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Abstract. This article gives a short presentation of random evolutions.

At first, the following two examples are presented: dynamical stochastic

systems and increment processes both in Markov media. After, an intro-

duction to semi-Markov Random evolution in a Banach space is given,

where the previous evolutionary systems are obtained as particular cases.

Finally, two abstract limit theorems of average and diffusion approxima-

tion for continuous and jump semi-Markov random evolutions are pre-

sented. Remarks on bibliography further topics related to random evolu-

tions are given.
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1. INTRODUCTION

Random evolution or stochastic evolution were introduced by R. Hersh and R.J.

Griego in 1969. They observed that certain abstract Cauchy problems are related to

generators of Markov processes. The name of Random evolution is due to P. Lax.

The same kind of processes was essentially introduced by R.Z. Khasminskii (1966).

1This article will be published in the Encyclopedia of Statistics, Wiley.
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An evolutionary system that change its mode of evolution following a stochastic

mode is a random evolution. For example, a particle moving on the real line with

constant velocity, say V , changes it at a random time, given by the arrival of a

Poisson process to −V , that is, the velocity of the particle at time t is (−1)N(t)V ,

where N(t), t ≥ 0, is a Poisson process on [0,∞).

Random evolutions are models to study dynamical systems in random media (en-

vironment). In the above example, the Poisson process represent the random medium.

From a mathematical point of view, random evolutions are operator-valued stochas-

tic processes in a Banach space. They represent in an abstract form stochastic evo-

lutionary systems in random media.

A random evolution is an operator valued stochastic process, Φ(s, t) say, satisfying

the following linear differential equation

d

dt
Φ(s, t) = −C(x(t))Φ(s, t), Φ(s, s) = I (1)

where operator C(x) is switched by the stochastic process x(t), t ≥ 0.

If x(t), t ≥ 0, is a Markov process with generator Q, then u(t, x) := IE[Φ(0, t) |

x(0) = x], satisfies the following equation

du

dt
= C(x)u + Qu. (2)

The random evolution, solution of equation (1), verifies the following equation

Φ(s, t) = Φ(s, u)Φ(u, t), 0 ≤ s ≤ u ≤ t.

This fact was established by Pinsky [26]. So, Φ is also called a multiplicative operator

functional.

In random evolution theory one of the most important facts is to get limit theo-

rems, where two kind of theorems are obtained in general: a first order and a second

order asymptotic corresponding to law of large numbers and to central limit theorems
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in probability theory. For example, the first order asymptotic scheme for equation

(2) is

duε

dt
= C(x)uε + ε−1Quε,

and the second order asymptotic is

duε

dt
= ε−1C(x)uε + ε−2Quε,

where the corresponding limits are obtained as ε → 0. These are abstract form limit

theorems as presented in Section 4.

Applications of random evolutions include: population dynamics in random envi-

ronment (Cohen (1984)), (Ethier and Kurtz (1987); in insurance (Swishchuk(1999));

reliability analysis (Koroliuk and Limnios (2005)); mathematical physics (Jefferies

(1996)); etc.

Discrete-time random evolutions were studied (Keepler (1998)) in connexion with

Markov chains, and as embedded random evolution in continuous-time semi-Markov

process (Koroliuk and Swishchuk (1995), Koroliuk and Limnios (2005)).

In the next section particular evolutionary systems in Markov media - dynamical

and increment processes- and their abstract models in terms of random evolutions

are presented. In Section 3, a more general semi-Markov evolution together with the

operator Markov renewal equation is presented. In Section 4, two kind of abstract

limit theorems for semi-Markov random evolution are presented. Finally, in Section

5, some remarks on the literature and farther topics connected to random evolution

are presented.

2. EVOLUTIONARY SYSTEMS IN MARKOV RANDOM

MEDIUM

As an introduction to random evolution, two particular stochastic systems switched

by Markov processes, and where both are useful in reliability modeling, are given here.
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The first one concerns dynamical systems used as a basic model in dynamic reliability

(see, e.g., Devooght(1997)); and the second one concerns increment processes used

also in reliability of systems suffered shocks and as part in risk process.

Let (E, E) be a standard phase space, that is, E a Polish space, and E its Borel

σ-algebra, and B a separable Banach space with supremum norm and B its Borel σ-

algebra. Let us consider a jump Markov process x(t), t ≥ 0, on (E, E), with generator

Q, that is,

Qϕ(x) =
∫

E
Q(x, dy)[ϕ(y) − ϕ(x)],

where Q(x, dy) is the Markov kernel, and a family of generators Γ(x), x ∈ E, that

generate a family of strongly continuous contraction semigroups IΓx(t), t ≥ 0, x ∈ E,

and the family of bounded linear operators D(x, y), x, y ∈ E, all acting on the same

Banach space B.

Let us consider now the following dynamical system U(t), t ≥ 0, in the Markov

random media x(t), t ≥ 0, with initial value u,

∣∣∣∣∣∣∣

d
dt

U(t) = C(U(t); x(t)),

U(0) = u.
(3)

The system U(t) takes values into the Euclidean space IRd and the function C(u; x)

defined on IRd × E with values into IRd satisfies the conditions for global solution

Ux(t) on {x(t) = x} for any x ∈ E.

For any fixed x ∈ E, let us consider the semigroup of operators Ct(x), x ∈ E,

defined by

Ct(x)ϕ(u) = ϕ(Ux(t)), Ux(0) = u. (4)

The semigroup property is

Ct+s(x) = Ct(x)Cs(x), t, s ≥ 0, x ∈ E. (5)
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The generators C(x), x ∈ E, of the semigroups Ct(x), t ≥ 0, x ∈ E, are defined by

C(x)ϕ(u) = C(u; x)ϕ′(u), (6)

where ϕ′(u) is the derivative of ϕ(u). Of course, product of vectors here means the

usual vector scalar product.

The domain of definition of generator C(x) is the set C1(E) of continuously dif-

ferentiable functions defined on E. The generator of the coupled Markov process

U(t), x(t), t ≥ 0, is

L = Q + C(x).

Let us now consider another evolutionary system, the so-called increment process

defined as follows

α(t) =
ν(t)∑

k=1

a(xk), (7)

where a is a measurable real-valued function defined on E, xn, n ≥ 0, is the embedded

Markov chain of the Markov process x(t), t ≥ 0 and ν(t), t ≥ 0, is the number of jumps

of x(t) in the time interval (0, t]. In case where the switching process x(t) is Markov,

the generator of the coupled process α(t), x(t), t ≥ 0, is given by

L = Q + Q0[A(x) − I], (8)

where the operators Q0 and A(x), on B, are defined by

Q0ϕ(x) =
∫

E
Q(x, dy)ϕ(y), (9)

and

A(x)ϕ(u, x) = ϕ(u + a(x), x). (10)

The operators Q and I are respectively the generator of the Markov process x(t) and
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the identity operator on B.

Now the random evolutions corresponding to the above two stochastic systems

are as follows.

The random evolution Φ(t), t ≥ 0, with values in B, corresponding to the dynam-

ical system (3) is the following one

Φ(t)ϕ(u) = Ct−τν(t)
(x(t))

ν(t)∏

k=1

Cθk
(xk−1)ϕ(u) = ϕ(U(t)), (11)

where 0 = τ0 < τ1 < ... < τn < ... are the jumps times, and ν(t) the number of jumps

in (0, t] of x(t), t ≥ 0.

The random evolution (11) satisfies the following evolutionary equation

d

dt
Φ(t) = C(x(t))Φ(t) (12)

which can be considered as a definition of the random evolution.

The random evolution Φ(t), t ≥ 0, corresponding to the increment process (7) can

be defined also as follows

Φ(t) =
ν(t)∑

k=1

[A(xk) − I]Φ(τk−), (13)

or, the embedded jumps discrete random evolution

Φ(τn) = [A(xn) − I]Φ(τn−), n ≥ 0, Φ(τ0) = Φ(0) = I. (14)

3. SEMI-MARKOV RANDOM EVOLUTION

Let x(t), t ≥ 0, be an (E, E)-valued semi-Markov process with semi-Markov kernel

Q(x,B, t), x ∈ E,B ∈ E , t ≥ 0. Let xn, τn, n ≥ 0, be the embedded Markov renewal

process of the semi-Markov process x(t), t ≥ 0, where 0 = τ0 ≤ τ1 ≤ ... ≤ τn ≤ ...

are the jump times, and xn = x(τn), n ≥ 0, is the embedded (E, E)-valued Markov
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chain with transition kernel P (x,B), x ∈ E,B ∈ E , and transition operator P. Let

ν(t) := sup{n ≥ 0 : τn ≤ t} the number of jumps in the time-interval (0, t]. We will

suppose also that the semi-Markov process is regular, that is, IPx(ν(t) < ∞) = 1,

for any x ∈ E and t > 0 (see, e.g., [23]). Define also the backward recurrence time

process γ(t), t ≥ 0, by γ(t) := t − τν(t), t ≥ 0. To be specific,

Q(x,B, t) := P (x,B)Fx(t), x ∈ E,B ∈ E , t ≥ 0, (15)

where

P (x,B) = IP(xn+1 ∈ B | xn = x), Fx(t) = IP(θn+1 ≤ t | xn = x),

where θn+1 := τn+1 − τn, n ≥ 0.

Definition 1. A random evolution is defined as an operator-valued stochastic process

Φ(t), t ≥ 0, on a Banach space B that has the following representation

Φ(t) = IΓx(t)(γ(t))
ν(t)∏

k=1

D(xk−1, xk)IΓxk−1
(θk). (16)

The random evolution can be represented equivalently by the following integral

equation

Φ(t) = I +
∫ t

0
Γ(x(s))Φ(s)ds +

ν(t)∑

k=1

[D(xk−1, xk) − I]Φ(τk−). (17)

Definition 2. A continuous random evolution in the case where D(x, y) = I, for all

x, y ∈ E, is defined by the solution of the integral equation

ΦC(t) = I +
∫ t

0
Γ(x(s))ΦC(s)ds. (18)

This equation is equivalent to the above Cauchy problem (12) with Φ(0) = I.

Definition 3. A jump random evolution in the case where Γ(x) = 0, for all x ∈ E,

is defined as a solution of the following equation

ΦJ(t) =
ν(t)∑

k=1

[D(xk−1, xk) − I]ΦJ(τk−). (19)
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A discrete random evolution Φn, n ≥ 0, is now defined by

Φn =
n∏

k=1

[D(xk−1, xk) − I]IΓxk−1
(θk), n ≥ 0, Φ0 = I. (20)

Of course Φn := Φ(τn), n ≥ 0.

The mean value of the random evolution Φ(t)ϕ, that is,

U(t, x) := IEx[Φ(t)ϕ(x(t))], (21)

verifies the operator Markov renewal equation for random evolution

U(t, x) −
∫ t

0

∫

E
Q(x, dy, ds)D(x, y)IΓx(s)U(t − s, y) = F x(t)IΓx(t)ϕ(x). (22)

Let ξn, n ≥ 0, be the embedded stochastic system, for example, ξn = U(τn),

n ≥ 0. The extended compensating operator of the extended Markov renewal process

ξn, xn, τn, n ≥ 0, is defined by

Lϕ(u, x, t) := q(x){IE[ϕ(ξn, xn+1, τn+1) | ξn = u, xn = x, τn = t] − ϕ(u, x, t)}, (23)

where q(x) := 1/m(x) and m(x) :=
∫
∞

0 F x(t)dt, F x(t) = 1 − Fx(t), x ∈ E.

From the above definition, the following analytic form of the compensating oper-

ator is easily obtained

Lϕ(u, x, t) = q(x)
[ ∫

∞

0

∫

E
Q(x, dy, ds)D(x, y)IΓx(s)ϕ(u, y, t + s) − ϕ(u, x, t)

]
. (24)

4. ABSTRACT LIMIT THEOREMS

Let x(t), t ≥ 0, be the semi-Markov process considered in the previous section.

We suppose that the associated Markov process x0(t), t ≥ 0, defined by the generator

Qϕ(x) = q(x)
∫

E
P (x, dy)[ϕ(y) − ϕ(x)],
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is uniformly ergodic with stationary distribution π(dx), where q(x) is the jumps inten-

sity function. Let Π be the projector on the Banach space B, of bounded measurable

functions on E, defined by

Πϕ(x) =
∫

E
π(dy)ϕ(y)1(x),

and the potential operator R0 of the associated ergodic Markov process x0(t), which

is defined by

R0 :=
∫

∞

0
(Pt − Π)dt,

and properties

QR0 = R0Q = Π − I,

where the operators Pt, t ≥ 0, are the semigroup of x0(t).

Definition 4. A continuous semi-Markov random evolution in average series scheme,

with a small parameter ε > 0, is defined by
∣∣∣∣∣∣∣

d
dt

Φε
C(t) = Γ(x(t/ε))Φε

C(t), t ≥ 0,

Φε
C(0) = I.

(25)

Here Γ(x), x ∈ E, is the family of generators of the semigroup operators IΓt(x), t ≥

0, x ∈ E, which determines the random evolution in the following form

Φε
C(t) = IΓx(t/ε)(εγ(t/ε))

ν(t/ε)∏

k=1

IΓxk
(εθk), t > 0, Φε(0) = I. (26)

Definition 5. The coupled random evolution on the Banach space C(IRd × E), of

real-valued measurable bounded functions, is defined by

Φε(t; xε(t/ε)) = Φε(t)ϕ(u, xε(t/ε)). (27)

The above random evolution is characterized by the compensating operator of the

extended Markov renewal process ζn, x
ε
n, n ≥ 0,

Lεϕ(u, x) = ε−1q(x)
[ ∫

∞

0

∫

E
Q(x, dy, ds)IΓε

x(εs)ϕ(u, y) − ϕ(u, x)
]
. (28)
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The truncated part, up to a negligible term, of the asymptotic form of the above

compensating operator is

Lε
0 = ε−1Q + Γ(x)P. (29)

By a solution of a singular perturbation problem (see [19]), we get the following

result.

Theorem 1. Under the above assumption, the limit operator, as ε → 0, is

Γ̂ = ΠΓ(x)Π, Γ̂ =
∫

E
π(dx)Γ(x). (30)

The diffusion approximation scheme of the continuous random evolution is as

follows.
∣∣∣∣∣∣∣

d
dt

Φε
C(t) = ε−1Γ(x(t/ε2))Φε

C(t), t ≥ 0,

Φε
C(0) = I.

(31)

The coupled random evolution on C(IRd × E)

Φε(t; xε(t/ε2)) = Φε(t)ϕ(u, x(t/ε2)), x(0) = x (32)

is characterized by the compensating operator of extended Markov renewal process

Lεϕ(u, x) = ε−2q(x)
[ ∫

∞

0

∫

E
Q(x, dy, ds)IΓε

x(ε
2s)ϕ(u, y) − ϕ(u, x)

]
(33)

of which the asymptotic truncated, up to a negligible term, representation is

Lε
0 = ε−2Q + ε−1Γ(x)P + Q1(x)P, (34)

where Q1(x) = m2(x)Γ2(x)/2m(x), and m2(x) :=
∫
∞

0 t2dFx(t).
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Theorem 2. Let us suppose that the square sojourn times θ2
x, x ∈ E, are uniformly

integrable, and that the balance condition ΠΓ(x)Π = 0 holds, then the limit operator,

as ε → 0, is

L̂ =
∫

E
π(dx)[Γ(x)R0Γ(x) + µ(x)Γ2(x)], (35)

where µ(x) := [m2(x) − 2m2(x)]/m(x).

The jump semi-Markov random evolution in the average series scheme is as follows

Φε
J(t) =

ν(t/ε)∏

k=1

Dε(xε
k), Φε

J(0) = I, (36)

where the bounded operators Dε(x), x ∈ E, have the following asymptotic represen-

tation

Dε(x) − I = εD(x) + εDε
1(x), (37)

on the space B0, dense in C2
0(IRd × E), with the negligible term

‖Dε
1(x)ϕ‖ → 0, ε → 0, ϕ ∈ B0.

The compensating operator of this jump semi-Markov random evolution is given by

Lεϕ(u, x) = ε−1q(x)
[ ∫

E
P (x, dy)Dε(y)ϕ(u, y) − ϕ(u, x)

]
, (38)

where the asymptotic form is

Lε = ε−1Q + Q0D(x) + Q0D
ε
1(x). (39)

Theorem 3. The limit operator obtained as a solution of a singular perturbation

problem on the asymptotic form of the above compensating operator is given by

L̂ := ΠQ0D(x)Π = D̂Π, D̂ := q
∫

E
ρ(dx)D(x), (40)
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where q := 1/m, m :=
∫
E ρ(dx)m(x).

In the diffusion approximation scheme, the jump semi-Markov random evolution

is

Φε(t) =
ν(t/ε2)∏

k=1

Dε(xε
k), Φε(0) = I, (41)

where the bounded operators Dε(x), x ∈ E, have the following asymptotic represen-

tation

Dε(x) − I = εD(x) + ε2D1(x) + ε2Dε
2(x), (42)

on the space B0, dense on the space C2
0(IRd × E), with the negligible term

‖Dε
2(x)ϕ‖ → 0, ε → 0, ϕ ∈ B0.

The compensating operator of this semi-Markov random evolution is

Lεϕ(u, x) = ε−2q(x)
[ ∫

E
P (x, dy)Dε(y)ϕ(u, y) − ϕ(u, x)

]
. (43)

Theorem 4. Under the above assumptions, and the additional balance condition

D̂ = 0, the limit operator, as ε → 0, is

L̂ := ΠQ0D1(x)Π + ΠQ0D(x)R0Q0D(x)Π. (44)

Remark 1. It is worth noticing that when we consider the semi-Markov random

evolution with continuous and discrete parts, the limit operator of the whole com-

pensating operator is the sum of the above two limit operators. For example, in the

case of average series scheme the limit operator is L̂0 := Γ̂ + D̂, where Γ̂ and D̂ are

given by relations (30) and (40) respectively.
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Remark 2. Relations (35) and (44) are what we need in order to get average and

diffusion approximation results respectively for particular systems.

Example. The dynamical system (3) is considered here in the following time-scaling

scheme
∣∣∣∣∣∣∣

d
dt

U ε(t) = C(U ε(t), x(t/ε2)), t ≥ 0,

U ε(0) = u,
(45)

where the semi-Markov family processes x(t/ε2), t ≥ 0, ε > 0, is as described above,

and U ε(t) ∈ IRd. This system usually describes dynamic reliability where the semi-

Markov process describes the structure of the system and the process U ε(t) the phys-

ical throughput in the system, for example, temperature, pressure, velocity, etc. (see,

e.g., [5]).

This system can be represented by the following continuous semi-Markov random

evolution

Φε(t)ϕ(u, x(t/ε2)) := ϕ(U ε(t), x(t/ε2)), (46)

with the family of semigroups

IΓx(t)ϕ(u) := ϕ(U(t; u, x)), x ∈ E, t ≥ 0, (47)

and generators

Γ(x)ϕ(u) := C(u, x)ϕ′(u), x ∈ E. (48)

Then under the balance condition

∫

E
π(dx)C(u, x) ≡ 0, (49)

the limit generator (35) gives

Lϕ(u) = a(u)ϕ′(u) +
1

2
B(u)ϕ′′(u), (50)
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for ϕ ∈ C2(IRd), and where the drift vector function is

a(u) :=
∫

E
π(dx)[C(u, x)R0C

′

u(u, x) +
1

2
µ(x)C(u, x)C ′

u(u, x)],

and the diffusion coefficient matrix is

B(u) := 2
∫

E
π(dx)[C(u, x)R0C(u, x) + µ(x)C(u, x)C∗(u, x)],

be assumed positive defined. In the Markov case, we have µ(x) ≡ 0.

So, the limit process is a diffusion process with drift a(u) and diffusion coefficient

σ(u) defined by B(u) = σ(u)σ∗(u).

5. CONCLUDING REMARKS

Detailed definitions of coupled semi-Markov and Markov random evolutions, as

well as of compensating operator and its properties can be found in [19]. Average

and diffusion approximation scheme of semi-Markov random evolutions with split and

merging of the phase space as well as non ergodic switching processes with applications

in reliability can be found in [19]. For more detailed results on random evolutions

see books [4, 14, 18, 19, 20, 21, 27], and review papers [9, 10] and references thereby.

Detailed proofs of theorems given is this article can be found in [19]. Theorem 1–4

presented here are taken from [19].

Apart average and diffusion approximation considered here, random evolutions

can be used also in Poisson and Lévy approximation schemes, where they naturally

associated to the predictable characteristics of additive semimartingale approach, see,

e.g., [19, ch. 7].
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[18] Korolyuk V. S., Korolyuk V. V. (1999). Stochastic Models of Systems, Kluwer,

Dordrecht.

[19] Koroliuk V.S., Limnios N. (2005). Stochastic Systems in Merging Phase Space,

World Scientific, Singapore.

[20] Korolyuk V.S., Swishchuk A. (1995). Random Evolution for Semi-Markov Sys-

tems, Kluwer, Dordrecht.

[21] Korolyuk V.S., Swishchuk A. (1995). Evolution of Systems in Random Media,

CRC Press.

[22] Korolyuk V.S., Turbin A.F. (1993). Mathematical Foundation of the State Lump-

ing of Large Systems, Kluwer, Dordrecht.
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