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Abstract. This article gives a short and elementary presentation of ran-

dom evolutions toward applications in reliability and quality engineering.

At first, the following two examples are presented: dynamical stochastic

systems and increment processes both in Markov media. A dynamical sys-

tem in continuous time is presented since nowadays they are widely used

in dynamic reliability modeling. Limit theorems in averaging and diffu-

sion approximation scheme for ergodic and non ergodic media are also

presented. Remarks on bibliography on further topics related to random

evolutions are given.
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1. INTRODUCTION

Random evolution or stochastic evolution were introduced by R. Hersh and R.J.

Griego in 1969. They observed that certain abstract Cauchy problems are related to

1This article will be published in Encyclopedia of Statistics in Quality and Reliability,

Wiley.
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generators of Markov processes. The name of Random evolution is due to P. Lax.

An evolutionary system that change its mode of evolution following a stochastic

mode is a random evolution. For example, a particle moving on the real line with

constant velocity, say V , changes it at a random time, given by the arrival of a

Poisson process to −V , that is, the velocity of the particle at time t is (−1)N(t)V ,

where N(t), t ≥ 0, is a (homogeneous) Poisson process on [0,∞).

Random evolutions are models to study stochastic systems in random media (envi-

ronment). In the above example, the Poisson process represent the random medium.

From a mathematical point of view, random evolutions are operator-valued stochas-

tic processes in a Banach space. They represent an abstract form stochastic evolu-

tionary systems in random media. Discrete-time random evolution where studied in

connection with Markov chains (see, e.g., Keepler (1998)), and as embedded random

evolution in continuous-time semi-Markov process (see, e.g., Koroliuk and Swishchuk

(1995), Koroliuk and Limnios (2005)). In Skorokhod et al. (2002) several random

evolution problems are studied.

Applications of random evolutions include: population dynamics in random en-

vironment (Cohen (1984)); in insurance (Swishchuk(1999)); reliability analysis (Ko-

roliuk and Limnios (2005)); in population dynamics (Ethier and Kurtz (1987), etc.

In this paper we present random evolutions via dynamical systems, the so-called

Piecewise Deterministic Markov processes (see Davis (1993)) in ergodic and non er-

godic media.

In the next section a particular dynamical system in Markov media and its ab-

stract model in terms of random evolutions is presented. In Section 3, two types

of limit theorems for Markov random evolution are presented. Finally, in Section 4,

some remarks on the literature and farther topics connected to random evolution are
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presented.

2. EVOLUTIONARY SYSTEMS IN MARKOV RANDOM

MEDIUM

Let us consider the dynamical system∣∣∣∣∣∣∣
d
dt

U(t) = C(U(t); x(t)), t ≥ 0,

U(0) = u.
(1)

where the process x(t), t ≥ 0, is a Markov process with state space E, and generator Q,

and U(t) ∈ IRd. This system usualy describes dynamic reliability where the Markov

process x(t), t ≥ 0, describes the structure of the system and the process U(t) the

physical throughput in the system, for example, temperature, pressure, velocity, etc.

(see, e.g., [5]).

The coupled stochastic process (U(t), x(t)), t ≥ 0, is a Markov process, with state

space IRd × E and generator L:

Lϕ(u, x) = Γ(x)ϕ(u, ·) + Qϕ(·, x),

where the operator Γ(x) acts on functions ϕ(u) ∈ C1(IRd) as follows

Γ(x)ϕ(u) = C(u; x)(
∂

∂u1

, ...,
∂

∂ud

)ϕ(u1, ..., ud)

For example, in a two state Markov process, x(t), say E = {0, 1} and d = 1, the

generator L can be written in the following matrix form

L =

(
C0(u) ∂

∂u
0

0 C1(u) ∂
∂u

)
+

(
−λ λ
µ −µ

)

where Cx(u) := C(u; x), x = 0, 1.

As the trajectory of U(t) at time t+s, with initial value U(0) = u, is an extension

of the trajectory at time s of the trajectory with initial value U(t; u, x) it is easy to
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see that the solution of equation (1) for fixed state x ∈ E, verifies the semigroup

property

U(t + s; u, x) = U(s; U(t; u, x), x),

where U(t; u, x) is the value of U(t) on {U(0) = u, x(0) = x}.

An abstract formulation of the above property can be represented by the following

continuous Markov random evolution

Φ(t)ϕ(u, x(t)) := ϕ(U(t); x(t)), (2)

with the family of semigroups

IΓx(t)ϕ(u) := ϕ(U(t; u, x)), x ∈ E, t ≥ 0, (3)

and generators

Γ(x)ϕ(u) := C(u, x)
d

du
ϕ(u), x ∈ E. (4)

3. ASYMPTOTIC RESULTS

Let us consider the dynamical system in (1) in two different series schemes. The

first one is the ergodic case for the switching process x(t), t ≥ 0, and in the second one

a split with absorption is considered. In both cases, average diffusion approximation

limit theorems will be presented.

Let us consider the switching jump Markov processes xε(t), t ≥ 0, ε > 0, in series

scheme with series parameter ε > 0 (ε → 0), with state space (E, E), where E is a

Polish space and E its Borel σ-algebra, and generators

Qεϕ(x) = q(x)
∫

E
P ε(x, dy)[ϕ(y)− ϕ(x)], (5)

where P ε(x, dy) is the transition kernel of the embedded Markov chain xε
n = xε(τ ε

n)

and τ ε
n are the jump times of xε(t), t ≥ 0. The function q(x) is the intensity of jumps.

3.1. Ergodic case
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Let us first present result on averaging. The following assumptions are needed.

A1. The switching Markov process x(t), t ≥ 0, is uniformly ergodic with stationary

probability measure π(B), B ∈ E .

A2. The function C(u; x) is globally Lipschitz continuous on u ∈ IRd with common

constant L for all x ∈ E. So, the system

d

dt
Ux(t) = C(Ux(t); x),

has a global solution.

Theorem 1. [Average approximation] Under Assumptions A1 and A2, the solution

U ε(t) of the following system∣∣∣∣∣ d
dt

U ε(t) = C(U ε(t); x(t/ε))
U ε(0) = u,

(6)

converges weakly to the solution of the average equation∣∣∣∣∣ d
dt

Û(t) = Ĉ(Û(t))

Û(0) = u

where Ĉ(u) :=
∫
E π(dx)C(u; x).

It is worth noticing that this is a deterministic system and this averaging scheme

is the so-called Bugolyubov principle.

For the diffusion approximation we consider the following time-scalling of the

switching process. ∣∣∣∣∣ d
dt

U ε(t) = Cε(U ε(t); x(t/ε2))
U ε(0) = u,

(7)

where Cε(u; x) := ε−1C(u; x) + C1(u; x).

We suppose here that the following balance condition is fulfilled

Ĉ(u) = 0. (8)

Theorem 2. [Diffusion approximation] Under Assumption A1, and the balance

condition (8), the solution of the system (7) converges to a diffusion process, provided
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that the diffusion coefficient B is > 0, the limit diffusion process is defined by the

following infinitesimal generator

Lϕ(u) = Ĉ0ϕ
′(u) +

1

2
B(u)ϕ′′(u),

where the drift coefficient is

Ĉ0(u) =
∫

E
π(dx)[C1(u; x) + C(u; x)R0C

′
u(u; x)],

and the diffusion coefficient is

B = 2
∫

E
π(dx)C0(u; x)R0C(u; x),

Operator R0 is the potential operator of Q, that is

QR0 = R0Q = Π− I,

and Π is the projector operator defined by Π(x, dy) = π(dy), for every x ∈ E.

Notation ϕ′, ϕ′′ stand for the first and second derivatives of function ϕ, and

C ′
u(u; x) stads for the partial derivative of C(u; x) with respect to the variable u.

3.2. Non ergodic case

While the ergodic case is more adapted to availability modeling, the non ergodic

case, presented here, is more adapted to reliability modeling.

Let us now consider the following split to the state space of the Markov switching

processes xε(t), t ≥ 0, ε > 0,

E0 = E
⋃
{0} , E =

N⋃
k=1

Ek, Ek

⋂
Ek′ = ∅, k 6= k′, (9)

with absorbing state {0} . An interpretation of this split in reliability problems is that

E1, ..., EN are subsets of different performance levels and 0 is the failure state of the

system.
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Let us suppose that the transition kernel P ε has the following representation

P ε(x, B) = P (x, B) + εP1(x, B), (10)

where P (x, B) is a transition kernel, coordinated with the above split (9) as follows

P (x, Ek) = 1k(x) :=

{
1, x ∈ Ek

0, x 6∈ Ek,
(11)

and P1(x, B) a perturbing kernel.

The Markov supporting process x(t), t ≥ 0, on the state space (E, E), determined

by the generator

Qϕ(x) = q(x)
∫

E
P (x, dy)[ϕ(y)− ϕ(x)], (12)

is supposed to be uniformly ergodic in every class Ek, 1 ≤ k ≤ N , with the stationary

distribution πk(dx), 1 ≤ k ≤ N , satisfying the following relations

πk(dx)q(x) = qkρk(dx), qk =
∫

Ek

πk(dx)q(x),

ρk(B) =
∫

Ek

ρk(dx)P (x, B), ρk(Ek) = 1.

where ρk is the stationary probability of the embedded Markov chain xn, n ≥ 0, of

the supporting Markov process x(t), t ≥ 0, on the class Ek, 1 ≤ k ≤ N .

Let v be the merging function, defined by

v(x) = k if x ∈ Ek, 1 ≤ k ≤ N.

Then we have

v(xε(t/ε)) =⇒ x̂(t), ε → 0.

The process x̂(t), t ≥ 0 is a Markov process on the state space E0 = E ∪{0}, with

Ê = {1, ..., N}.
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The random variable ζε is the absorpion time or lifetime of failure time for the

system, and is defined by

ζε := inf{t ≥ 0 : xε(t/ε) = 0}.

We have ζε =⇒ ζ̂, as ε → 0, where ζ̂ is the absorption time of the merged process

x̂(t).

Theorem 3. [Average approximation with split and merging] Under the above as-

sumptions the stochastic system U ε(t), t ≥ 0, defined by∣∣∣∣∣ d
dt

U ε(t) = C(U ε(t); xε(t/ε))
U ε(0) = u,

(13)

converges weakly to the averaged stochastic system Û(t ∧ ζ̂):

U ε(t ∧ ζε) ⇒ Û(t ∧ ζ̂), as ε → 0.

The limit process Û(t), t ≥ 0, is defined by a solution of the evolutionary equation

d

dt
Û(t) = Ĉ(Û(t); x̂(t)), Û(0) = 0,

on the time interval 0 ≤ t ≤ ζ̂, (ζ̂ is the stoppage time of the merged Markov process

x̂(t), t ≥ 0).

The averaged velocity is determined by

Ĉ(u; k) =
∫

Ek

πk(dx)C(u; x), 1 ≤ k ≤ N, Ĉ(u; 0) = 0.

For the diffusion approximation scheme, we suppose that N = 1 for simplicity,

and that the transition kernel has the following representation

P ε(x, B) = P (x, B) + ε2P1(x, B).

The random variable ζ̂ is exponentially distributed with parameter Λ̂ = pq, where

p := −
∫
E ρ(dx)P1(x, E) and q :=

∫
E ρ(dx)/q(x).
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The considered system here is in the following time-scaling scheme.∣∣∣∣∣ d
dt

U ε(t) = Cε(U ε(t); xε(t/ε2))
U ε(0) = u,

(14)

where Cε(u; x) := ε−1C(u; x) + C1(u; x).

Theorem 4. [Diffusion approximation with split and merging] Under the balance

condition (8), the stochastic system (14) converges weakly, as ε → 0,

U ε(t ∧ ζε) ⇒ ξ(t ∧ ζ̂) as ε → 0.

The limit diffusion process ξ(t), t ≥ 0, is defined by the generator

Lϕ(u) = b(u)ϕ′(u) +
1

2
B(u)ϕ′′(u)− Λ̂ϕ(u). (15)

The drift coefficient is defined by

b(u) =
∫

E
π(dx)[C1(u; x) + C(u; x)R0C

′
u(u; x)].

The covariance function is defined by

B(u) = 2
∫

E
π(dx)C(u; x)R0C(u; x).

The parameter Λ̂ in (15) is the parameter of the exponential distribution of the

lifetime of the merged Markov process and of the limit diffusion process too.

4. CONCLUDING REMARKS

Detailed definitions of random evolutions, in semi-Markov and Markov media,

can be found in [20]. Average and diffusion approximation scheme of semi-Markov

random evolutions with split and merging of the phase space as well as non ergodic

switching processes with applications in reliability can be found in [20]. For more

references on random evolutions see books [27, 22, 21, 19, 20], and review paper [10]

and references thereby.
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A part average and diffusion approximation considered here, random evolutions

can be used also in Poisson and Lévy approximation schemes, where they are naturally

associated to the predictable characteristics in additive semimartingale approach, see,

e.g., [20, ch. 7].
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