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The motion and deformation of a spherical elastic capsule freely suspended in a simple10

shear flow is studied numerically, focusing on the effect of the internal-to-external11

viscosity ratio. The three-dimensional fluid–structure interactions are modelled12

coupling a boundary integral method (for the internal and external fluid motion)13

with a finite element method (for the membrane deformation). For low viscosity14

ratios, the internal viscosity no longer affects the capsule deformation. Conversely,15

for large viscosity ratios, the slowing effect of the internal motion lowers the16

overall capsule deformation; the deformation is asymptotically independent of the flow17

strength and membrane behaviour. An important result is that increasing the internal18

viscosity leads to membrane compression and possibly buckling. Above a critical19

value of the viscosity ratio, compression zones are found on the capsule membrane20

for all flow strengths. This shows that very viscous capsules tend to buckle easily.21

Key words: capsule/cell dynamics, membranes22

1. Introduction23

A simple capsule consists of a liquid drop enclosed by a thin deformable elastic24

membrane. Capsules are ubiquitous particles widely used in the industry to protect25

active fragile products or in nature for the same purpose (cells, eggs and seeds). The26

mechanics of an initially spherical capsule freely suspended in a linear shear flow has27

received much attention over the years. It has been shown in particular that, because28

the internal volume is constant, when the capsule deforms, the enclosing membrane29

tends to buckle, as evidenced by the presence of negative (i.e. compressive) tensions30

in the membrane (Ramanujan & Pozrikidis 1998; Lac et al. 2004; Doddi & Bagchi31

2008; Li & Sarkar 2008). This effect has been studied in detail for a viscosity ratio32

η =1 between the internal and external liquid. It has been shown in particular that,33

for low shear strength, buckling occurs in the equatorial area of the capsule whereas34

for high shear strength, compression occurs in the vicinity of highly elongated and35

curved tips. The presence of compression is captured well by a membrane model36
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Figure 1. The ellipsoid of inertia of the deformed capsule is used to evaluate the deformation:
L1 and L2 are the two principal semi-diameters, β is the angle of the long axis with the far-field
streamlines and δ defines the position of a point along the surface.

devoid of bending resistance, but the post-buckling behaviour cannot be computed37

with such a model.38

The effect of the viscosity contrast η �= 1 on the deformation of a spherical capsule39

has been mostly studied for two values η = 0.2 and η = 5 (Ramanujan & Pozrikidis40

1998; Doddi & Bagchi 2008; Li & Sarkar 2008) with the recent addition of η = 1041

(Bagchi & Kalluri 2010). However, the effect of η on the elastic tensions in the42

membrane and on the tendency towards buckling has never been studied.43

It is the objective of this paper to show how the viscosity contrast influences the44

motion and deformation of a capsule suspended in a simple shear flow. The elastic45

tension distribution in the membrane will also be studied in detail, and we will show46

that the retarding effect of the internal liquid motion has a strong influence on the47

membrane mechanics. Indeed, for large-enough viscosity contrasts, it appears that the48

membrane is undergoing compression over half of its surface area.49

In § 2, the problem is briefly outlined. We then present the influence of the viscosity50

ratio on the capsule deformation and orientation and show the existence of two51

asymptotic regimes for low and high viscosity ratios. The elastic tension distribution52

in the membrane is then computed and the tendency towards buckling is discussed.53

2. Problem statement and numerical method54

We consider the deformation of a spherical liquid capsule of radius a, suspended in55

an unbounded fluid with viscosity µ. The capsule has a very thin membrane, treated56

as an isotropic hyperelastic surface S with surface shear modulus Gs and area dilation57

modulus Ks . The bending resistance is assumed to be negligible. The viscosity of the58

fluid inside the capsule is ηµ, and its density is equal to that of the surrounding fluid59

thus excluding gravity effects. The capsule is subjected to a simple shear flow with60

undisturbed flow velocity v∞(x) = γ̇ x2e1, in a reference frame (O, e1, e2, e3), centred on61

the capsule’s centre and fixed with respect to the fluid at infinity. The capsule deforms62

until it reaches a steady profile while the membrane rotates around it (tank-treading63

motion). The deformation is measured by means of various geometric parameters64

that are evaluated on the ellipsoid of inertia of the deformed shape (figure 1):65

(i) the Taylor parameter D12 = (L1 − L2)/(L1 + L2) for the overall capsule66

deformation, where L1 and L2 are the half lengths of the two principal diameters of67

the ellipsoid of inertia in the shear plane;68

(ii) the angle β for the inclination of the capsule’s longest axis with respect to e1;69
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(iii) the angle δ for the location of a capsule membrane material point in the shear70

plane.71

The two important non-dimensional parameters governing the capsule deformation72

are the viscosity ratio η and the capillary number Ca = µγ̇ a/Gs , which measures73

the relative importance of the viscous and elastic forces and can be considered as a74

non-dimensional flow strength for a given capsule.75

Assuming very small Reynolds number flows, the internal and external flows are76

governed by the Stokes equations. The numerical modelling of the motion of a capsule77

in a Stokes flow is now a classical problem (see, e.g. Pozrikidis 1992). Walter et al.78

(2010) developed a numerical method to treat this problem that is based on the79

coupling of a membrane finite-element method (for the capsule wall mechanics) and80

a boundary integral method (for the internal and external flows). This method was81

limited to the case when the two fluids had the same viscosity (η = 1). In the present82

study, we extend it to cases when η �= 1. We briefly outline the method focusing83

mainly on the resolution technique used for the boundary integral equations when84

η �=1. More details on the other steps of the procedure may be found in Walter et al.85

(2010) and Barthès-Biesel, Walter & Salsac (2010).86

The numerical procedure consists in following the position of the capsule material87

points of the capsule membrane after the start of flow. At each time step, the position88

of the membrane material points is thus known. The deformation of the capsule may89

be computed, and the elastic tensions τ are obtained from the values of the in-plane90

stretch ratios λ1 and λ2. We use the law (Sk) proposed by Skalak et al. (1973), for91

which the principal tensions are given by92

τ1 =
Gs

λ1λ2

[
λ2

1

(
λ2

1 − 1
)

+ C(λ1λ2)
2((λ1λ2)

2 − 1)
]

(likewise for τ2). (2.1)

This law has independent values of Gs and Ks with Ks/Gs = 1 + 2C. Unless otherwise93

stated, all the results given in the following sections correspond to the Sk law with94

C = 1.95

The finite-element method, used to solve the equilibrium of the membrane96

∇s · τ + q = 0, (2.2)

provides the value of the load q exerted by the fluids on the membrane.97

The boundary integral formulation for the three-dimensional motion of the internal98

and external fluids can be written as99

v(x) = v∞(x) − 1

8πµ

∫
S

J(r) · q dS( y)

+
1 − η

8π

∫
S

(v( y) − v(x)) · K (r) · n( y) dS( y), (2.3)

where v(x) is the velocity of the membrane point located at x, and r = y − x. The100

Green kernels are given by101

J(r) =
1

r
I +

r ⊗ r
r3

, K (r) = −6
r ⊗ r ⊗ r

r5
, (2.4)

where r = ‖r‖ and I is the identity tensor. The implicit problem (2.3) is solved for v(x)102

by successive sub-iterations (denoted by the superscript n). As the procedure may not103

converge if η > 1, we use a simple relaxation method104

vn+1(x) = ωvn+1
s (x) + (1 − ω)vn(x), (2.5)
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Figure 2. Steady-state value of (a) the Taylor parameter and (b) the inclination angle
as a function of Ca for different values of η. In figure (a), the solid line represents the
small-deformation theory (3.1).

where vn +1
s (x) is the left-hand side of (2.3) obtained by replacing v(x) by vn(x) in the105

right-hand side of the equation. With a relaxation factor ω = 2/(1 + η), this method106

is equivalent to that described by Pozrikidis (1992), but numerical tests show that107

using ω = 1.8/(1 + η) significantly increases the convergence rate. The velocity is then108

integrated with an explicit second-order Runge–Kutta method to obtain the new109

position of the membrane points at the following time step. With this procedure, we110

were able to reproduce within 2 % the values of deformation D12 obtained for capsules111

with either an Sk or a neo-Hookean membrane and with η = 0.2, 5, 10 (Ramanujan &112

Pozrikidis 1998; Doddi & Bagchi 2008; Bagchi & Kalluri 2010).113

3. Effect of the viscosity ratio and capillary number on the capsule deformation114

The steady values of the deformation and inclination angle are presented in figure 2115

as functions of Ca and η. The deformation D12 increases with Ca but decreases with116

η for a given value of Ca . The equilibrium shape of the capsule results from the117

balance between the jump in viscous stress across the membrane and the elastic load:118

[σ ext − σ int ] · n = q. For η � 1, the contribution of σ int is small, and all the external119

stress is used to deform the membrane; thus D12 increases continuously with Ca .120

Furthermore, we find that when η < 0.2, the deformation curve is superimposed on121

the η =0.2 curve, thus indicating that the internal flow is no longer important and122

that a low-viscosity asymptotic state has been reached.123

As shown in figure 2(a), the deformation results are in good agreement with the124

small-deformation theoretical model of Barthès-Biesel & Rallison (1981), which is125

valid for Ca � 1:126

D12 =
25

12
Ca + O(Ca2), β =

π

4
+ O(Ca). (3.1)

The range of validity of the first-order prediction decreases when η increases, although127

the deformation is smaller at high than at low viscosity ratios. This is due to the fact128

that this analysis is valid for η = o(1/Ca), which reduces the capillary number range129

of validity when η increases.130

For large values of η, the deformation reaches a plateau value when Ca increases131

(figure 2a). This result is consistent with the analysis of Barthès-Biesel & Rallison132

(1981) who also explored the case where the capsule deformation was limited by a133

high viscosity ratio (η � 1). They found that at the leading order, the deformation134



Influence of capsule internal viscosity 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2  4  6  8  10  12  14  16  18  20

Ca = 0.1
0.5

1

Ca = 0.1
0.5

1

(a) (b)

 0

 0.02

 0.04

 0.06

 0.08

 0.10

 0.12

 2  4  6  8  10  12  14  16  18  20

D12

β
C

a/
π

η η

Figure 3. Steady-state value of (a) D12 and (b) βCa as a function of η for different values
of Ca . The points represent the numerical results and the solid lines the small-deformation
theory (3.2). The numerical results converge towards the asymptotic prediction for η > 5 and
Ca > 0.5.

did not depend on Ca and that the orientation angle decreased with both Ca and η:135

D12 =
5

4η
+ O

(
1

η2
,

1

Caη2

)
, β =

15

38Caη
+ O

(
1

η2
,

1

Caη2

)
. (3.2)

The deformation is plotted as a function of η in figure 3(a). It appears that when136

η > 5 and Ca > 0.5, the asymptotic theory gives a good prediction within 15 % for137

the deformation. The accuracy of the prediction (3.2) increases with η as expected.138

The inclination angle results from the balance of two competing phenomena: the139

straining part of the external flow elongates the capsule in the e1 + e2 direction and140

thus sets β to π/4, whereas the vorticity rotates the capsule towards e1 and thus tends141

to decrease β to zero. Consequently, β decreases from π/4 as Ca increases. For low142

viscosity ratios, the flow inside the capsule does not affect the equilibrium-deformed143

shape much. This explains why the decrease of β with Ca is moderate (figure 2b).144

However, for highly viscous capsules that remain nearly spherical, the deformed shape145

results from the equal competition between the straining and rotational parts of the146

external simple shear flow in a fashion similar to the one observed for liquid drops147

(Rallison 1980). This results in a shape almost aligned with the streamlines in the148

asymptotic case where η � 1, as predicted by (3.2) and shown in figures 2(b) and 3(b).149

4. Effect of the viscosity ratio on the membrane tensions150

In order to analyse the effect of η on the membrane tensions, we consider the151

maximum value of the principal tensions τmax , which is a good indicator of the risk152

of membrane mechanical failure, and the minimum value of the principal tensions153

τmin whose sign determines the mechanical stability of the membrane. When τmin is154

positive, the membrane is under tension everywhere and therefore stable, whereas155

when τmin is negative, a part of the membrane is under compression and buckling156

occurs in the absence of bending resistance in the wall model.157

Figure 4(a) shows the variation of τmax as a function of Ca . As expected, τmax158

increases with Ca . For a given capillary number, τmax is also observed to decrease159

with the viscosity ratio η. This is a consequence of the decrease of the capsule160

deformation with η (figure 2a). The results can be collapsed onto a single curve for161

all the values of Ca and η, when one plots τmax as a function of D12 (Figure 4b).162

This is due to the fact that, for a given membrane-constitutive law, the capsule163

elongation (and thus deformation) determines the elastic stress in the membrane. A164
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Figure 5. Minimum value of principal tensions as a function of (a) the capillary number
and (b) the Taylor parameter.

small departure from the general curve is found for higher viscosity ratios at large165

deformation. This may be due to buckling effects, which are discussed in the next166

section.167

The values of τmin show the existence of two different types of behaviour168

(figure 5a). For low and moderate values of η, there exists a range of capillary169

numbers for which τmin > 0: the membrane is under tension and thus mechanically170

stable. We denote CaL and CaH as the two critical capillary numbers defined by171

τmin(CaL) = τmin(CaH ) = 0, CaL � CaH . Such findings concur with those of Lac et al.172

(2004) for η = 1. However, for viscosity ratios above a critical value ηc (ηc ≈ 2.5), we173

find that the membrane is always undergoing compression somewhere.174

4.1. Low shear compression175

When Ca < CaL, the initially spherical capsule is extended by the flow in the β-176

direction. The capsule being a closed shape with a constant volume is thus compressed177

along the equator and tends to buckle in this area as shown in figure 6(a). As Ca178

and the capsule deformation increase, the isotropic part of the tensions in (2.1),179

related to the area dilation modulus Ks , increases too and eventually becomes large180

enough to overcome compressive effects for Ca = CaL. This phenomenon depends181

only on the capsule extension (and thus D12) and is independent of η. Consequently,182

if τmin is plotted as a function of D12, CaL occurs at roughly the same value of the183

Taylor parameter (D12)L =0.37 (figure 5b). For Ca � CaL, the minimum tension τmin184

is positive so that the membrane is under tension everywhere.185
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(a) Ca = 0.25 Ca =1.8 Ca = 5.5(b) (c)

Figure 6. Location of negative tensions for η = 0.2 <ηc . The capsule is shown in the shear
plane (e1, e2). White areas are taut; where negative tensions occur, their intensity is represented
by the grey scale. Arrows show the general direction of compression.
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4.2. High shear compression186

As Ca increases further, τmin starts to decrease and eventually becomes negative.187

Contrary to the previous case, this decrease is linked to the appearance of a188

compression zone now located near the tip of the capsule. In order to explain this189

phenomenon, we study the intersection of the capsule surface with the shear plane190

(a principal direction of strain in view of the problem symmetry) and measure its191

elongation λ1. The second principal elongation λ2 is measured in the direction normal192

to the shear plane. The membrane velocity varies along the interface, being maximum193

on the short axis and minimum on the long axis (i.e. at the tip) in a fashion analogous194

to the surface velocity field proposed by Keller & Skalak (1982). Correspondingly,195

the principal membrane elongation λ1 in the shear plane is maximum on the capsule196

equator and minimum at the tip (defined by δ = 0), as shown in figure 7, where λ1197

is plotted as a function of δ. Values of λ1 < 1 at the tips do not necessarily mean198

that the membrane is undergoing compression. Indeed, if the ratio of the deformed199

to the underformed surface areas λ1λ2 is large enough, the resistance to area increase200

can balance the decrease in λ1 in (2.1) so that no negative tensions appear. This is201

illustrated in figure 7 where the variations of λ1 and λ1λ2 along the capsule profile in202

the shear plane are plotted for Ca = 1.5 and three different values of η. For η =0.4,203

Ca =1.5 falls into the interval [CaL; CaH ]; the membrane is under tension and the204

area change at the tip is large enough to compensate the decrease of λ1. For η = 2,205

Ca =1.5 is just below CaH , and the area dilation just balances the decrease in λ1.206

Finally, for η = 3, there is no [CaL; CaH ] interval. The area change cannot compensate207

the decrease of λ1 at the tips, as it is equal to zero: the membrane is undergoing208

compression at these locations.209

The fact that CaH decreases with η (figure 5a) is due to the lower deformation,210

and correspondingly lower area dilation, of a viscous capsule. However, the global211
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Figure 9. Location of negative tensions for η =5 and Ca = 0.3. Same legend as in figure 6.

deformed shape of the capsule is not enough to determine the local deformation212

distribution. Therefore, CaH does not depend solely on the geometry as CaL did,213

which indicates that three-dimensional effects play an essential role in the buckling214

phenomena.215

The present explanation for the formation of compression zones near the tips of216

the capsule differs from the assumption formulated by Lac et al. (2004). They had217

interpreted it as a consequence of the twisting couple induced by the flow vorticity218

when capsules were highly elongated and showed twisted capsule profiles obtained219

for values of Ca well above CaH . But if the torsion of the profile were the only220

phenomenon, CaH would have corresponded to a value of D12 independent of η,221

which is clearly not the case as shown in figure 5(b).222

4.3. High viscosity ratios223

The two limits CaL and CaH correspond to two different compression phenomena.224

Indeed, when η < ηc, as Ca is increased from zero, the capsule is first under225

compression in the equatorial region, then fully stretched everywhere and finally226

under compression at the tips as shown in figure 6. This is consistent with the results227

obtained for η =1 (Lac et al. 2004; Walter et al. 2010). However, close to ηc, CaL228

tends towards CaH , which indicates that both phenomena coexist at high viscosity229

ratios and that their effects add up. Figure 8 shows that, for η just above the critical230

viscosity ratio ηc, negative tensions never subside as Ca is increased, but migrate231

from the equatorial zone to the tips while changing direction. At even higher viscosity232

ratios, the two phenomena occur at the same time: negative tensions occur both at233

the tips and in the equatorial plane, evolving continuously from an ‘equatorial’ to an234

‘axial’ orientation (figure 9).235

The interaction with CaH may influence the value of CaL when η is only slightly236

below ηc. We note that the given interpretation of the compression phenomenon237



Influence of capsule internal viscosity 9

related to CaL should create negative tensions uniformly distributed in the equatorial238

zone. However, figure 8 shows that during the migration, the negative tensions are239

no longer located in the shear plane. We find that this behaviour is true even240

when η � ηc: negative tensions start to migrate but subside before reaching the tip.241

Therefore, when η is only slightly below ηc, the compression phenomenon related242

to CaH interacts with the equatorial compression related to CaL. This explains why243

(D12)L is slightly different in this case from the common value found for lower244

viscosity ratios (figure 5b).245

5. Conclusion246

The internal viscosity of a spherical capsule freely suspended in a simple shear247

flow plays an important role on the capsule deformation and on the resulting elastic248

tensions in the membrane.249

An interesting new result of this study concerns the elastic tensions in the membrane.250

We find that increasing the internal viscosity leads to membrane compression and251

possible buckling for all shear strengths when η >ηc. We have also shown that252

the compression at the capsule tips is due to the slowing down of the membrane253

rather than a viscous torsion couple. Highly viscous capsules exhibit large areas with254

negative tensions. It must be noted that, while the present model remains stable255

enough to determine the location of these areas, a model taking into account the256

bending stiffness of the membrane would be more appropriate for such capsules.257

All the results in this paper correspond to a membrane following the Sk law with258

C = 1. Computations were also conducted with the neo-Hookean law (NH; see, for259

example, Barthès-Biesel, Diaz & Dhenin 2002) but are not shown here. When C = 1,260

the Sk and NH laws share the same small-deformation behaviour, but the Sk law is261

strain-hardening under large deformation, whereas the NH law is strain-softening. As262

a consequence, an NH capsule deforms more readily than an Sk capsule: for example,263

the deformation of an NH capsule is about 0.69 for Ca = 1 and η =0.2, while it is264

about 0.5 for a capsule with an Sk membrane under the same conditions.265

Capsules with a membrane obeying either the Sk or the NH law have a qualitatively266

similar behaviour with respect to the viscosity ratio. In particular, the deformation267

obtained for η = 0.2 also represents a limit for the deformation of any lower viscosity268

capsule and is about 12 % higher than the deformation obtained for η = 1. Some269

quantitative differences exist between capsules with an NH or Sk membrane. The270

value of (D12)L for the NH law is larger than that for the Sk law (0.45 vs. 0.37). This is271

due to the nonlinear behaviour of the laws: when undergoing uniaxial traction with a272

given stretch ratio, the effective area dilation modulus is smaller for an NH membrane273

than for an Sk membrane. The NH capsule therefore needs to be more elongated for274

the negative tensions to subside at the equator. We also find that, for a given η <ηc,275

the value of CaH is significantly lower for the NH law, which is consistent with the276

findings of Lac et al. (2004) at η = 1. As a consequence, ηc is lower for the NH law277

(1.25 vs. 2.5). Thus, the NH law behaves qualitatively like the Sk law with C = 1, but278

the shear-thinning behaviour of this law causes negative tensions and buckling to be279

much more prevalent.280

On the practical side, for experimental or numerical studies of spherical capsules,281

some points are worth mentioning:282

(i) For viscosity ratios η � 1, the slowing effect of the internal motion lowers283

the overall capsule deformation. An asymptotic state is reached for highly viscous284

capsules (η > 5), with a deformation given by D12 = 5/4η irrespective of the flow285
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strength and the membrane-constitutive law. Such capsules are expected to exhibit286

large compression zones, which would be very interesting to study experimentally.287

(ii) A viscosity ratio η =0.2 seems to be representative of all low-viscosity capsules288

with η � 1, as regards deformation and orientation. Furthermore, D12 for η � 0.2 is289

only approximately 10 % larger than for η = 1, with a difference in orientation of290

about 20 %. Consequently, one may reasonably consider using results obtained for291

η = 1 to model any lower viscosity ratio.292

(iii) The previous point is an important finding for experimental studies of capsules.293

Indeed, experiments are generally performed in a very viscous outer fluid so as to294

reach large deformations at moderate shear rates. This leads to very small values of295

η; for instance, Chang & Olbricht (1993) worked with η ∈ [0.004, 0.08] and Walter,296

Rehage & Leonhard (2000) reported results corresponding to η = 0.001.297

(iv) These findings are also important for numerical studies because the298

computation time increases steeply with |η − 1| as compared to the case η =1.299
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