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Flow of a spherical capsule in a pore with
circular or square cross-section

X.-Q. Hu, A.-V. Salsac and D. Barthès-Biesel†
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The motion and deformation of a spherical elastic capsule freely flowing in a pore
of comparable dimension is studied. The thin capsule membrane has a neo-Hookean
shear softening constitutive law. The three-dimensional fluid–structure interactions are
modelled by coupling a boundary integral method (for the internal and external fluid
motion) with a finite element method (for the membrane deformation). In a cylindrical
tube with a circular cross-section, the confinement effect of the channel walls leads to
compression of the capsule in the hoop direction. The membrane then tends to buckle
and to fold as observed experimentally. The capsule deformation is three-dimensional
but can be fairly well approximated by an axisymmetric model that ignores the folds.
In a microfluidic pore with a square cross-section, the capsule deformation is fully
three-dimensional. For the same size ratio and flow rate, a capsule is more deformed
in a circular than in a square cross-section pore. We provide new graphs of the
deformation parameters and capsule velocity as a function of flow strength and size
ratio in a square section pore. We show how these graphs can be used to analyse
experimental data on the deformation of artificial capsules in such channels.
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1. Introduction
Suspensions of microparticles are common in nature and industry. The particles may

be passive with a motion and deformation governed by hydrodynamic forces or they
may be self-propelled like bacteria or squirmers (Pedley & Kessler 1992; Pedley 2010).
In both cases, the motion of the particle depends strongly on the interfacial mechanics
and kinematics.

In the present paper, we consider a special class of passive deformable particles,
capsules, that consist of a liquid drop enclosed by a deformable membrane. Capsules
are common in nature (red blood cells, phospholipid vesicles) and in different
applications, such as pharmacology (Cole, Cad & Benameur 2008), cosmetics
(Miyazawa et al. 2000), the food industry (Gibbs et al. 1999) and biomedical
engineering (Rabanel et al. 2009). A fine control of the membrane properties is
necessary to control the capsule deformation or possible breakup (to be induced
or prevented depending on the application). However, measuring the mechanical
properties of the capsule membrane is difficult because the particles are small (from
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FIGURE 1. Large initially spherical capsule with a cross-linked ovalbumin membrane,
flowing in a cylindrical pore (diameter 75 µm). Folds appear on the side of the capsule
where the membrane is under compression. Image obtained with the experimental method of
Lefebvre et al. (2008).

a few micrometres to a few millimetres) and fragile. Large capsules with dimensions
of a few millimetres can be squeezed between two parallel plates (Carin et al. 2003;
Risso & Carin 2004). The squeezing force and the overall capsule deformation are
measured simultaneously. The interpretation of the results in terms of the membrane
mechanical properties necessitates a good mechanical model of the process, as it can
involve large deformations of the capsule with reversible reduction of diameter as
large as 70 %. For very small capsules with dimensions of a few micrometres, it is
possible to use the same measurement principle with atomic force microscopy (Fery &
Weinkamer 2007). However, the method is difficult to use and must be applied to a
number of capsules to get an average value for a population.

A simple way to test a population of capsules is to flow a capsule suspension
in a small pore which has transversal dimensions comparable with those of the
suspended capsules (Lefebvre et al. 2008; Chu et al. 2010). The hydrodynamic
stresses and the constraints due to the channel walls cause large deformations of
the capsules that depend on the flow strength and on the particle intrinsic physical
properties such as relative size compared with the channel section and membrane
constitutive behaviour. The capsule deformation, volume and velocity can be measured
simultaneously by means of image analysis. A sophisticated model of the flow of a
capsule in a small pore then allows us to infer the membrane mechanical properties
from the experimental results. The feasibility of the method has been demonstrated for
millimetre size capsules (Risso, Collé-Paillot & Zagzoule 2006; Lefebvre & Barthès-
Biesel 2007) and for micrometre size capsules (Lefebvre et al. 2008; Chu et al. 2010).
In both cases, the capsules were initially spherical with a membrane made of alginate
cross-linked with either human serum albumin (HSA) or ovalbumin for the millimetre
or micrometre size particles, respectively. The model used to analyse the experiments
considered the flow of a centred spherical capsule in a cylindrical channel. The
situation is thus fully axisymmetric. This allows integration of the different quantities
(stress, deformation, etc.) in the azimuthal direction, so that the problem equations
need only to be solved in a meridian plane. The simplification is significant.

However, observations of large capsules flowing in a cylindrical pore indicate that
folds occur on the membrane as shown in figure 1. The presence of such folds means
that the deformation of the membrane is not axisymmetric but three-dimensional (3D).
Then the question which arises is how accurate (or inaccurate) is the axisymmetric
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model used to analyse the deformation of a spherical capsule in a cylindrical pore. In
order to answer this question a 3D model of this flow must be devised.

A related problem is the flow of a capsule in a microfluidic pore. When such
pores are created by means of soft lithography techniques, they have a rectangular
or square cross-section. The flow of an initially spherical capsule in a pore with a
square or rectangular cross-section is obviously 3D. A new model is thus necessary
to analyse the deformation of the capsule in terms of the membrane properties. This
situation is quite interesting to study as there is an increasing interest for designing
micro-encapsulation systems inside microfluidic devices (Zhang et al. 2006; Huang
et al. 2007; Yeh et al. 2009). Creating a characterization system that can be mounted
on-line on the capsule fabrication device would be very useful to test and sort the
particles.

In this paper, we study the 3D flow of an initially spherical simple capsule
consisting of a liquid drop enclosed by a very thin hyperelastic membrane. We assume
that the flow Reynolds number is small and we adapt the numerical method of Walter
et al. (2010) to model the fluid–structure interaction and the confining effect of the
solid boundaries: the fluid motion is solved by means of the boundary integral (BI)
method, while the membrane mechanics is solved by means of a finite element (FE)
method. The coupling of the two methods has been shown to be very precise and to
remain numerically stable even when the membrane is subjected to compressive forces
causing buckling.

The method used to simulate the fluid–structure interactions occurring when a
spherical capsule flows in a pore of various cross-sections is detailed in § 2. We then
study the 3D evolution and deformation of a capsule in a cylindrical pore and compare
the results with the ones obtained with the largely used axisymmetric numerical model
in § 3. In § 4, we model the flow of a spherical capsule in a square-section pore, give
new results on the effect of size ratio and flow strength and show how these can be
used to analyse experimental measurements of initially spherical capsules flowing in
such pores. We conclude with a critical analysis and comparison of the two set-ups.

2. Problem statement and numerical method
The flow configuration is similar to the axisymmetric case studied by Quéguiner &

Barthès-Biesel (1997), Diaz & Barthès-Biesel (2002) and Lefebvre & Barthès-Biesel
(2007) or to the 3D situation considered by Pozrikidis (2005), Doddi & Bagchi (2008)
and Kuriakose & Dimitrakopoulos (2011); it will be only summarized in the following.

2.1. Problem description
The channel consists of a long prismatic tube with constant cross-section with
characteristic dimension `. Entrance and exit effects are neglected. As indicated in
figure 2, we consider either a cylindrical tube with a circular section of radius R
(` = R) or a microfluidic channel with a square section of side h (` = h/2). The
channel is filled with an incompressible Newtonian liquid of viscosity µ flowing with
mean velocity V and flow rate Q. The velocity field in the channel in absence of
particle is denoted v∞.

The capsule is initially spherical with radius a. It is filled with a Newtonian
incompressible liquid with viscosity λµ and enclosed by an infinitely thin
impermeable hyperelastic membrane with surface shear elastic modulus Gs and area
dilatation modulus Ks. Buoyancy forces are neglected and consequently, when the
capsule is centred on Oz, it remains centred. However, if the capsule were not
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FIGURE 2. Prismatic channel with axis Oz. The cross-section is either circular with radius R
or square with side h.

centred on the tube axis, it would migrate towards it (Helmy & Barthès-Biesel 1982;
Pozrikidis 2005; Doddi & Bagchi 2008). We use a reference frame Oxyz, centred at
time t on the capsule centre of mass O, Oz being along the tube axis (figure 2). We
are interested in the steady deformed state of the capsule in the tube. The membrane
velocity is then zero (because of the flow symmetry) and the internal fluid at rest.
Consequently the internal viscosity value does not influence the steady deformation
and we can take λ= 1 without loss of generality. Of course, λ has an influence on the
time it takes to reach the steady state (Diaz & Barthès-Biesel 2002).

The flow Reynolds number is assumed to be very small so that the internal and
external liquid motion satisfies the Stokes equations. We solve these in a domain
bounded by the cross-sections S1 at the entrance and S2 at the exit, that are both
located far enough from O for the capsule flow perturbation to vanish. The other
domain boundaries are the channel wall W and the capsule surface C. The unit normal
vector n to all of the boundaries points inwards the suspending liquid. We use v(β),
σ (β) and p(β) to denote the velocity, stress and pressure fields in the suspending (β = 1)
and internal (β = 2) liquids.

The problem boundary conditions are:
(a) no flow disturbance on S1 and S2 as they are far from the capsule:

v(1)(x, t)→ v∞(x), x ∈ S1 ∪ S2; (2.1)

(b) pressure values prescribed on S1 and S2:

p(1)(x, t)= 0, x ∈ S1, (2.2)

p(1)(x, t)=1P(t)+1P∞, x ∈ S2, (2.3)

where 1P∞ is the undisturbed pressure drop between S1 and S2 in the absence of
capsule and 1P is the additional pressure drop due to the capsule;

(c) no slip on the channel wall W:

v(1)(x, t)= 0, x ∈W; (2.4)

(d) no slip on the capsule deformed surface C:

v(1)(x, t)= v(2)(x, t)= ∂

∂t
x(X, t), x ∈ C, (2.5)

where X denotes the initial position of a membrane material point located at
position x at time t;

(e) the load q on the membrane is due to the viscous traction jump:

(σ (1) − σ (2)) ·n= q, x ∈ C. (2.6)
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2.2. Capsule membrane mechanics

When the thickness of a capsule membrane is small compared with the capsule
dimensions and typical radius of curvature, the membrane can be modelled as
a hyperelastic surface devoid of bending resistance. A membrane material point,
identified by its position X in the reference state, is displaced to the position x(X, t)
in the deformed state. Because the bending stiffness is neglected, the normal vector to
the surface remains normal during deformation. The local deformation of the surface is
measured by the Green–Lagrange strain tensor

e = 1
2(F

T
· F − I), (2.7)

where F = ∂x/∂X . The membrane deformation can also be quantified by the principal
dilatation ratios λ1 and λ2 in its plane which correspond to eigenvalues of e. Since the
membrane is infinitely thin, elastic stresses are replaced by a Cauchy tension tensor τ
corresponding to forces per unit arclength measured in the plane of the membrane.

A number of constitutive laws are available to model thin hyperelastic membranes
(Barthès-Biesel, Diaz & Dhenin 2002). Different material behaviours can be described
for large deformation, including the strain-softening behaviour of gelled membranes
exhibiting rubber-like elasticity or the strain-hardening behaviour of membranes made
of a polymerized network with strong covalent links. For conciseness, we will restrict
the study to the widely used neo-Hookean (NH) law, which has been found to be the
appropriate law to model the behaviour of protein-reticulated membranes (Carin et al.
2003; Lefebvre et al. 2008; Chu et al. 2010). The NH law describes the behaviour of
an infinitely thin sheet of a 3D isotropic and incompressible material. The principal
tensions are given by

τ1 = Gs

λ1λ2

[
λ2

1 −
1

(λ1λ2)
2

]
(likewise for τ2). (2.8)

The hypothesis of volume incompressibility implies that area dilatation is balanced by
membrane thinning and correspondingly the area dilatation modulus is Ks = 3Gs.

Owing to the negligible inertia of a membrane with small thickness, the membrane
motion is governed by the local equilibrium equation

∇s · τ + q= 0, (2.9)

where q is the external load exerted by the fluids as given by (2.6) and ∇s· is the
surface divergence operator in the deformed configuration.

Since the bending modulus of the membrane has been neglected, the capsule wall
buckles locally in the regions where the elastic tensions are compressive (see, for
example, Cerda & Mahadevan 2003, Luo & Pozrikidis 2007 and Finken & Seifert
2006). In order to study the post-buckling behaviour of the capsule, bending moments
and transverse shear forces must be added to (2.9) and a constitutive equation must
be postulated to relate bending moments and local deformations. It follows that the
bending behaviour of a capsule is a complicated problem of shell mechanics that is not
completely resolved yet.

The simplified membrane model that we use here will be appropriate to model
capsules with a very low bending resistance. It will detect zones where tensions are
compressive but cannot compute the post-buckling behaviour of the capsule.
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2.3. Numerical procedure
We use the method developed by Walter et al. (2010) which is based on the coupling
of a membrane FE method (for the capsule wall mechanics) and a boundary integral
method (for the internal and external flows). We position the capsule on the channel
axis and then follow the position of the material points of the membrane after the
start of flow at time t = 0. At each time step, the deformation of the capsule may
be computed from the position of the membrane material points. The elastic tension
tensor τ is then obtained from the values of the in-plane stretch ratios λ1 and λ2. The
FE method used to solve the equilibrium of the membrane provides the load q.

The Stokes equations are recast in boundary integral form for the 3D motion of
the internal and external fluids. In the case of a capsule in a tube and for λ = 1, the
velocity v(x) of any point x in the fluid domain is given by Pozrikidis (2005)

v(x)= v∞(x)− 1
8πµ

[∫
C

J(r) · q dS(y)+
∫

W
J(r) · f dS(y)

−1P
∫

S2

J(r) ·n dS(y)
]
, (2.10)

where f is the disturbance wall friction due to the capsule and r = y − x. The Green
kernel is defined by

J(r)= 1
r

I + r⊗ r
r3

, (2.11)

where r = ‖r‖ and I is the identity tensor.
Applying the reciprocal theorem to the flow without capsule (v∞, σ∞) and to the

flow with the capsule (v(1), σ (1)) in the domain bounded by S1 ∪ S2 ∪W ∪ C, we find∫
C
[σ (1)
·n] ·v∞ dS− (1P+1P∞)Q=

∫
C
[σ∞ ·n] ·v(1) dS−1P∞Q, (2.12)

where we have used the facts that the flow rate Q is the same with and without the
capsule and that the velocity is zero on W. Now, we apply the reciprocal theorem to
(v∞, σ∞) and to (v(2), σ (2)) in the domain bounded by C∫

C
[σ (2)
·n] ·v∞ dS=

∫
C
[σ∞ ·n] ·v(2) dS. (2.13)

We subtract (2.12) and (2.13) and use (2.5) and (2.6) to find that the additional
pressure drop is simply given by

1P= 1
Q

∫
C
v∞(x) · q dS(y). (2.14)

Once the value of the pressure disturbance 1P is known, the application of (2.10) to
x ∈W

0=
∫

C
J(r) · q dS(y)+

∫
W

J(r) · f dS(y)−1P
∫

S2

J(r) ·n dS(y) (2.15)

yields an implicit equation for f which is solved numerically. Applying then (2.10)
to x ∈ C, we obtain the new velocity v(x, t) of the membrane points from which we
deduce the velocity v(O, t) of the centre of mass. The no-slip equation (2.5) is first
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(a) (b)

FIGURE 3. (a) Meshes of the circular and square cross-sections; (b) meshes of the prismatic
tubes.

modified to keep the centre of mass fixed at point O

v(1)(x, t)− v(O, t)= ∂

∂t
x(X, t), x ∈ C. (2.16)

Equation (2.16) is then time-integrated to provide the new position of the membrane
points. The procedure is repeated until a steady state is reached (typically when the
surface of the capsule varies by less than 5 × 10−4 × (4πa2) over a non-dimensional
time Vt/`= 1).

2.4. Discretization
The surface of the capsule is discretized using triangular curved P2 elements, which
have six nodes (one at each vertex and at the middle of each side) and are associated
with quadratic shape functions. The mesh of the initial spherical capsule is obtained
by first inscribing an icosahedron (regular polyhedron with 20 triangular faces) in the
sphere and subdividing the elements sequentially until the desired number of elements
is reached (Ramanujan & Pozrikidis 1998; Walter et al. 2010). For all of the 3D
computations, we use a capsule mesh with 1280 elements and 2562 nodes, which
correspond to a characteristic mesh size 1hC = O(0.1a).

The tube mesh is generated using Modulef (INRIA Rocquencourt, France). We
first generate the two-dimensional geometry of the tube cross-section with the desired
shape (circular or square in the present case). The circular or square cross-sections are
meshed with unstructured triangular elements having a mesh size 1hS = O(0.14`). The
corners of the rectangular cross-section have been rounded with an arccircle (radius
1hS) in order to avoid corner effects when solving for the flow (figure 3a). As shown
in figure 3(b), the central section of the tube (of length 4`) has a more refined mesh
(1hW = O(0.14`)) than the inlet and outlet tube sections (1hW = O(0.22`)), each of
length 6`. Altogether, the mesh comprises 1505 nodes and 2976 elements for the
cylindrical tube and 1905 nodes and 3768 elements for the rectangular tube.

The numerical method is conditionally stable if the time step satisfies a similar
condition to that found for the unbounded case (Walter et al. 2010)

V

`
1t < O

(
1hC

`
Ca

)
, (2.17)

where 1t is the time step. All of the results shown hereafter have been obtained with a
time step V1t/`= 5× 10−5. We have checked the influence of the wall and exit mesh
size using a mesh size twice as small as that described above and have not found any
significant influence on the capsule deformed profile. This confirms that the error on
the capsule shape is mainly determined by the capsule mesh size and is then O(1h4

C)

as shown by Walter et al. (2010).
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2.5. Case a/` > 1
When the capsule initial size is larger than the channel cross-dimension, we pre-
deform the capsule into an spheroid that fits inside the pore. Correspondingly, a point
initially located at X,Y,Z on the capsule surface is displaced to x, y, z, such that

z= k1Z, y= k2Y, x= k2X, (2.18)

with k2
2k1 = 1, in view of the volume conservation requirement. We choose k2 such that

y/` = 0.9, in order to leave a reasonably thick liquid film between the membrane and
the channel wall. The resulting elastic tensions in the membrane and the load q exerted
on the fluid are computed by means of the FE method. The capsule deformation
is then followed in time as explained above. We have verified that the amount of
pre-deformation does not influence the results: exactly the same results have been
obtained with another value of k2 such that the capsule is pre-deformed to y/`= 0.8.

2.6. Presentation of the results
The model parameters are the capillary number Ca= µV/Gs which measures the ratio
between the viscous and elastic forces and the size ratio a/`. The deformed profile
intersections with the yz- or xz-planes are determined. These correspond to what
is typically observed experimentally for a capsule flowing in a pore. The principal
tensions along the profile are also computed in order to detect the presence of
compression zones. The position of a point M on the profile is determined by the
angle θ = (ez,OM).

3. Flow of a capsule in a cylindrical pore
We now consider a pore with a circular cross-section of radius R. The undisturbed

velocity is

v∞ = 2V[1− (x2 + y2)/R2]ez. (3.1)

If we assume the capsule profile to remain axisymmetric, the flow is also axisymmetric
and it is possible to integrate (2.9), (2.10), (2.14) and (2.15) analytically in the
azimuthal direction. The surface integrals on C and W then become line integrals
along the meridian curves of the corresponding surfaces, while the integral on S2 is
taken along a radius of the section (Pozrikidis 1992; Quéguiner & Barthès-Biesel
1997; Diaz & Barthès-Biesel 2002; Lefebvre & Barthès-Biesel 2007). With this
procedure, a negative azimuthal tension may compress part of the capsule membrane
without creating any numerical instability. However, it must be recognized that the
solution thus obtained is mechanically unstable: the membrane should actually buckle
in these regions as observed experimentally (figure 1).

In the axisymmetric model we use, the tube entrance is shaped as an hyperboloid
(Quéguiner & Barthès-Biesel 1997; Diaz & Barthès-Biesel 2002; Lefebvre & Barthès-
Biesel 2007). An undeformed capsule is positioned in the entrance section, far enough
from the cylindrical part of the pore to fit in, and we follow the entrance process into
the cylindrical pore until a steady state is reached. Charts of the capsule deformation
parameters as functions of the size ratio, capillary number and osmotic pre-swelling
may be found in Lefebvre & Barthès-Biesel (2007), Lefebvre et al. (2008) and Chu
et al. (2010).

3.1. Three-dimensional effects on capsule deformation
We compare the results obtained with the 3D computation, where no specific
assumption on the problem symmetry is made a priori, with those provided by the
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FIGURE 4. Successive profiles of a capsule of aspect ratio a/R= 1.1, subjected to a capillary
number Ca= 0.05. The initially spherical capsule being larger than the pore is deformed into
an ellipsoid at dimensionless time tV/R= 0. The capsule is then left free to adapt its shape to
the flow. It has a steady parachute shape at tV/R= 10.

axisymmetric model. For the 3D computation, we first stretch the capsule as explained
in § 2.5 and then let it reach an equilibrium, if any. Results are presented for a
typical case where a/R = 1.1 and Ca = 0.05. It is a deliberate choice to show results
for a large capsule aspect ratio, as the larger the aspect ratio the larger the capsule
deformation for a given capillary number. The successive capsule profiles are shown in
figure 4. We note that the largest shape change occurs at the rear where the curvature
evolves from a positive to a negative value. At steady state, the internal liquid being
at rest, the internal pressure is constant. In order to adapt to the viscous pressure drop
occurring in the external liquid, the membrane curvature must be larger at the front
than at the rear, thus leading to slug or parachute shapes of the capsule.

As shown in figure 5(a), the meridional axisymmetric and 3D profiles are almost
superimposed in plane Oyz. The cross-profiles in plane z = 0 are also superimposed
notwithstanding small oscillations of the 3D profile about the mean circular profile
predicted by the axisymmetric model (figure 5b).

The axisymmetric computation shows that the principal tension τ2 in the azimuthal
direction is negative, and thus compressive, on part of the membrane (for θ/π ∈
±[0.35; 0.8] or z ∈ [−1.16; 0.43]) as shown in figure 6. This means that in the grey
area of figure 5(a), the membrane is undergoing compression and will tend to buckle.
In this area where the membrane is undergoing compression and where there is no
bending resistance to regulate the process, the 3D model leads to values of τ2 which
oscillate about zero with a wavelength of the order of twice the grid spacing. The
membrane undergoes a numerical buckling which mimics the actual one qualitatively
only. We have checked that the wavelength of the oscillation decreases by a factor two
when the number of elements is doubled.
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FIGURE 5. Comparison of the capsule profiles at steady state obtained with the axisymmetric
and 3D computations for a/R = 1.1 and Ca = 0.05. (a) Profiles in the yz-plane: the zone
where compression occurs is shaded in grey; (b) cross-profiles in the xy-plane for which z= 0:
the oscillation of the 3D profile indicate a tendency towards folding.
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FIGURE 6. Comparison of the principal tensions in the yz-plane at steady state obtained with
the axisymmetric and 3D computations for a/R = 1.1 and Ca = 0.05. The principal tensions
are plotted as a function of position θ/π along the profile. Tension τ1 is directed along the
profile, while τ2 is perpendicular to the plane and thus in the hoop direction.

As a consequence of the compression, the 3D cross-profile in plane z= 0 undergoes
small oscillations about the mean circular profile predicted by the axisymmetric
model (figure 5b). These oscillations correspond qualitatively to the folds that
are observed experimentally and whose wavelength is obviously regulated by the
membrane thickness and bending stiffness. The values of the principal tension τ1 along
a ‘meridian’ curve in the Oyz plane also oscillate about the axisymmetric value.

Finally we note that on the part of the membrane where no compression occurs
(i.e. about the front of the capsule), the tensions values are superimposed. In particular,
the maxima of τ1 are identical with the two computations. This indicates that the
axisymmetric and 3D model would both lead to the same mechanical failure criterion.

In conclusion, we find that, for large capsule aspect ratios, there is significant lateral
compression on the capsule membrane leading to folds similar to those observed
experimentally and shown in figure 1. For smaller values of the size ratio a/R, we
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obtain the same qualitative results, namely that the axisymmetric and 3D profiles are
almost identical. The fit is optimal for small aspect ratios and capillary numbers, as the
capsule is then devoid of compression zones around its surface at steady state.

The axisymmetric model predicts that for a given size ratio, there exists a higher
bound on the capillary number Camax for which it is possible to reach a steady
equilibrium state (Chu et al. 2010). For flow rates such that Ca > Camax the capsule
undergoes continuous extension. This phenomenon is similar to that which occurs
in elongational flow for NH membranes and which is due to the strain-softening
behaviour of the NH law (Barthès-Biesel 2011). The 3D computation also finds an
upper bound on the values of Ca for which it is not possible to obtain a steady
state. The values of Camax are about 10 % larger with the 3D model than with the
axisymmetric model. This difference may be attributed to the numerical technique and
to the discretization of the membrane. As a consequence, the exact 3D value of Camax

is immaterial, and the upper bounds given by Chu et al. (2010) can be used for
practical purposes.

3.2. Conclusion for the capsule flow in a cylindrical pore
The axisymmetric model has been used by Lefebvre et al. (2008) and Chu et al.
(2010) to analyse experiments on microcapsules flowing in a cylindrical pore of
known radius R. The procedure is based on the contour extraction of the deformed
profile from which the capsule volume and size ratio a/R are computed. A database
of computed deformed profiles obtained for different values of a/R and Ca is then
searched to find the same deformation characteristics as the experimentally observed
profile. This leads to a set of values of Ca from which Gs is inferred (for details, see
Lefebvre et al. 2008 and Chu et al. 2010).

We have shown that although the capsule membrane tends to fold, the axisymmetric
profiles represent a very good approximation of the actual 3D profiles. It follows
that the characterization procedure based on the axisymmetric model is sound. As
regards the elastic tensions though, the axisymmetric model can only be used to
evaluate their maximum values and determine the zones where buckling will occur.
This is an important result, as it is much easier and faster to use an axisymmetric
representation than a full 3D representation. For example, for Ca= 0.05 and a/l= 0.9,
the computation of a time interval tV/`= 1 takes 1 h for the axisymmetric case using
one core of a 128-core cluster and 5.7 h for the 3D case using 8 cores (of course,
those times are given for a usual mesh size, but increase with the mesh refinement).

4. Flow in a square cross-section pore
The uniform axial velocity distribution v∞ = v∞(x, y)ez in a duct with a square

cross-section is given in a number of textbooks (e.g. Pozrikidis 1997)

v∞(x, y)=
πV
∑[

1
n3
− cosh nπx/h

n3 cosh nπ/2

]
sin nπ(y/h+ 1/2)

2
[
π4

96
−
∑ tanh nπ/2

n5π/2

] n= 1, 3, . . . (4.1)

where the sums are taken over odd values of n. When applying the no-slip condition
(2.15), we set to zero the velocity of the node point located in the middle of the
rounded corner (figure 3), where its actual value is 0.05V or 0.02V for the standard or
refined boundary mesh, respectively. As the change in wall mesh size has a negligible
influence on the capsule profile, we consider that this corner rounding leads to a
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FIGURE 7. Steady capsule profiles in a square channel (full line) and in a cylindrical tube
(dashed line) for a/` = 0.9. (a) Profiles in the yz-plane, with the cross on the axis indicating
the position of the centre of mass z= 0; (b) cross-profiles in the xy-plane for which z= 0.

negligible error. In the following, we analyse the influence of the confinement induced
by a square tube as compared to a cylindrical tube. For brevity, we use the notation
‘circular capsule’ or ‘square capsule’ for the capsule in the circular or square section
pore, respectively. The results shown for the circular capsule are obtained with the
three-dimensional model.

4.1. Case a/` < 1
We first consider the case 2a/h = 0.9 where the capsule is only slightly smaller
than the channel. The longitudinal and cross-profiles are shown in figure 7 and
compared with the three-dimensional profiles obtained in a cylindrical tube for the
same values of Ca and a/R. We note that for small capillary numbers (e.g. Ca= 0.02)
the deformation is small and the deformed profiles in the two channels are almost
superimposed. When Ca increases, the circular capsule having less room to deform
is more elongated than the square capsule, which can expand in the corners of the
channel as shown in figure 7(b). As a consequence, the deformed profile of a square
capsule is not axisymmetric. Another consequence is that the tension τ1 along the
profile is larger for the circular than for the square capsule as shown in figure 8(a).
Furthermore, the cross-section of the square capsule is not under compression (τ2 is
positive everywhere), whereas the circular capsule is compressed and tends to buckle
as discussed in the previous section (figure 8b). For Ca = 0.1, one could be under
the wrong impression that the circular capsule does not buckle: actually, it buckles for
negative values of z.

4.2. Case a/`> 1
We now turn to large capsules that must be pre-deformed. The longitudinal and cross-
profiles are shown in figure 9 for the case a/` = 1.1. First we note that for low flow
strength (Ca 6 0.05), the square capsule membrane is compressed near the wall but
is extended in the corners. By contrast, the circular capsule is compressed all around
as evidenced by the cross-profiles (figure 9b) and by the corresponding oscillations
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FIGURE 8. Principal tensions in the yz-plane at steady state for a capsule (a/`= 0.9) flowing
in a cylindrical or square channel at Ca = 0.05. The principal tensions are plotted as a
function of position θ/π on the profile.

Ca 0.02

Ca 0.07

Ca 0.07Ca 0.05

Ca 0.05Ca 0.02

xy-plane

yz-plane

y

(b)

(a)

–1.0

–0.5

0

 0.5

1.0

–1.0

–0.5

0

 0.5

1.0

y

FIGURE 9. Steady capsule profiles in a square channel (full line) and in a cylindrical tube
(dashed line) for a/` = 1.1. (a) Profiles in the yz-plane, with the cross on the axis indicating
the position of the centre of mass z= 0; (b) cross-profiles in the xy-plane for which z= 0.

of tension τ2 (figure 10b). As the flow strength increases, the capsule is stretched
along the pore axis, the surface area increases and the negative tensions disappear. The
circular capsule being more deformed than the square one, the tension level in the
membrane is higher as shown in figure 10.

For a/` = 1.1 and high flow strength (Ca = 0.08–0.09), the capsule also undergoes
continuous elongation and no steady equilibrium state can be reached. We note again
that the value of Camax for which this phenomenon occurs is larger in the square
section pore than in the circular section pore. Indeed, in the cylindrical pore, a flow
strength Ca= 0.07 exceeds Camax, which is the reason why no circular capsule profile
is shown in figure 9 for Ca= 0.07.

4.3. Effect of Ca and a/l
From an experimental point of view, it is convenient to characterize the capsule
deformation with the maximum profile length L and the axial length La along the Oz
axis. These two parameters are equal for slug shapes, whereas La < L for parachute
shapes. The lengths L and La are plotted as a function of Ca in figure 11(a) for
the circular and square pores. We find that, to obtain the same elongation L in the
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a capsule (a/` = 0.9) at steady state flowing in a cylindrical or square channel. For the same
value of Ca, the capsule is more deformed in the cylindrical than in the square pore and
travels at a slower speed.

two pores, the value of Ca in the square pore must be about 60 % higher than that
in the circular pore. The values of L − La are the same for the two types of pores,
as can also be observed from figure 7. The steady velocity of the capsule centre of
mass vO is plotted in figure 11(b). It is 10 % higher in the square than in the circular
pore. The explanation for this larger velocity is outlined by Lefebvre et al. (2008) and
summarized here in the limiting case where the film is thin. When a capsule has the
same deformed axial profile in a circular or square channel, it is subjected to the same
pressure drop 1Pc along its length L (because the front and back curvatures are the
same). This pressure drop is related to the viscous loss in the lubrication film. For
example for the circular tube, a force balance yields

1Pcπ`
2 = 2π`LµvOcyl/hcyl (4.2)

where hcyl is the mean film thickness. The same expression is found for the mean film
thickness hsq in terms of the capsule velocity vOsq in the square channel. It follows that

vOsq

vOcyl
= hsq

hcyl

. (4.3)
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FIGURE 12. Plots of the values of the capsule total length L, parachute depth L − La,
difference between axisymmetric and actual capsule radius and centre of mass velocity vO.
These graphs are useful to analyse experimental data on capsules flowing in square section
pores.

There are two limiting shapes of the capsule cross-section in a square channel that
correspond to a given axial profile. If the cross-section of the capsule is square, the
mean thickness is constant hsq = hcyl. If it is circular with radius ` − hcyl, hsq > hcyl

due to the contribution of the corners. From (4.3), the velocity vOsq is then equal or
larger than vOcyl. The numerical model finds that the capsule cross-section is square
with rounded corners (figures 7b and 9b), which indicates that vOsq must be larger than
vOcyl.

In conclusion, larger flow rates must be used in the square pore than in the
cylindrical pore to get the same deformation. This may cause some experimental
difficulties as the capsule will move faster and its detection will be more difficult.

The combined effects of flow strength and aspect ratio are summarized in figure 12.
We note that for aspect ratios less than unity, the capsule is first compressed in
the axial direction when the capillary number is small (e.g. Ca 6 0.02) as can be
surmised from the initial decrease of L. Then the stretching effect of the viscous forces
elongates the capsule. When a/` 6 0.95–0.97 the capsule takes a parachute shape for
all values of Ca. For larger aspect ratios (e.g. a/` > 1), the parachute appears only
when Ca exceeds a critical value Cac. When Ca < Cac, the capsule has a slug shape
and (L − La)/` = 0. The capsule moves faster than the average fluid velocity as it
is centred on the channel. All of these phenomena are qualitatively similar to those
observed for the flow of capsules in cylindrical tubes (Lefebvre & Barthès-Biesel
2007; Lefebvre et al. 2008) irrespective of the membrane constitutive law.
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FIGURE 13. Flow of initially spherical capsules with a cross-linked ovalbumin membrane
in a 50 µm × 50 µm microfluidic channel; (a) aapp/` = 0.85, vO = 6.6 mm s−1; (b) aapp/` =
1.05, vO = 4.5 mm s−1.

These plots are necessary to analyse the flow of capsules in a square section pore
and to infer a value for the membrane elastic modulus from the capsule deformation
and velocity. In a typical microfluidic device, only the capsule deformed profile in one
plane (e.g. the yz-plane) can be observed. It is thus difficult to evaluate the volume (or
the initial radius) of the capsule. A way to do it is to rotate the profile in the yz-plane
about the pore axis as if the capsule were axisymmetric and to deduce an approximate
initial radius aapp, from the pseudo-axisymmetric volume. The model allows us to
compute the error between aapp and the real value a. Indeed, the model yields a steady
deformed profile for a capsule of known volume. If we rotate the deformed profile
in the yz-plane about the channel axis and compute the volume of the axisymmetric
shape thus obtained, we can infer the numerical value of aapp and compare it to a. This
is done in figure 12(c) where we find that aapp always underestimates a. This is of
course due to the propensity of the square capsule to occupy the tube corners for large
aspect ratios: the capsule volume that expands in the corners is not taken into account
during the rotation procedure described above.

4.4. Comparison with experimental results
Measurement of the flow of artificial capsules in cylindrical tubes and in square
section microfluidic pores have been conducted by Lefebvre et al. (2008). The
capsules are initially spherical and have a cross-linked ovalbumin membrane. They
are suspended in a 100 % glycerin solution (viscosity µ = 1 Pa) and flowed through
microchannels with a cross-section comparable to the capsule, a/` = O(1). The
capsule deformed profile are recorded with a high-speed camera and their velocity is
measured. Lefebvre et al. (2008) used a NH model to describe the membrane elasticity
and found a shear modulus value Gs = 0.07 ± 0.01 N m−1 from the cylindrical pore
measurements.

We outline briefly how the results of § 4.3 can be used to evaluate the mechanical
properties of capsules. In figure 13, we show deformed capsules obtained in a
microfluidic channel with a 50 µm× 50 µm cross-section under the same experimental
conditions as Lefebvre et al. (2008). We first note the qualitative similarity between
the profiles of figures 7(a) and 13(a) on the one hand, and of figures 9(a) and 13(b)
on the other. For the small capsule, we find aapp/` = 0.85 or a/` = 0.86 − 0.87;
L/` = 1.7. From figure 12(a,d), we find Ca ≈ 0.06 and vO/V = 1.33. It follows that
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the membrane shear modulus is

Gs = 6.6× 10−3

1.33× 0.06
= 0.08 N m−1. (4.4)

The same reasoning for the large capsule yields aapp/` = 1.05 or a/` = 1.1 − 1.09;
L/`= 2.5, Ca≈ 0.04 and vO/V = 1.19, leading to

Gs = 4.5× 10−3

1.19× 0.04
= 0.09 N m−1. (4.5)

These values are in good agreement with those of Lefebvre et al. (2008), which is very
encouraging. A full analysis of the precision and discriminating power of the method
is left for a future study.

5. Conclusion
We have shown in this paper how 3D effects affect the flow of capsules in pores

with cross-dimensions comparable with the capsule diameter. The confinement effect
due to the channel walls compresses the capsule in the direction perpendicular to
the pore axis. This leads to compression of the membrane and a tendency towards
buckling that has been observed experimentally. The flow of a capsule in a small pore
is thus a 3D process even when the pore and the capsule share the same revolution
axis.

These 3D effects have been specifically studied and we have shown that in a
cylindrical tube with a circular cross-section, the 3D capsule deformation is well
approximated by an axisymmetric simple model. This is an interesting and important
result as it is much easier and faster to use an axisymmetric numerical model rather
than a full 3D model.

In the case of microfluidic pores with square cross-section the 3D aspect of the
problem cannot be simplified. We have thus conducted a novel study of the flow
of spherical capsules in pores as a function of capillary number and aspect ratio.
A comparison between the numerical model and some experimental measurements
of capsules flowing in square section microfluidic pores shows that it is possible to
evaluate the capsule membrane elastic modulus. This is a very interesting result as
it opens the way to the design of on-line microfluidic measuring systems that can
evaluate the mechanical properties of capsules.

One of the drawbacks of this study is the lack of bending resistance of the capsule
membrane leading to non-physical numerical folds in the regions where the membrane
is undergoing compression. Accounting properly for the bending and post-buckling
behaviour of the capsule membrane is a formidable problem of shell mechanics. The
reason being that the capsule is subjected to large deformation, large membrane forces
and that the bending effect becomes preponderant only on parts of the wall. It is clear
that a very fine mesh of the capsule wall would be necessary if we were to reproduce
the folds with any precision. This would increase very significantly the computer time.
The interesting question which arises at this point is how necessary is it to account
for bending forces? If the capsule wall has a highly anisotropic structure (e.g. the red
blood cell wall which consists of a lipid bilayer lined by a protein network), it is clear
that bending forces can be fairly large as compared to membrane shear forces and
must be accounted for. For artificial capsules with a wall which consists of a thin layer
of a 3D isotropic material (e.g. a gelled membrane reinforced by a polymer network),
the bending resistance is directly related to the ratio of the membrane thickness to
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the capsule radius. For thickness ratios less than 10 %, it is generally admitted that
bending effects will be very small compared with the membrane forces. It is thus
quite possible that ignoring bending forces and adding a small uncontrolled numerical
resistance (due to discretization) leads to a fairly good approximate model that can be
used to analyse the motion of real artificial capsules.
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