Markov chain) Let (J, S) be a Markov renewal chain. The chain Z =

(Zk)k∈N is said to be a semi-Markov chain associated to the MRC (J,S), if

Zk := JN(k), k ∈ N,

where

N(k) := max{n ∈ N | Sn ≤ k} (6)

is the discrete-time counting process of the number of jumps in [1, k] ⊂ N. Thus, Zk gives the

system state at time k. We have also Jn = ZSn
, n ∈ N.

Let the row vector α = (α1, . . . , αs) denote the initial distribution of the semi-Markov chain

Z = (Zk)k∈N, where αi := P(Z0 = i) = P(J0 = i), i ∈ E.

Definition 9 The transition function of the semi-Markov chain Z is the matrix-valued function

P ∈ ME(N) defined by

Pij(k) := P(Zk = j | Z0 = i), i, j ∈ E, k ∈ N.

The following result consists in a recursive formula for computing the transition function P

of the semi-Markov chain Z.

Proposition 1 For all i, j ∈ E and for all k ∈ N, we have

Pij(k) = 1{i=j}(k) [1 −Hi(k)] +
∑

r∈E

k∑

l=0

qir(l)Prj(k − l), (7)

where

1{i=j}(k) :=





1 if i = j and k ≥ 0,

0 elsewhere.

Let us define for all k ∈ N:

• I(k) := (1{i=j}(k); i, j ∈ E), I := (I(k); k ∈ N);

• H(k) := diag(Hi(k); i ∈ E), H := (H(k); k ∈ N).

In matrix-valued function notation, Equation (7) becomes

P = I − H + q ∗ P. (8)

Equation (8) is an example of what is called discrete-time Markov renewal equation. We

know that the solution of this equation exists, is unique (see [4]) and has the following form

P(k) = (δI − q)(−1) ∗ (I − H)(k) = (δI − q)(−1) ∗ (I − diag(Q · 1))(k), k ∈ N. (9)
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3 Reliability Modeling

In this Section we consider a reparable discrete-time semi-Markov system and we obtain closed

form solutions for reliability measures: reliability, availability, failure rate, mean time to failure,

mean time to repair.

3.1 State Space Split

Consider a system (or a component) S whose possible states during its evolution in time are

E = {1, . . . , s}. Denote by U = {1, . . . , s1} the subset of working states of the system (the up-

states) and by D = {s1 +1, . . . , s} the subset of failure states (the down-states), with 0 < s1 < s

(obviously, E = U ∪D and U ∩D = ∅, U 6= ∅, D 6= ∅). One can think the states of U as different

operating modes or performance levels of the system, whereas the states of D can be seen as

failures of the systems with different modes. According to the partition of the state space in

up-states and down-states, we will partition the vectors, matrices or matrix functions we are

working with.

Firstly, for α, p, q(k), f(k), F(k), H(k), Q(k), we consider the natural matrix partition

corresponding to the state space partition U and D. For example, we have

U D

p =



 p11

p21

p12

p22



 U

D
,

U D

q(k) =



 q11(k)

q21(k)

q12(k)

q22(k)



 U

D
,

U D

H(k) =



 H11(k)

0

0

H22(k)



 U

D

U D

=



 diag(Hi(k))i∈U

0

0

diag(Hi(k))i∈D



 U

D
.

Secondly, for P(k) we consider the restrictions to U × U and D ×D induced by the corre-

sponding restrictions of the semi-Markov kernel q(k). To be more specific, using the partition

given above for the kernel q, we note:

• P11(k) := (δI − q11)
(−1) ∗ (I − diag(Q · 1)11)(k),

• P22(k) := (δI − q22)
(−1) ∗ (I − diag(Q · 1)22)(k).

The reasons fort taking this partition for P(k) can be found in [6].

For m,n ∈ N
∗ such that m > n, let 1m,n denote the m−dimensional column vector whose

n first elements are 1 and last m− n elements are 0; for m ∈ N
∗, let 1m denote the m-column

vector whose elements are all 1, that is, 1m = 1m,m.

3.2 Reliability

Consider a system S starting to function at time k = 0 and let TD denote the first passage time

in subset D, called the lifetime of the system, i.e.,

TD := inf{n ∈ N; Zn ∈ D} and inf ∅ := ∞.
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The reliability of a discrete-time semi-Markov system S at time k ∈ N, that is the probability

that the system has functioned without failure in the period [0, k] is

R(k) := P(TD > k) = P(Zn ∈ U, n = 0, . . . , k).

The following result gives the reliability of the system in terms of the basic quantities of the

semi-Markov chain.

Proposition 2 The reliability of a discrete-time semi-Markov system at time k ∈ N is given by

R(k) = α1 P11(k)1s1
= α1(δI − q11)

(−1) ∗ (I − diag(Q · 1)11)(k)1s1
. (10)

3.3 Availability

The pointwise (or instantaneous) availability of a system S at time k ∈ N is the probability that

the system is operational at time k (independently of the fact that the system has failed or not

in [0, k)).

So, the pointwise availability of a semi-Markov system at time k ∈ N is

A(k) = P(Zk ∈ U) =
∑

i∈E

αiAi(k),

where we have denoted by Ai(k) the system’s availability at time k ∈ N, given that it starts in

state i ∈ E,

Ai(k) = P (Zk ∈ U | Z0 = i).

The following results gives an explicit form of the availability af discrete-time semi-Markov

system.

Proposition 3 The pointwise availability of a discrete-time semi-Markov system at time k ∈ N

is given by

A(k) = αP(k)1s,s1
= α (δI − q)(−1) ∗ (I − diag(Q · 1))(k)1s,s1

. (11)

3.4 Failure Rate

We consider here the classical failure rate, introduced by Barlow, Marshall and Prochan (1963).

We call it the BMP-failure rate and denote it by λ(k), k ∈ N.

Let S be a system starting to function at time k = 0. The BMP-failure rate at time k ∈ N is

the conditional probability that the failure of the system occurs at time k, given that the system

has worked until time k − 1.

For a discrete-time semi-Markov system, the failure rate at time k ≥ 1 has the expression

λ(k) := P(TD = k | TD ≥ k)

=





1 − R(k)

R(k−1) , R(k − 1) 6= 0

0, otherwise

=





1 − α1 P11(k) 1s1

α1 P11(k−1) 1s1
, R(k − 1) 6= 0,

0, otherwise.
(12)
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The failure rate at time k = 0 is defined by λ(0) := 1 −R(0).

It is worth noticing that the failure rate λ(k) in discrete-time case is a probability function

and not a general positive function as in the continuous-time case.

3.5 Mean Hitting Times

There are various mean times which are interesting for the reliability analysis of a system. We

will be concerned here only with the mean time to failure and mean time to repair.

We suppose that α2 = 0, i.e. the system starts in a working state. The Mean Time To

Failure (MTTF) is defined as the mean lifetime, i.e. the expectation of the hitting time to down

set D,

MTTF = E[TD].

Symmetrically, consider now that α1 = 0, i.e. the system fails at the time t = 0. The Mean

Time To Repair (MTTR) is defined as the mean of the repair duration, i.e. the expectation of

the hitting time to up-set U,

MTTR = E[TU ].

The following result gives expressions for the MTTF and MTTR of a discrete-time semi-Markov

system.

Proposition 4 If the matrices I − p11 and I − p22 are nonsingular, then

MTTF = α1(I − p11)
−1m1, (13)

MTTR = α2(I − p22)
−1m2, (14)

where m = (m1 m2)
⊤ is the partition of the mean sojourn times vector corresponding to the

partition of state space E in up-states U and down-states D. If the matrices are singular, we

put MTTF = ∞ or MTTR = ∞.

Remark 1 One can prove that, if there exists an i, 1 ≤ i ≤ s1, such that
∑s1

j=1 pij < 1,

then I − p11 is nonsingular. Symmetrically, if there exists an l, s1 + 1 ≤ l ≤ s, such that
∑s

j=s1+1 plj < 1, then I − p22 is nonsingular.

So, under these conditions, the hypotheses of the above Proposition are fulfilled and we have

the expressions of MTTF and MTTR given in Equations (13), respectively (14).

4 Reliability Estimation

The objective of this chapter is to provide estimators for reliability indicators of a system and

to present their asymptotic properties. In order to achieve this purpose, we firstly show how

estimators of the basic quantities of a discrete-time semi-Markov system are obtained.
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4.1 Semi-Markov Estimation

Let us consider a sample path of a Markov renewal chain (Jn, Sn)n∈N, censored at fixed arbitrary

time M ∈ N
∗,

H(M) := (J0,X1, . . . , JN(M)−1,XN(M), JN(M), uM ),

whereN(M) is the discrete-time counting process of the number of jumps in [1,M ] (see Equation

(6)) and uM := M − SN(M) is the censored sojourn time in the last visited state JN(M).

Starting from the sample path H(M), we will propose empirical estimators for the quantities

of interest. Let us firstly define the number of visits to a certain state, the number of transitions

between two states and so on.

Definition 10 For all states i, j ∈ E and positive integer k ≤M , define:

1. Ni(M) :=
∑N(M)−1

n=0 1{Jn=i} - the number of visits to state i, up to time M ;

2. Nij(M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j} - the number of transitions from i to j, up to time M ;

3. Nij(k,M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j,Xn=k} - the number of transitions from i to j, up to

time M, with sojourn time in state i equal to k, 1 ≤ k ≤M.

For a sample path of length M of a semi-Markov chain, for any states i, j ∈ E and positive

integer k ∈ N, k ≤ M, we define the empirical estimators of the transition matrix of the em-

bedded Markov chain pij , of the conditional distributions of the sojourn times fij(k) and of the

discrete-time semi-Markov kernel qij(k) by:

p̂ij(M) := Nij(M)/Ni(M), (15)

f̂ij(k,M) := Nij(k,M)/Nij(M), (16)

q̂ij(k,M) := Nij(k,M)/Ni(M). (17)

Note that the proposed estimators are natural estimators. For instance, the probability pij

that the system goes from state i to state j is estimated by the number of transitions from i

to j, up to time M, devised by the number of visits to state i, up to time M − 1. As it will

be proved in the following section, the empirical estimators proposed in formulas (15) - (17)

have good asymptotic properties. Moreover, they are in fact approached maximum likelihood

estimators (Theorem 1). In order to see this, consider the likelihood function corresponding to

the history H(M)

L(M) =

N(M)∏

k=1

pJk−1Jk
fJk−1Jk

(Xk)HJN(M)
(uM ),

where Hi(·) is the survival function in state i defined by

Hi(n) := P(X1 > n | J0 = i) = 1 −
∑

j∈E

n∑

k=1

qij(k), n ∈ N
∗.

We have the following result concerning the asymptotic behavior of uM (see [6] for the proof).

Lemma 3 For a semi-Markov chain (Zn)n∈N we have

uM/M
a.s.−−−−→

M→∞
0, (18)

where uM = M − SN(M).

10



Let us consider the approached likelihood function

L1(M) =

N(M)∏

k=1

pJk−1Jk
fJk−1Jk

(Xk), (19)

obtained by neglecting the last term in the expression of L(M). Using Lemma 3, we see that the

maximum likelihood function L(M) and the approached maximum likelihood function L1(M)

are asymptotically equivalent, as M tends to infinity. Consequently, the estimators obtained by

estimating L(M) or L1(M) are asymptotically equivalent, as M tends to infinity.

The following result shows that p̂ij(M), f̂ij(k,M) et q̂ij(k,M) defined by expressions (15) -

(17) are obtained in fact by maximizing L1(M) (a proof can be found in [2])

Theorem 1 For a sample path of a semi-Markov chain (Zn)n∈N, of arbitrary fixed length

M ∈ N, the empirical estimators of the transition matrix of the embedded Markov chain (Jn)n∈N,

of the conditional distributions of the sojourn times and of the discrete-time semi-Markov kernel,

proposed in Equations (15) - (17), are approached nonparametric maximum likelihood estima-

tors, i.e., they maximise the approached likelihood function L1, given by Equation (19).

As any quantity of interest of a semi-Markov system can be written in terms of the semi-Markov

kernel, we can now use the kernel estimator (17) in order to obtain plug-in estimators for any

functional of the kernel. So, the cumulative semi-Markov kernel Q = (Q(k); k ∈ N) defined in

(2) has the estimator

Q̂(k,M) :=

k∑

l=1

q̂(l,M), (20)

where q̂(n)(k,M) is the n-fold convolution of q̂(k,M) (see Definition 6).

Similarly, using the expression of the transition function of the semi-Markov chain Z given

in Equation (9), we get its estimator

P̂(k,M) :=
(
δI − q̂

)(−1)

(·,M) ∗
(
I − diag(Q̂(·,M) · 1)

)
(k). (21)

Proofs of the consistency and of the asymptotic normality of the estimators defined up to now

can be found in [5, 2, 6].

We are able now to construct estimators of the reliability indicators of a semi-Markov system

and to present their asymptotic properties.

4.2 Reliability Estimation

The expression of the reliability given in (10), together with the estimators of the semi-Markov

transition function and of the cumulative semi-Markov kernel given above, allow us to obtain

the estimator of the system’s reliability at time k given by

R̂(k,M) := α1 · P̂11(k,M) · 1s1

= α1

[(
δI − q̂11

)
(·,M) ∗

(
I − diag(Q̂(·,M) · 1)11

)]
(k)1s1

. (22)

11



Let us give now the result concerning the consistency and the asymptotic normality of the

reliability estimator.

Theorem 2 For any fixed arbitrary positive integer k ∈ N, the estimator of the reliability of a

discrete-time semi-Markov system at instant k is strongly consistent, i.e.,

∣∣∣R̂(k,M) −R(k)
∣∣∣ a.s.−−−−→

M→∞
0

and asymptotically normal, i.e., we have

√
M [R̂(k,M) −R(k)]

D−−−−→
M→∞

N (0, σ2
R(k)),

with the asymptotic variance

σ2
R(k) =

s∑

i=1

µii

{ s∑

j=1

[
DU

ij − 1{i∈U}

∑

t∈U

α(t)Ψti

]2

∗ qij(k)

−
[ s∑

j=1

(
DU

ij ∗ qij − 1{i∈U}

∑

t∈U

α(t)ψti ∗Qij

)]2

(k)
}
, (23)

where

DU
ij :=

∑

n∈U

∑

r∈U

α(n)ψni ∗ ψjr ∗
(
I − diag(Q · 1)

)

rr
, (24)

ψ(k) :=

k∑

n=0

q(n)(k), Ψij(k) :=

k∑

n=0

Q
(n)
ij (k), (25)

µii − the mean recurrence time of the state i for the chain Z. (26)

4.3 Availability Estimation

Taking into account the expression of the availability presented in (11), we propose the following

estimator for the availability of a discrete-time semi-Markov system:

Â(k,M) := α P̂(k,M) 1s,s1

= α
[(
δI − q̂11

)
∗

(
I − diag(Q̂(·,M) · 1)

)]
(k) 1s,s1

, (27)

The following result concerns the consistency and the asymptotic normality of the reliability

estimator. A proof of it can be found in [6].

Theorem 3 For any fixed arbitrary positive integer k ∈ N, the estimator of the availability of a

discrete-time semi-Markov system at instant k is strongly consistent and asymptotically normal,

in the sense that

| Â(k,M) −A(k) | a.s.−−−−→
M→∞

0

and
√
M [Â(k,M) −A(k)]

D−−−−→
M→∞

N (0, σ2
A(k)),

12



with the asymptotic variance

σ2
A(k) =

s∑

i=1

µii

{ s∑

j=1

[
Dij − 1{i∈U}

s∑

t=1

α(t)Ψti

]2

∗ qij(k)

−
[ s∑

j=1

(
Dij ∗ qij − 1{i∈U}

s∑

t=1

α(t)ψti ∗Qij

)]2

(k)
}
, (28)

where (29)

Dij :=

s∑

n=1

∑

r∈U

α(n)ψni ∗ ψjr ∗
(
I − diag(Q · 1)

)

rr
.

4.4 Failure Rate Estimation

Let us introduce the following notation.

Notation. For a matrix function A ∈ ME(N), we denote by A+ ∈ ME(N) the matrix function

defined by A+(k) := A(k + 1), k ∈ N.

Using the expression of the failure rate obtained in (12), we obtain the following estimator:

λ̂(k,M) :=





1 − bR(k,M)bR(k−1,M)

, R̂(k − 1,M) 6= 0,

0, otherwise,

λ̂(0,M) := 1 − R̂(0,M),

For the failure rate estimator we have similar results as for reliability and availability esti-

mators. A proof of it can be found in [3] and [6].

Theorem 4 For any fixed arbitrary positive integer k ∈ N, the estimator of the failure rate of a

discrete-time semi-Markov system at instant k is strongly consistent and asymptotically normal,

i.e.,

| λ̂(k,M) − λ(k) | a.s.−−−−→
M→∞

0

and
√
M [λ̂(k,M) − λ(k)]

D−−−−→
M→∞

N (0, σ2
λ(k)),

with the asymptotic variance

σ2
λ(k) =

1

R4(k − 1)
σ2

1(k),

σ2
1(k) =

s∑

i=1

µii

{
R2(k)

s∑

j=1

[
DU

ij − 1{i∈U}

∑

t∈U

α(t)Ψti

]2

∗ qij(k − 1)

+R2(k − 1)

s∑

j=1

[
DU

ij − 1{i∈U}

∑

t∈U

α(t)Ψti

]2

∗ qij(k) − T 2
i (k)

+2R(k − 1)R(k)

s∑

j=1

[
1{i∈U}D

U
ij

∑

t∈U

α(t)Ψ+
ti + 1{i∈U}(D

U
ij)

+
∑

t∈U

α(t)Ψti

−(DU
ij)

+DU
ij − 1{i∈U}

(∑

t∈U

α(t)Ψti

)(∑

t∈U

α(t)Ψ+
ti

)]
∗ qij(k − 1)

}
, (30)
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where

Ti(k) :=
s∑

j=1

[
R(k)DU

ij ∗ qij(k − 1) −R(k − 1)DU
ij ∗ qij(k)

− R(k)1{i∈U}

∑

t∈U

α(t)ψti ∗Qij(k − 1) +R(k − 1)1{i∈U}

∑

t∈U

α(t)ψti ∗Qij(k)
]
,

DU
ij − is given in Equation (24).

4.5 Asymptotic Confidence Intervals

The previously obtained asymptotic results allow one to construct the asymptotic confidence

intervals for reliability, availability and failure rate. For this purpose, we need to construct a

consistent estimator of the asymptotic variances.

Firstly, using relation (25), we can construct estimators of ψ(k) and of Ψ(k). One can check

that these estimators are strongly consistent. Secondly, for k ≤M, replacing q(k), Q(k), ψ(k),Ψ(k)

respectively by q̂(k,M), Q̂(k,M), ψ̂(k,M), Ψ̂(k,M) in Equation (23), we obtain an estimator

σ̂2
R(k) of the variance σ2

R(k). From the strong consistency of the estimators q̂(k,M), Q̂(k,M),

ψ̂(k,M) and Ψ̂(k,M) (see [2, 6]), we obtain that σ̂2
R(k) converges almost surely to σ2

R(k), as

M tends to infinity. Finally, the asymptotic confidence interval of R(k) at level 100(1 − γ)%,

γ ∈ (0, 1) , is:

R̂(k,M) − u1−γ/2
σ̂R(k)√
M

≤ R(k) ≤ R̂(k,M) + u1−γ/2
σ̂R(k)√
M

, (31)

where uγ is the γ− fractile of an N(0, 1)- distributed variable. In the same way, we obtain the

other confidence intervals.

5 Numerical Example

In this section we apply the previous results to a three-state discrete-time semi-Markov process

described in Figure 2. Note that we study here a strictly semi-Markov system, which cannot be

reduced to a Markov one.

1 2

3

Ge(p)

Wq1,b1

Wq3,b3
Wq2,b2

Figure 2: A three-state discrete-time semi-Markov system

14



Let us consider that the state space E = {1, 2, 3} is partitioned into the up-state set U =

{1, 2} and the down-state set D = {3}. The system is defined by the initial distribution α :=

(1 0 0), by the transition probability matrix p of the embedded Markov chain (Jn)n∈N and by

the conditional distributions of the sojourn time:

p :=





0 1 0

0.95 0 0.05

1 0 0




f(k) :=





0 f12(k) 0

f21(k) 0 f23(k)

f31(k) 0 0




, k ∈ N.

We consider the following distributions for the conditional sojourn time:

• f12 is a geometric distribution defined by

f12(0) := 0, f12(k) := p(1 − p)k−1, k ≥ 1,

where we take p = 0.8.

• f21 := Wq1,b1 , f23 := Wq2,b2 and f31 := Wq3,b3 are discrete-time, first type Weibull distri-

butions (see [9]), defined by

Wq,b(0) := 0, Wq,b(k) := q(k−1)b − qkb

, k ≥ 1,

where we take q1 = 0.3, b1 = 0.5, q2 = 0.5, b2 = 0.7, q3 = 0.6, b3 = 0.9.

Using the transition probability matrix and the sojourn time distributions given above, we

have simulated a sample path of the three state semi-Markov chain, of length M. This sample

path allows us to compute Ni(M), Nij(M) and Nij(k,M), using Definition 10, and to obtain the

empirical estimators p̂ij(M), f̂ij(k,M) and q̂ij(k,M), from relations (15−17). Consequently, we

can obtain the estimators Q̂(k,M), ψ̂(k,M) and Ψ̂(k,M). Thus, from Equation (22), we obtain

the estimator of the reliability. In Theorem 2 we have obtained the expression of the asymptotic

variance of reliability. Replacing q(k), Q(k), ψ(k),Ψ(k) by their estimators in Equation (23), we

have the estimator σ̂2
R(k,M) of the asymptotic variance σ2

R(k). This estimator will allow us to

have the asymptotic confidence interval for reliability given in Equation (31).

The consistency of the reliability estimator is illustrated in Figure 3, where the reliability

estimators obtained for several values of the sample size M are drawn. In Figure 4 we present

the confidence interval of the reliability. Note that the confidence interval covers the true value

of the reliability. In Figure 5 we present the estimators of the asymptotic variance of the reli-

ability σ2
R(k), obtained for different sample sizes. We can note that the estimator approaches

the true value, as the sample size M increases.

The same type of figures are drawn for the availability and BMP-failure rate. So, in Figures 6,

7 and 8 we have illustrated the consistency of the availability estimator, its asymptotic normality

and the consistency of the estimator of the asymptotic variance σ2
A(k). Figures 9, 10 and 11

present the same graphics for the failure rate estimator.
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Figure 3: Consistency of reliability estimator
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Figure 4: Confidence interval of reliability
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