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2 Laboratoire de Mécanique des Solides (UMR CNRS 7649), Ecole Polytechnique, 91128
Palaiseau Cedex, France

(Received January 22, 2013)

The objective is to study the motion of an ellipsoidal capsule in a simple shear flow when
its revolution axis is initially placed off the shear plane. We consider prolate capsules
with an aspect ratio of 2 or 3 enclosed by a membrane, which is either strain-hardening
or strain-softening. We seek the equilibrium motion of the capsule as we increase the
capillary number Ca, which measures the ratio between the viscous and elastic forces. The
three-dimensional fluid-structure interaction problem is solved numerically by coupling
a boundary integral method (for the internal and external flows) with a finite element
method (for the wall deformation). For any initial inclination with the flow vorticity axis,
a given capsule converges towards a unique equilibrium configuration which depends on
Ca. At low capillary number, the stable equilibrium motion is the rolling regime: the
capsule aligns its long axis with the vorticity axis, while the membrane tank-treads
entrained by the shear flow. As Ca increases, the capsule takes a complex wobbling
motion at equilibrium, precessing around the vorticity axis. As Ca is further increased,
the capsule long axis oscillates about the shear plane, while the membrane rotates around
a capsule cross-section that also oscillates over time (oscillating-swinging regime). The
amplitude of the oscillations about the shear plane decreases as Ca increases and the
capsule finally takes a swinging motion in the shear plane. It is found that the transitions
from rolling to wobbling and from wobbling to oscillating-swinging depend on the mean
energy stored in the membrane.

1. Introduction

Capsules are small liquid droplets enclosed by a thin deformable elastic membrane.
They are used to protect and transport the particle internal content. Many occurrences
may be found in nature (cells, eggs, seeds), but capsules have also numerous applications
in bioengineering, pharmaceutics and cosmetics.
Nowadays artificial capsules can be produced in large quantities by first creating an

emulsion and then adding a cross-linking agent to form a membrane around the droplets
(Chang et al. 1966; Lévy et al. 1991, 1994, 1995; Edwards-Lévy et al. 1993, 1994; Andry
et al. 1996). This results in the fabrication of capsules that are approximately spherical
in shape. However, non-spherical capsules have a higher surface-to-volume ratio than
spherical ones (for the same internal volume) and could therefore be interesting to use in
order to enhance mass transfer between the internal and external media (Schneeweiss &
Rehage 2005). Nature has taken this course with red blood cells, which are small bicon-
cave disks. Microfluidic systems have been developed recently to produce non-spherical
artificial capsules. In particular Liu et al. (2009) and Xiang et al. (2008) have fabricated
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oblate and prolate microcapsules with arbitrary aspect ratio. More recently, Koleva &
Rehage (2012) have fabricated slightly oblate polysiloxane capsules with an aspect ratio
of 0.97-0.99.
When an initially spherical capsule is suspended in a simple shear flow, it elongates

in the straining direction, while the vorticity of the flow induces a tank-treading rotation
of the membrane around a steady deformed shape (Barthès-Biesel & Rallison 1981; Ra-
manujan & Pozrikidis 1998; Lac et al. 2004; Li & Sarkar 2008). In the case of a slightly
non-spherical capsule, Chang & Olbricht (1993) and Walter et al. (2001) have observed
experimentally a more complex behaviour (the capsules used by Walter et al. have an
aspect ratio of approximately 0.97). The capsule appears to have a tank-treading mo-
tion in the shear plane but undergoes small oscillations about the straining direction.
This regime was also observed by Abkarian et al. (2007) for red blood cells and is now
called swinging. As the shear rate increases, the swinging regime evolves towards a tank-
treading regime where the cell orientation is steady. At low shear rates, red blood cells
have a solid-like tumbling motion, where they rotate as a solid body about the vorticity
axis (Abkarian & Viallat 2008). Furthermore, Dupire et al. (2012) observed that the
orbit of the red blood cell is unstable near the transition between the tumbling and the
swinging regimes. Such an intermittent regime was also observed by Koleva & Rehage
(2012).
Motivated by the experimental observations on red blood cells, numerical simulations

have been carried out to understand the behaviour of non-spherical capsules in shear flow
(Ramanujan & Pozrikidis 1998; Sui et al. 2008; Walter et al. 2011). These studies have
considered the motion of an oblate capsule in a simple shear flow, in view of their relevance
to red blood cells. Only Walter et al. (2011) have additionally studied the behaviour of
a prolate capsule. In all these numerical studies, the revolution axis of the capsule is
initially positioned in the shear plane. Since the fluid inertia is either neglected or very
small, Stokes flow conditions prevail and by symmetry the capsule axis must remain in
the shear plane where it reaches an equilibrium periodic motion. These numerical models
show that at low shear rate, the capsule rotates (‘tumbles’) about the vorticity axis as
a quasi-solid body. As the shear rate increases, the capsule elongates in the maximum
strain rate direction and the membrane rotates. However, since the initial geometry is not
isotropic, the capsule elongation and orientation oscillate about mean values as observed
experimentally in the swinging regime. The behaviour of prolate and oblate capsules is
qualitatively the same, but the transition between tumbling and swinging occurs at lower
shear rates for the oblate capsules (Walter et al. 2011).
For spheroidal capsules, there is another obvious equilibrium configuration, which oc-

curs when the capsule revolution axis is perpendicular to the shear plane. From symmetry
considerations, it is clear that in Stokes flow, the capsule axis must then remain parallel to
the vorticity axis. The sections of the capsule parallel to the shear plane lose their initial
circular shape and are elongated in the strain direction, while the membrane tank-treads
about the steady deformed shape. We will call this motion mode rolling, with reference
to Abkarian et al. (2001) and Dupire et al. (2012). Of course in experiments, the capsule
revolution axis is rarely aligned with either the shear flow or the vorticity axis. This raises
the question of the mechanical stability of the motion of a capsule initially positioned
with its axis in the shear plane or perpendicular to it.
The objective of this paper is thus to study the motion of a capsule in a simple shear

flow when its revolution axis is initially positioned off the shear plane. We will consider
prolate capsules and thus complement the work of Walter et al. (2011). The advantage of
working with this geometry is that the tumbling-to-swinging transition occurs at higher
shear rates for prolate than for oblate capsules, which facilitates the computations. In
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particular we will demonstrate that the capsule typically deviates from the tumbling and
swinging motions, when the revolution axis is initially placed outside the shear plane.
The motion of a capsule in a flow is a classical fluid-structure interaction problem.

We use the numerical method developed by Walter et al. (2010) to treat this problem.
This method, based on the coupling of a membrane finite element method for the capsule
deformation with a boundary integral method for the internal and external flows, has
been shown to be very precise and to remain numerically stable. The problem and the
numerical method are briefly outlined in § 2. The behaviour of a prolate capsule initially
positioned off the shear plane is presented in § 3 as a function of the shear rate. The effect
of membrane law and aspect ratio on the capsule motion is shown in § 4. The results are
then discussed in § 5.

2. Problem statement and numerical method

2.1. Problem statement

We consider an initially spheroidal capsule and denote 2a the length of the revolution
axis and 2b the length of the two orthogonal axes. The capsule is prolate with aspect
ratio a/b. We define a length scale ` = (ab2)1/3 as the radius of the sphere with the same
volume as the capsule. We shall consider two capsule shapes corresponding to a/b = 2
(a/` = 1.587, b/` = 0.794) and a/b = 3 (a/` = 2.08, b/` = 0.693) respectively. The
reference frame based on the undeformed capsule principal axes is denoted R′ (O, e’x,
e’y, e’z), where O is the centre of mass of the capsule. Assuming that the revolution axis
is along e’z, the capsule surface is given by

(
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b

)2

+

(

y′

b

)2

+

(

z′

a

)2

= 1, (2.1)

where (x′, y′, z′) is the position of a membrane material point.
The capsule is filled with a Newtonian incompressible fluid with viscosity µ. It is freely

suspended in an unbounded Newtonian incompressible fluid with the same viscosity µ.
The external fluid is subjected to a simple shear flow with shear rate γ̇ and undisturbed
velocity

v∞ = γ̇yex (2.2)

in the laboratory reference frame R (O, ex, ey, ez). The Reynolds number of the flow
is assumed to be very small. Thus, the internal and external flows are governed by the
Stokes equations. The symmetry of the problem and of the governing equations implies
that, when the revolution axis of a capsule is initially in the shear plane or perpendicular
to it, it remains as such.
At time γ̇t = 0, the position of the capsule in space is defined by the angles between

the basis vectors of frames R′ and R. As shown in Figure 1, we chose (ex, e
′

x) = 0 and
(ez , e

′

z) = (ey, e
′

y) = ζ0. This means that the capsule revolution axis initially makes an
angle ζ0 with the vorticity axis and an angle π/2− ζ0 with the shear plane.
The capsule membrane is modeled as an isotropic hyperelastic surface with shear mod-

ulus Gs and area dilatation modulus Ks. Two types of membrane constitutive laws can
be considered, where the material is either strain-softening or hardening (Barthès-Biesel
et al. 2002). A strain-softening membrane can be described by the neo-Hookean law
(NH). The principal elastic tensions τ1 and τ2 are then given in terms of the in-plane
principal stretch ratios λ1 and λ2 by

τ1 =
Gs

λ1λ2

[

λ2

1
−

1

(λ1λ2)2

]

(likewise for τ2). (2.3)



4 C. Dupont, A.-V. Salsac and D. Barthès-Biesel

M

N

O

ex = e′

x

ey

ez

e′

y

e′

z

ζ0

Figure 1: Reference configuration of the prolate capsule at γ̇t = 0. The capsule inclination
ζ0 is the initial angle between the flow vorticity axis ez and the capsule revolution axis
e′z . During the capsule deformation, we will follow the motion of two specific points of
the capsule membrane: the point M is initially on the short axis e′x (�) and the point N
on the long axis e′z (•).

The surface shear and area dilatation moduli are related by Ks/Gs = 3. Conversely, a
strain-hardening membrane can be described by the Skalak law (SK), initially proposed
by Skalak et al. (1973) to model the red blood cell membrane

τ1 =
Gs

λ1λ2

[

λ2

1
(λ2

1
− 1) + C(λ1λ2)

2
(

(λ1λ2)
2 − 1

)]

(likewise for τ2). (2.4)

The surface shear and area dilatation moduli are then related by Ks = Gs(1+2C), where
C is a constant such that C > −1/2. For C = 1 (Ks/Gs = 3), the two laws NH and SK
lead to the same small deformation behavior. Note that the Skalak membrane material
can undergo surface area-changes while being strain-hardening.
The capsule motion and deformation are thus governed by the membrane constitutive

law, the ratio of the area dilatation and shear moduli Ks/Gs, the particle initial aspect
ratio a/b and initial orientation ζ0, and by the capillary number Ca = µγ̇`/Gs, which
measures the ratio between the viscous and the elastic forces.

2.2. Numerical method

The motion and deformation of the capsule are solved by means of the numerical tech-
nique developed by Walter et al. (2010). This method couples a membrane finite element
method (for the mechanics of the capsule wall) with a boundary integral method (for
the internal and external flows). The method is briefly described in this subsection. More
details on the procedure may be found in Walter et al. (2010) or in the book chapter
(Barthès-Biesel et al. 2010).
At time γ̇t = 0, the capsule is in its reference ellipsoidal shape, when we start the

flow. We then perform a Lagrangian tracking of the position of the membrane material
points over time. At a given time, the position of the material points is known and we
may thus compute the stretch ratios λ1 and λ2 and the elastic tension tensor τ from
equation (2.4). The load q exerted by the fluids on the membrane is found by using the
finite element method to solve the membrane equilibrium equation

∇s · τ + q = 0, (2.5)

where ∇s represents a surface gradient. The fluid velocity may be written as a boundary
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integral on the deformed surface S of the capsule

v(x) = v∞(x)−
1

8πµ

∫

S

(

I

‖ r ‖
+

r⊗ r

‖ r ‖3

)

· q(y)dS(y), (2.6)

where v(x) is the velocity of the membrane point located at x, r = x − y and I is the
identity tensor. An explicit second-order Runge-Kutta method is then used to integrate
the velocity and obtain the new position of the membrane points at the following time
step.

2.3. Discretization, stability and convergence

The surface of the capsule is discretized with triangular curved P2 elements (Figure
1). The mesh is initially generated for a spherical capsule by inscribing an icosahedron
(regular polyhedron with 20 triangular faces) in a sphere. The elements are subdivided
sequentially until the desired number of elements is reached (Ramanujan & Pozrikidis
1998; Walter et al. 2010). At the last step, nodes are added at the middle of all the
element edges and projected onto the sphere in order to generate the P2 elements. The
mesh is then deformed into an ellipsoid following equation 2.1. In the study, the capsule
mesh has 2562 nodes and 1280 elements.
The numerical method is stable, when the time step satisfies the condition γ̇ 4 t <

O(hCa), where h is the typical non-dimensional mesh size (Walter et al. 2010). We use
γ̇ 4 t = 5× 10−3 for Ca > 0.5 and decrease the time step proportionally for lower Ca.
A capsule initially placed off the shear plane takes a very long time to reach the

equilibrium state. Computational times of the order of γ̇t = 102 − 103 are therefore
needed to capture the dynamics. With such long computational times, the numerical
error may no longer be negligible. We thus monitor the relative error εV = |V − V0|/V0

on the capsule volume V , where V0 is the capsule initial volume. For off-plane capsules,
the error at γ̇t = 100 is ∼ O(10−2) for Ca 6 0.9 and O(10−3) for Ca > 0.9.

2.4. Result analysis

Depending on the parameters, the capsule motion and deformation become complex and
difficult to analyze. The global geometry of the capsule is evaluated by means of the
ellipsoid of inertia of the deformed shape. We denote Li the half lengths of the principal
axes of the ellipsoid of inertia (L1 > L2 > L3) and vi the corresponding unit vectors in
R (v1 = e′z at time γ̇t = 0 for a prolate capsule). The membrane rotation is measured
from the motion of two points (Figure 1):
• the point M is the Lagrangian position at time γ̇t of the membrane point that was

initially located on the capsule short axis e′x.
• the point N is the Lagrangian position at time γ̇t of the membrane point that was

initially located on the capsule long axis e′z .
The capsule global motion is measured from the position of the capsule tip P, which
corresponds to the Eulerian position in R of the intersection between the v1 axis and
the membrane. At time γ̇t = 0, the points N and P are superimposed. The projections
of P in the shear xy−plane or in the xz−plane are denoted P’ and P”, respectively.
The capsule deformation can be analyzed using the Taylor parameters

Dij =
Li − Lj

Li + Lj
(i, j = 1, 2, 3 and i 6= j). (2.7)

Owing to the capsule initial ellipsoidal shape, the initial values of the Taylor parameters
are D0

23
= 0 and D0

12
= D0

13
= (a− b)/(a+ b) = 1/3 for an aspect ratio a/b = 2 or 1/2

for a/b = 3. The overall deformation can also be measured by the elastic energy E stored
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Figure 2: Time evolution of the elastic energy E/Gs`
2 stored in the membrane (solid

line) for a C2SK capsule with ζ0 = 85° and Ca = 0.9. The mobile average (dotted line)
is obtained with a non-dimensional period γ̇T = 21.55.

in the capsule wall (Walter et al. 2010)

E(t) =

∫

S0

ws(λ1, λ2, t)dS0, (2.8)

where ws is the strain energy function per unit area of undeformed membrane and S0 is
the initial surface of the capsule.
In most cases, the capsule has a kind of gyroscopic motion, where it rotates and

reorients itself. Correspondingly, the coordinates of any point, the membrane energy, the
capsule deformation, etc. all have pseudo-periodic oscillations with amplitude changing
over time. We have used a centred moving average method (Hay & Bull 2009) to smooth
the data and to visualize the time evolution of the parameters (Figure 2). This method
replaces a value x(t) by its average over a period T centred around the time value t. Here,
we define the period of the motion as the time required for a point initially at (x, 0, 0) to
return on the ex axis. Unless otherwise mentioned, all results pertain to quantities that
are averaged over one period.
To simplify notations, we call C2SK and C3SK the capsules with a SK membrane

of aspect ratios 2 and 3, respectively, and C2NH the capsules with a NH membrane of
aspect ratio 2.

3. Results

We first consider a prolate capsule a/b = 2 enclosed by a SK (C = 1) membrane, and
study in detail the effect of the initial orientation ζ0 and of the flow strength measured by
Ca. The influence of the membrane law and of the aspect ratio will be briefly discussed
in section 4.

3.1. Motion of a capsule with ζ0 = 90°
Before studying the motion of a capsule initially placed off the shear plane with an
arbitrary angle, we will first summarize the dynamics of a capsule when its revolution
axis is initially positioned in the shear plane (ζ0 = 90°). Walter et al. (2011) have shown
that the long axis remains in the shear plane. They have also shown that the capsule
motion is a function of the capillary number Ca. At low capillary numbers (Ca < 0.25),
the capsule rotates about the vorticity axis like a quasi-solid particle; its cross-section
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Figure 3: Capsule C2SK shape when ζ0 = 90°: shape evolution over one half period at
steady state for Ca = 0.1 (a) and Ca = 2 (b). The grey scale corresponds to the normal
component of the load q · n on the membrane. The maximum values of the normal load
are q · n/Gs = 0.9 (a) and 25 (b). The value of the non-dimensional time γ̇t is given
below each shape. The points M (�) and N (•) were initially on the short and long axis
respectively (Figure 1).

with the shear plane exhibits small deformations (Figure 3a). This regime is referred to
as tumbling.
For Ca > 0.35, the capsule has a quasi-fluid behaviour. The angle of the capsule

long axis with the streamlines and the capsule deformation oscillate about mean values
(Figure 3b), because of the geometrical anisotropy of the initial shape. This is the so-
called swinging regime. As Ca increases, the membrane deformation increases and the
long axis is tilted towards the streamlines. Furthermore, the oscillation amplitudes of
the deformation and orientation also decrease with increasing Ca. Asymptotically, the
capsule tends towards the pure tank-treading regime, where the membrane rotates around
a steady deformed profile.

3.2. Motion of a capsule with ζ0 = 0°
There is no available study of the case where the revolution axis of the capsule is initially
perpendicular to the shear plane and thus parallel to the vorticity axis (ζ0 = 0°). In this
situation, the capsule long axis remains parallel to the vorticity for symmetry reasons.
The shear flow exerts a viscous torque on the membrane and thus the capsule cross-
sections parallel to the shear plane that were initially circular become elongated in the
strain direction. The membrane then rotates around the steady capsule shape as shown
in Figure 4. This capsule motion is the same for all the values of the capillary number
and is called the rolling regime.
In order to further investigate the evolution of the capsule deformation, we have plotted

the Taylor parameters calculated at steady state in Figure 5a. For low flow strength the
principal direction v1 is along the vorticity axis. The deformation within the shear plane is
thus measured by D23, which sharply increases from zero (initially circular cross-section)
to a plateau value a little above 0.5 (of the same order as the maximum deformation
for a spherical capsule in simple shear flow). The deformation in planes perpendicular to
the shear plane are measured by D12 and D13. The decrease of D12 with Ca is due to
the pinching of the capsule by the straining effect of the shear flow. For Ca > 1.5, the
capsule reaches a shape that is hardly influenced by the flow strength.
The maximum value τmax of the principal elastic tensions within the membrane is
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Figure 4: Capsule C2SK shape when ζ0 = 0°: shape evolution over one half period at
steady state for Ca = 0.1 (a) and Ca = 0.6 (b). Same legend as in figure 3. The maximum
values of the normal load are q · n/Gs = 0.5 (a) and 2.5 (b).
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Figure 5: Capsule C2SK: influence of the capillary number Ca on the rolling regime at
ζ0 = 0°. (a) Capsule deformation estimated by the Taylor parameters Dij , where the
dotted line represents the stability limit; (b) maximum membrane tension τmax.

shown in Figure 5b. We find that the elastic tension level and correlatively the risk of
rupture increase quasi-linearly with Ca. The maximum is located in the shear plane at
the capsule edge in the v3 principal direction (see Figure 4). This is where the rupture
will most likely occur when the failure criterion of the membrane material is exceeded.
The minimum of the principal tensions τmin is found to be about zero for all the values
of Ca (data not shown). It is slightly negative until Ca = 0.4 (τmin/Gs ∈ [−0.04, 0]), so
that the membrane undergoes moderate compression locally. This explains why wrinkles
appear at the capsule apices along the long axis (i.e. v1) in Figure 4 for Ca = 0.1 and
not for Ca = 0.6.
Although we have shown results for large values of Ca, we will see in the following

that for Ca > 0.6, the rolling configuration is no longer mechanically stable.

3.3. Off-plane capsule at low flow strength (Ca 6 0.6)

When the capsule axis is displaced from the shear plane by a small angle of 5° (ζ0 = 85°),
the capsule long axis does not go back to the shear plane (see supplementary movie file
Movie 1). As shown in Figure 6a for Ca = 0.1, the projection P’ of the capsule tip in the
shear plane moves away from the fixed trajectory reached for ζ0 = 90°. It spirals around
the flow vorticity axis ez and eventually converges towards it. This is also apparent from



Off-plane motion of a prolate capsule in shear flow 9

(a)

-2
-2

-1.5

-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2
90°
85°

x/`

y

`

(b)

γ̇t

-2
-2

-1.5

-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2

°°
x/`

z

`

Figure 6: Motion of a C2SK capsule with ζ0 = 85° at Ca = 0.1: (a) Comparison of
the trajectory of point P’ in the shear xy−plane with the case ζ0 = 90°. The arrow
indicates the initial position of P’. (b) Evolution of the capsule shape in the xz-plane
at the beginning of each period (solid line: capsule shape at γ̇t = 0). The black point
indicates the position of point P” at γ̇t = 5, 22, 38, 55, 721, 89, 106, 123.

Figure 6b, which shows the evolution of the projection P” of point P in the xz−plane.
The stable equilibrium position is thus the rolling regime. It is the converging position for
any off-plane orientation ζ0 < 90° (not shown). At equilibrium the capsule deformation
and tank-treading motion are identical to those of the same capsule initially positioned
at ζ0 = 0° (Figures 4 and 5), i.e. with its revolution axis initially along the vorticity axis.
As shown in Figure 7, when the capsule is not constrained in the shear plane by

symmetry, the elastic energy stored in the membrane decreases during the transient
motion until it reaches the value for a rolling capsule. The equilibrium configuration
is thus the one for which the mean deformation (as measured by the energy) is the
smallest. We also note in Figure 7 that the initial orientation angle ζ0 influences the
time the capsule needs to reach its equilibrium position. Indeed, the smaller the initial
angle ζ0, the smaller the time. The transient time until equilibrium also increases with
the capillary number (not shown).
In conclusion we find that, for Ca up to 0.6, the mechanically stable situation cor-

responds to the rolling regime, a configuration where the capsule long axis is normal
to the shear plane and the membrane tank-treads around it. Since the deformation is
small at low capillary number, the capsule behaves almost as a solid ellipsoid and takes
the position that dissipates the less energy (Jeffery 1922). Consequently, the tumbling
motion found when the capsule axis is in the shear plane (ζ0 = 90°) is an unstable equi-
librium state. Over long times, the accumulation of numerical errors is enough to slowly
destabilize it. Considering the fact that in a suspension, the initial capsule orientation is
usually random, we can expect that most of the capsules align their long axis with the
flow vorticity and are eventually all in the rolling regime.

3.4. Transition at moderate flow strength (0.6 < Ca < 1)

For Ca > 0.7, the capsule no longer tends towards the rolling motion observed for lower
values of Ca. Its motion is now a function of Ca.
For example, for Ca = 0.9 and different initial orientations ζ0 ∈ ]0°, 90°[, the time
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Figure 8: Capsule C2SK at Ca = 0.9: effect of the initial orientation on the time evolution
of the elastic energy stored in the membrane E/Gs`

2

evolution of the mean elastic membrane energy E/Gs`
2 shows that it converges towards

a common equilibrium value (Figure 8). For Ca = 0.9, this equilibrium state corresponds
more or less to the motion that the capsule takes almost immediately (i.e. after a short
transient) for an initial angle ζ0 = 15− 30°.
We choose, therefore, to examine in detail the motion of a capsule with ζ0 = 15° for

Ca = 0.9 (see supplementary movie file Movie 2). The capsule rotates as a whole around
the vorticity axis, while its tip P has a wobbling motion as shown in Figure 9. Indeed,
the projection P’ of P in the shear plane follows a roughly elliptical trajectory (Figure
9a), while the height of P above the shear plane oscillates (Figure 9b). This is of course
different from the swinging motion obtained for ζ0 = 90°, where the tip of the capsule
oscillates in the shear plane as shown in Figure 9a. We quantify this motion by means
of ζmax, which corresponds to the maximum angle between the capsule longest principal
axis v1 and the vorticity axis (in Figure 9b, one can see the projection of the angle ζmax

in the xz−plane). The value of ζmax depends on Ca as shown in Figure 10a. We retrieve
the fact that for Ca 6 0.6, ζmax = 0°, which corresponds to the rolling motion. As the
capillary number is increased above 0.6, the capsule starts to precess around the vorticity
axis with a maximum amplitude ζmax, which increases sharply with Ca.
The evolution of the mean elastic energy stored in the membrane at equilibrium E∞

(Figure 10b) also indicates clearly that the capsule bifurcates from the rolling regime
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(ζ0 = 0° curve) for Ca > 0.7. In the wobbling regime, the capsule deformation is still
moderate but the energy of deformation is a little larger than the one that would be
found in the rolling regime for the same Ca.

3.5. Off-plane motion at high flow strength (Ca > 1)

For a capillary number larger than 1, we find another type of motion. For example, for
Ca = 1.5 and different initial orientations, the mean elastic membrane energy E/Gs`

2

converges in time towards a common value as shown in Figure 11. This equilibrium state
is reached after a short transient for an initial angle ζ0 = 60°. The details of the motion
of a capsule with ζ0 = 60° at Ca = 1.5 are then shown in Figure 12 (see supplementary
movie file Movie 3). The capsule assumes what we call an oscillating-swinging motion,
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2.

where the tip of the capsule oscillates both about the shear plane (Figure 12b) and within
the shear plane about a mean inclination with respect to the flow direction (Figure 12a).
The rotational motion is now taken over by the membrane as is apparent from the
trajectory of point N in the shear plane (Figure 12a). This behavior corresponds to
values of ζmax > 90°, as shown in Figure 10a.
As Ca increases, the amplitude of the oscillations about the shear plane decreases. For

large values of the capillary number Ca > 1.8, the capsule positions its long axis in the
shear plane (ζmax = 90°) for any initial orientation ζ0: it undergoes the swinging regime
described by Walter et al. (2011) and summarized in section 3.1. The convergence of
the oscillating-swinging regime towards a pure swinging regime is also shown in Figure
10b: as Ca increases, the equilibrium elastic energy tends towards the values obtained
in the swinging regime. The evolution of the capsule profile at equilibrium is therefore
similar to the one shown in Figure 3b for ζ0 = 90°. The membrane tank-treads around
the time-oscillating profile. But, even these oscillations decrease as Ca is increased: the
capsule tends asymptotically towards a pure tank-treading motion at very large values of
the capillary number. Correspondingly, the deformation energy tends towards the value
obtained for the swinging regime as shown in Figure 10b.

3.6. Global effect of Ca

In conclusion, the motion and deformation of a prolate ellipsoidal capsule in shear flow
depend in a complex way on the flow strength. There are two obvious equilibrium states
for which the capsule keeps symmetry properties with respect to the shear plane and
which correspond respectively to ζ0 = 0 or 90°. The mean equilibrium energy stored in
the membrane E∞ shown in Figure 10b indicates that the energy is larger when the
capsule axis is in the shear plane (ζ0 = 90°) than when it is perpendicular to it (ζ0 = 0°).
However, the energy criterion is not enough to govern the equilibrium state of the capsule
even in Stokes flow. Indeed the capsule motion is the result of non-linear fluid–structure
interactions. This may explain why there is a bifurcation from the rolling state towards
the swinging state. During this transition, the capsule has first a quasi solid wobbling
motion followed by a quasi fluid oscillating-swinging motion.
The question of the uniqueness of the equilibrium state then arises. In other words, is

there an hysteresis effect? In order to give an answer to this question, we did the following
experiment: starting from the oscillating-swinging equilibrium state found for Ca = 1.5,
we have suddenly reduced the capillary number to Ca = 0.9. The resulting trajectory of
the projection P” of the capsule tip in the xz−plane is shown in Figure 13. We note that
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the amplitude of the oscillations of the capsule about the shear plane (x−axis) increases
with time until the capsule switches to the wobbling motion. It converges towards the
same configuration as obtained for a capsule initially at Ca = 0.9 as shown in Figure 9b.
If then we suddenly decrease Ca from 0.9 to 0.1, the capsule goes to the rolling regime
described in section 3.3 (not shown). We thus conclude that the equilibrium states we
find are unique.

4. Effect of membrane law and capsule aspect ratio

In order to assess the robustness of the results obtained with a SK law, we now consider
a capsule with aspect ratio a/b = 2 and a strain-softening NH membrane. We find again
that for low flow strength (Ca 6 0.5), the stable mode of motion of the C2NH capsule
is the rolling motion. In this regime, a capsule with a NH membrane is easier to deform
than one with a SK membrane (Figure 14). Indeed for the same value of Ca, the capsule
deformation is larger for a NH membrane than for a SK one.
As shown in Figure 15, for Ca = 0.6, the C2NH capsule has a wobbling motion followed

by an oscillating-swinging motion for Ca > 0.7. However, for Ca > 0.9, the capsule does
not seem to reach a steady trajectory. This is in agreement with the fact that there is
no stable swinging regime in the shear plane for large values Ca > 1. Indeed, there is
a critical flow strength for which the strain-softening elastic tension cannot balance the
large viscous tension applied by the fluid (Barthès-Biesel 2011).
The case of a capsule with a SK membrane and aspect ratio a/b = 3 is now considered.

Note that since we consider equal volume capsules, the capsule dimensions are now
a/` = 2.08 and b/` = 0.693. The capsule cross-section is thus smaller than it is for
a/b = 2. The rolling motion is again found to be the stable regime for Ca 6 0.8. It is
then followed by a wobbling motion for 0.9 6 Ca 6 1.7 and by an oscillating-swinging
motion with decreasing oscillation about the shear plane as Ca increases (Figure 15).
In conclusion we find the same qualitative motion (rolling followed by wobbling and
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Figure 13: Time evolution of a capsule C2SK initially undergoing stable oscillating-
swinging motion at Ca = 1.5, when the capillary number is suddenly changed to Ca =
0.9. The trajectory of the capsule tip P” in the xz−plane is followed in time.

eventually swinging with oscillations about the shear plane), irrespective of the capsule
membrane law or aspect ratio. The main effect of these parameters is to change a little
the values of Ca at transition. In particular, it seems that the main factor that triggers
the transition from rolling to wobbling is the deformation of the membrane. Indeed,
from Figure 14, we note that the last result of stable rolling motion before transition is
obtained for roughly the same values of the three deformation parameters

D23 = 0.45 ∼ 0.47, |D12 −D(0)12| = 0.23, D13 −D(0)13 = 0.16 ∼ 0.22,

where D(0)ij is the initial capsule apparent deformation due to the anisotropic ellipsoidal
shape. This means that it corresponds to the same mean elastic energy in the membrane
E/Gs`

2 = 1 ∼ 1.3, which is rather small compared to the high levels of elastic energy
reached in the swinging regime.

5. Discussion and conclusion

The study of the mechanical stability of the motion of a prolate ellipsoidal capsule
under shear flow has provided new interesting results. We have found that for a pro-
late capsule in Stokes flow, the two obvious symmetric configurations where the capsule
axis is either parallel or perpendicular to the shear plane do not always correspond to
stable equilibrium states. Since in the Stokes regime, the dynamic time dependent term
is removed from the Navier–Stokes equations, the only way to test the stability of an
equilibrium solution is to perturb it. We have adopted this method and showed that for
low flow strength, the capsule will assume a rolling motion with its axis parallel to the
flow vorticity, whereas for high flow strength, the swinging motion in the shear plane is
stable. We have not tried to determine with a high precision, the values of Ca for which
transition occurs. The critical value is obtained within an interval of 0.1.
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For example, in the case of a capsule with a/b = 2 and a SK (C = 1) membrane, we find
that for moderate flow strength (up to Ca = 0.6), the stable equilibrium corresponds
to the rolling regime: the prolate capsule orients its long axis parallel to the vorticity
direction. For high flow strength (Ca > 1.8), the capsule, however, places its long axis in
the shear plane and follows a swinging regime with oscillations decreasing with Ca. In
the intermediate range (0.7 6 Ca 6 0.9), the capsule first exhibits a complex wobbling
motion and precesses around the vorticity axis. Its long axis then makes a mean angle
with the vorticity axis which increases with Ca. For Ca > 1, the capsule oscillates
about the shear plane and assumes a swinging motion. The amplitude of the oscillations
decrease with Ca.
Jeffery (1922) found that the final orientation of a rigid ellipsoidal particle suspended

in an external flow was such that the viscous energy dissipation is minimum. Corre-
spondingly, a prolate ellipsoid would have its long axis parallel to the vorticity. For small
capillary numbers, the capsule behaves almost like a solid ellipsoid. It is thus not surpris-
ing that the stable equilibrium state, i.e. the rolling regime, corresponds to the Jeffery’s
regime. For Ca > 0.6, the capsule no longer converges towards the configuration that
minimizes the viscous dissipation as can be surmised from Figures 8 and 11. The mem-
brane deformation plays an important role and the fluid-structure interactions dictate the
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equilibrium configuration. We have corroborated these results by studying other prolate
capsules with either a different membrane law or a different aspect ratio. We find that
all these capsules have a stable rolling regime at low shear rate, from which they depart
when a given level of deformation (or of elastic energy in the membrane) is reached. This
allows us to surmise the role of the viscosity ratio η between the internal and external
fluids. Using a viscosity ratio η = 1 simplifies significantly the computations which are
then shorter. As we have studied the dynamic response of a capsule this is an apprecia-
ble advantage. For spherical capsules, it has been shown that η < 1 leads to a moderate
increase of the capsule deformation of order 20% for the same value of Ca (Foessel et al.
2011). Thus we can expect a low internal viscosity capsule to quit the rolling regime for
values of Ca lower than those found for η = 1. Conversely as η increases above unity,
the internal viscosity effect is to decrease the capsule deformability. We can thus expect
that the stability limit of the rolling regime will increase with the internal viscosity.

Experimentally, for a given capsule population, the capsule shape (size ratio a/b and
characteristic length `), internal viscosity µ and membrane elasticity moduli (Gs, Ks)
are fixed. Thus the only way to increase Ca is through the shear rate γ̇ and the external
fluid viscosity (but then the viscosity ratio also changes while it is assumed to be unity
in this study). Typical artificial capsules have a shear elastic modulus of the order of
Gs = 0.1 to 1 N/m (Chang & Olbricht 1993; Chu et al. 2011; Koleva & Rehage 2012;
Zhang & Salsac 2012), while their size varies from ` = 30 µm to 1 mm. With these values,
we have to apply a viscous stress µγ̇ of the order of 100 Pa to obtain a capillary number
of Ca = 0.1. At the same time, we have to keep the flow Reynolds number Re = ρa2γ̇/µ
small (where ρ is the fluid density). Experimental observations are best made at low
values of the shear rate, typically γ̇ < 10 s−1 so that the experimental time t is not too
short (see for example Abkarian et al. (2007)). Thus high values of the shear stress are
difficult to achieve unless the external fluid viscosity is very large. We conclude that it is
challenging to reach large values of Ca experimentally.

Furthermore, artificial capsules tend to break up for deformation levels of order 2-10%
(Chang & Olbricht 1993; Koleva & Rehage 2012) with a polymer membrane and of order
20-30% for a polymerized albumin membrane (Carin et al. 2003). It follows that although
interesting from the theoretical point of view, the high Ca behavior is not very likely to
be observed. Thus, the most probable configuration that can be observed experimentally
is the rolling regime.
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Lévy, M.-C., Lefebvre, S., Andry, M.-C., Rahmouni, M. & Manfait, M. 1994 Fourier-
transform infrared spectroscopic studies of cross-linked human serum albumin microcap-
sules. 2. Influence of reaction time on spectra and correlation with microcapsule morphology
and size. Journal of Pharmaceutical Sciences 83 (3), 419–422.
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