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Tension of red blood cell membrane in simple shear flow
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When a red blood cell (RBC) is subjected to an external flow, it is deformed by the hydrodynamic forces acting
on its membrane. The resulting elastic tensions in the membrane play a key role in mechanotransduction and
govern its rupture in the case of hemolysis. In this study, we analyze the motion and deformation of an RBC in
a simple shear flow and the resulting elastic tensions on the membrane. The large deformation of the red blood
cell is modelled by coupling a finite element method to solve the membrane mechanics and a boundary element
method to solve the flows of the internal and external liquids. Depending on the capillary number Ca, ratio of
the viscous to elastic forces, we observe three kinds of RBC motion: tumbling at low Ca, swinging at larger Ca,
and breathing at the transitions. In the swinging regime, the region of the high principal tensions periodically
oscillates, whereas that of the high isotropic tensions is almost unchanged. Due to the strain-hardening property
of the membrane, the deformation is limited but the membrane tension increases monotonically with the capillary
number. We have quantitatively compared our numerical results with former experimental results. It indicates
that a membrane isotropic tension O(10−6 N/m) is high enough for molecular release from RBCs and that the
typical maximum membrane principal tension for haemolysis would be O(10−4 N/m). These findings are useful
to clarify not only the membrane rupture but also the mechanotransduction of RBCs.
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I. INTRODUCTION

Under physiological conditions, a healthy human red blood
cell (RBC) has the resting shape of a biconcave disk. Its
membrane encloses a Newtonian haemoglobin solution. It
consists primarily of a phospholipid bilayer and an elastic
spectrin network. The lipid bilayer strongly resists local
surface area changes, but the elasticity of the cytoskeleton
enables the RBCs to undergo large extensional deformation
while maintaining the structural integrity of the membrane.

Flow-induced RBC deformation affects the cell ability to
release various molecules and regulate their concentrations in
blood [1]. In particular, when RBCs are strongly deformed by
the surrounding fluid flow, they release ATP and ADP [2,3].
ATP is a well-known energy source for intracellular functions,
and extracellular ATP plays an important role as a signaling
molecule in a variety of physiological processes [3]. In
addition, ADP is a known factor in the primary aggregation of
platelets [2]. Flow-induced deformation may also lead to RBC
rupture, called haemolysis. There is no doubt that a causal rela-
tionship between the stress level in the membrane and haemol-
ysis exists. Thus, clarification of the stresses in the membrane is
crucial towards understanding the physiology and pathology of
microcirculation. As the RBC membrane is very thin, only the
deformation of its median surface is considered. Henceforth,
the term “membrane” refers to the two-dimensional median
surface. In the membrane model, the stresses are integrated
across the wall thickness and replaced by tensions, i.e., forces
per unit length of the median deformed surface.

The motion and deformation of capsules and vesicles in
shear flow have been investigated by a number of researchers
[4–11]. In the low shear rate regime, a nonspherical capsule
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rotates like a rigid body, yielding a large amplitude oscillation
of the inclination angle. This motion, called tumbling motion,
has been observed in studies of capsule [10], vesicle [5],
and red blood cell [12]. At high shear rate, the membrane
rotates around the capsule shape. The inclination angle and
the deformed shape periodically oscillate: this is the so-
called swinging motion. The swinging-tumbling transition of
capsules and vesicles was also investigated analytically [5,8,9]
and numerically [10,13]. In the case of an RBC, two different
kinds of motion were discussed in Skotheim and Secomb [8]
and Vlahovska et al. [9]. One is the breathing motion, which is
defined by large shape oscillations and a swinging motion at the
transition regime [9,11]. The other is the intermittent motion,
which is analytically predicted by Skotheim and Secomb [8]. In
this motion, swinging is periodically interrupted by a tumbling
motion.

Ramanujan and Pozrikidis [7] reported the first three-
dimensional computation of an RBC in simple shear flow. The
RBC is modelled as a capsule with a hyperelastic membrane
and the cell reference shape is assumed to be a biconcave disk.
The nonspherical reference shape leads to anisotropic mem-
brane properties and yields a periodic shape oscillation during
the tank-treading motion. In their study, however, stable long
computational times are not achieved because of numerical
instabilities and only limited results are hence discussed in the
paper. Le et al. [4] also compared the motion and deformation
of a biconcave disk with those of an oblate capsule in simple
shear flow using an immersed boundary method; however,
only few results with nonidentical viscosity ratio are reported.
Thus, further analyses with various viscosity ratios and shear
rates are needed in order to fully understand the kinematics
of an RBC in fluid flow. No study has either thoroughly
examined the elastic tensions of the membrane despite its
relevance in understanding RBC physiology and pathologies.
Only Pozrikidis [6] investigated the tension on the RBC
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membrane in the tumbling regime. He found that compressive
tensions appeared on the membrane already at low capillary
numbers, but did not investigate RBCs under higher values.

To rigorously investigate membrane tensions, the fluid-
structure interaction between the internal or external flows and
the membrane has to be accurately solved. Based on the small
size of the RBC, it is usually assumed that the fluid velocity
field around a RBC is governed by the Stokes equation, which
can be expressed in terms of surface integrals defined on the
cell membrane. This approach, known as the boundary element
method [10,14], treats the discontinuity of the hydrodynamic
stress tensor across the membrane explicitly and is thus very
accurate. Walter et al. [10] solved shear-induced capsule
deformation using the boundary element method coupled with
the finite element method for membrane mechanics, which
was shown to be very advantageous with respect to numerical
stability. The numerical method was then generalized by
Foessel et al. [15] to take into account the effect of a viscosity
contrast between the internal and external liquids.

In this study, we use the method of Foessel et al. [15]
and apply it to a single RBC in a simple shear flow. We
specifically investigate the mechanical tensions that arise in
the membrane. In Sec. III A, we compute the kinematics of an
RBC subjected to different flow strengths and viscosity ratios.
We then investigate in detail the effects of the capillary number
and viscosity ratio on the membrane tension in Sec. III C. In
Sec. IV, we discuss the results and bring conclusions to our
study.

II. MECHANICS OF AN RBC IN SIMPLE SHEAR FLOW

We consider the dynamics of an RBC subjected to a
simple shear flow. The RBC is modelled as a capsule with a
hyperelastic membrane with surface shear elastic modulus Gs

and area dilation modulus Ks . The motion of a capsule in flow
can now be considered as a classical problem, which is only
briefly explained here (more details can be found in [14,16]).

A. Problem statement

1. Fluid mechancis

We assume that the RBC is filled with an incompressible
Newtonian fluid with density ρ and viscosity λμ. It is freely
suspended in another fluid with the same density ρ but
viscosity μ. Due to the small size of an RBC, the inertial effects
of the internal and external fluid flows are small compared to
viscous effects, so that the fluid flows are governed by the
Stokes equation. The velocity field v can be written as an
integral equation over the instantaneous deformed membrane
surface S [14],

v(x) = 2

1 + λ
v∞(x) − 1

4πμ(1 + λ)

×
∫

S

J(x, y) · [σ out( y) − σ in( y)] · n( y)dS

+ 1 − λ

4π (1 + λ)

∫
S

v( y) · K (x, y) · n( y)dS, (1)

where v∞ is an undisturbed background flow, λ is the viscosity
ratio between the internal and external liquids, n is the outward

unit normal vector on the surface, J and K are the Green’s
functions of the single- and double-layer potentials, and σ in

and σ out are viscous fluid stress of the internal and external
liquids, respectively. The dynamic condition requires that the
load q exerted on the membrane must be equal to the viscous
jump across the thin membrane,

[σ out − σ in] · n = q.

2. Membrane mechancis

Since the thickness of the RBC membrane is small com-
pared with the cell size and curvature radius, the membrane
can be modelled as a two-dimensional hyperelastic surface
S (the median surface) devoid of bending resistance [17].
Skalak et al. [18] introduced a law (SK) to model the large
deformation of an RBC membrane. The strain energy w and
principal tensions in the membrane τ1 and τ2 (τ1 � τ2) of the
SK law are given by

w = Gs

4

[
λ4

1 + λ4
2 − 2λ2

1 − 2λ2
2 + 2 + C

(
λ2

1λ
2
2 − 1

)2]
, (2)

and

τ1 = Gsλ1

λ2

[
λ2

1 − 1 + Cλ2
2

(
λ2

1λ
2
2 − 1

)]
(likewise for τ2),

(3)

where λ1,λ2 are the two principal in-plane stretch ratios
and C is a dimensionless material coefficient that measures
the resistance to area dilation. The area dilation modulus
of the SK law is Ks = Gs(1 + 2C) [17]. By setting a large
value of C, one can express the area-incompressibility of the
membrane. Walter et al. [10] investigated the effects of C on
the deformation of an ellipsoidal capsule in a simple shear flow
and showed that C = 10 is high enough to express the area
incompressibility of the membrane within 1%. Accordingly,
all of the results presented herein correspond to C = 10.

Negligible inertia of the membrane deformation, the motion
of the membrane is governed by the local equilibrium
equation [14]

∇s · τ + q = 0, (4)

where ∇s is the surface divergence operator. The above
equilibrium equation can be written in a weak form using
the virtual work principle [10]∫

S

û · q dS =
∫

S

ε̂ : τ dS, (5)

where û and ε̂ = 1
2 (∇s û + ∇s ûT ) are the virtual displacement

and strain, respectively.

B. Numerical methods

We track the Lagrangian position of the membrane material
points over time and can thus readily compute the local
membrane deformation, and principal stretch ratios λ1,λ2. The
in-plane elastic tensions τ are obtained from the membrane
constitutive law. The finite element method [10,14] is used
to solve Eq. (5) and calculate the viscous load q for a
given membrane deformation. Equation (1) is solved by a
boundary element method [10,15]. Once the velocity field
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v is computed, the membrane material point x is updated
by means of the kinematic condition ∂x/∂t = v(x,t), which
guarantees continuity between the membrane velocity and
the internal or external fluid velocity. The above equation is
solved using an explicit second-order Runge-Kutta method.
The whole process is repeated until steady periodic motion is
achieved. For details of the numerical methods, please refer to
our former studies [15,19].

C. Reference shape and numerical conditions

In a Cartesian reference frame with the RBC center as
origin, the undisturbed velocity field v∞ of the external fluid
is given by

v∞
1 = γ̇ x2, v∞

2 = v∞
3 = 0, (6)

where γ̇ is the shear rate. The RBC deformation depends
on the viscosity ratio λ and on the capillary number Ca =
μγ̇ �/Gs , which measures the ratio between the viscous and
elastic forces. The parameter � is the radius of the sphere with
the same volume as the cell.

To discretize the RBC membrane, we use a subdividing
method similar to the one described in [10]. A first mesh is
constructed by means of an icosahedron with 20 regular trian-
gles inscribed on a sphere with radius �. A new computational
node is placed at the middle of each edge so that each triangle
element is divided into four new elements. The new nodes are
projected onto the sphere and the procedure is repeated until
the desired number of elements is reached. We thus obtain a
mesh with node points Xi in a coordinate system centered on
the cell center. These node points are then projected to position
Xrbc

i on the biconcave axisymmetric RBC profile given by [20]
by means of the following transformation:

Xrbc
1 = R0

�
X1,

Xrbc
2 = ±1

2
R0(1 − r2)1/2(C0 + C2r

2 + C4r
4), (7)

Xrbc
3 = R0

�
X3,

where r2 = (X2
1 + X2

3)/�2 and R0 is the radius of the biconcave
disk [Fig. 1(a)]. The plus sign in the second term is for X2 > 0
(likewise for minus sign). Under physiological conditions, the

shape parameters C0, C2, C4 and radius R0 of an RBC are given
by [20] C0 = 0.21, C2 = 2.0, C4 = −1.12, and R0/� = 1.39.
The RBC membrane has a shape memory [21], but the question
of whether or not the biconcave disk shape of the RBC is
stress free is still under debate. Since the question is not yet
resolved, we have assumed the stress-free reference shape to
be the biconcave disk.

At time t = 0, the cell is positioned with its X2 axis in the
shear plane, where it remains, in view of the symmetry of the
problem and of the Stokes equations. We use this specific initial
orientation so as to easily compare our numerical results with
former studies, which also use the same initial orientation,
though we recently reported its effect on the RBC behavior
[19]. The inclination angle β, which is defined as the angle
between the major axis and the flow direction, is thus initially
set to 0. The angle α is defined as the angle between a material
point P and the flow direction [cf. Fig. 1(b)]. The material
point P is initially located at (x1,x2,x3) = (R0,0,0).

The motion and deformation of the cell are conveniently
described by the Taylor parameter D12 defined as

D12 = |L1 − L2|
L1 + L2

, (8)

where L1,L2 are the semiaxis length of the ellipsoid of
inertia of the deformed capsule in the 12 plane. Due to the
nonspherical shape of the biconcave disk, the initial value D0

12
of the Taylor parameter is D0

12 = 0.51.
As the viscosity ratio λ increases, the computation tends to

become unstable because membrane compression increases. In
particular when λ > 3, the membrane is significantly crumpled
and the computation diverges before reaching a steady periodic
motion. In order to ensure both numerical accuracy and
stability, the parametric range of λ is set from 1 to 3 in this
study.

For the purposes of numerical accuracy and stability of the
coupling algorithm, the nondimensional time step γ̇ �t must
be sufficiently small. In this study, γ̇ �t is set in the range
5.0 × 10−6–5.0 × 10−3 to guarantee time convergence. We
also investigated mesh convergence of the numerical method
by calculating deformations of a spherical capsule in shear
flow. The deformation is measured by the Taylor parameter
D12. The results obtained by 5120 and 20 480 linear triangle
elements differ less than 0.1% (Ca = 1,λ = 1,C = 1). We thus

FIG. 1. (a) Initial shape of the RBC in the shear plane. R0 is the radius of a biconcave disk. (b) Schematic illustration of deformed RBC.
The inclination angle β is defined as the angle between the major axis and the flow direction. The angle α is defined as the rotational angle of
the material point P on the membrane, which is initially located at (x1,x2,x3) = (R0,0,0).
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FIG. 2. Time sequences of the RBC shape in the shear plane during a tank-treading period with (a) Ca = 0.002, (b) 0.02, and (c) 3.0. For all
cases, the viscosity ratio λ = 1.0. A black dot represents a material point of the membrane, which is initially located on x1 = R0, x2 = x3 = 0.
The nondimensional time γ̇ t is given below each shape.

decided to use 5120 linear triangles for the computation in this
study.

III. RESULTS AND DISCUSSIONS

A. Kinematics of an RBC in simple shear flow

In this section, we investigate the kinematic motion and
deformation of the RBC in simple shear flow with various
capillary numbers Ca and viscosity ratio λ conditions. Suc-
cessive profiles of the deformed RBC during a tank-treading
period at steady state with Ca = 0.002, 0.02, and 3.0 are shown
in Fig. 2 for λ = 1. At low capillary number [Ca = 0.002,
Fig. 2(a)], the RBC rotates like a quasirigid body. This motion
corresponds to the tumbling regime, which has been evidenced
for both capsules and vesicles [5,9,10]. At high capillary
number [Ca = 3.0, Fig. 2(c)], the RBC shows a tank-treading

motion with a steady inclination angle. Due to the anisotropic
reference shape, the inclination angle periodically oscillates
around the mean angle with small amplitude oscillation [cf.
Fig. 3(b)]. This type of cell motion, referred to as swinging,
has been reported in previous experimental [12] and numerical
studies [4,7] of an RBC in shear flow. The point in Fig. 2(c)
shows the successive positions of a membrane material point
so that the tank-treading motion thus appears clearly. For
Ca = 0.02 [Fig. 2(b)], the RBC is subjected to compressive
stress leading to the wrinkling of the membrane. Since the
membrane is described by a membrane model devoid of
bending stiffness, the configuration of the actual physical
wrinkles cannot be predicted. The amplitude and number of the
wrinkles that we obtain depend only on the mesh. However,
their location is well predicted by the model. Since precise
and robust numerical models accounting for bending effects

FIG. 3. Inclination angle of the RBC during a period: (a) Ca = 0.002, and (b) Ca = 3.0. Numerical conditions are the same as those of
Fig. 2.
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are still to be developed, it is not possible at this stage to know
to which extent the average shape of the capsule is affected by
the presence of the folds.

In the tumbling-to-swinging transition, the RBC shows
a large shape oscillation from circular to elliptic shape, as
shown in Fig. 2(b). This large-amplitude shape oscillation at
the transition threshold is called the breathing motion [11]
and is found in former studies of capsules [9–11,13,22]
and vesicles [5]. The transition behavior from tumbling to
swinging of nonspherical capsules has been investigated by
several researchers. Skotheim and Secomb [8] analytically
investigated the transition of an RBC in shear flow and
first reported the intermittent behavior (swinging periodically
interrupted by a tumble) of the RBC at the transition. However,
this intermittent motion of the RBC has not been directly
observed in former experimental studies. Vlahovska et al. [9]
also analytically investigated the tumbling-swinging transition
of the RBC. They found that the intermittent behaviour occurs
only when the RBC deforms in the shear plane and does
not undergo stretching or compression along the vorticity
direction. When the RBC deforms also along the vorticity
direction, it shows a breathing motion in the transition regime.
Our results are consistent with the results of Vlahovska et al.
[9]. In particular here also no intermittent behavior is found
since our capsule is free to undergo breathing.

To investigate the kinematics of an RBC in more detail, the
time evolution of the Taylor parameter D12 is shown in Fig. 4.
In the tumbling regime (Ca = 0.002), the RBC rotates like a
rigid body. Thus, D12 does not change markedly throughout
the entire range of computational time. When the RBC has a
swinging motion (Ca = 3.0), D12 oscillates periodically and
the frequency is twice as large as the tank-treading motion, due
to the initial symmetry of the RBC profile. In the tumbling-to-
swinging transition (Ca = 0.02), we observe large amplitude
oscillations and small values of D12. This is because the RBC
shape periodically changes from ellipsoidal to quasicircular,
and the quasicircular profile corresponds to D12

∼= 0.
In most studies of vesicles and capsules, the kinematic

motion is characterized by the inclination angle. In the

FIG. 4. Time change of Taylor parameter D12 with Ca =
0.002, 0.02, and 3.0.

FIG. 5. Minimum Taylor parameter during a periodic motion with
λ = 1, 2, and 3. Zoom view in low Ca regime is shown in (b). The
broken line in the figures indicates min D12 = 0.1.

swinging motion, the average angle is finite, but the amplitude
of oscillation is small. As one approaches the tumbling
regime, the amplitude of angle oscillation increases, which
is the breathing mode [5]. The inclination angle shows a
clear contrast between the tumbling motion and the swinging
motion, as shown in Fig. 3. However, this parameter may not
be appropriate to define the breathing mode. In the breathing
regime, the capsule shape becomes quasicircular, which makes
it difficult to identify the long axis and leads to large numerical
errors when estimating the critical capillary number Ca∗ at the
transition. Furthermore, we believe that the transition occurs
continuously in the parameter space of Ca and cannot be
identified by a specific value of Ca∗. To overcome the above
difficulties, Walter et al. [10] used a transition criterion based
on the minimum value of the Taylor parameter. Indeed in the
transition regime, the value of the Taylor parameter becomes
small, as shown in Fig. 4. We can therefore define the transition
regime by studying the minimum value of the Taylor parameter
min D12 as a function of Ca and λ, as shown in Fig. 5. It is
clear that min D12 becomes small for all λ � 3 cases. Thus, to
determine the interval of the critical capillary number Ca∗, we
define a transition criterion as min D12 � 0.1. This threshold
value corresponds to a relative difference of 20% between
L1 and L2. We note that the range of Ca∗ is not sensitive to
selection of the threshold value if we choose sufficiently small
values of the threshold in min D12, because the deformation
changes rapidly in the transition regime as shown in Fig. 5. The
sharp transition indicates the sudden change from tumbling
to swinging motion of the RBC. This tendency is consistent
with former studies [9,10]. The sharp transition also induces
the difficulty to detect the critical capillary number Ca∗

in experimental observations, because the narrow parameter
range may be hard to control experimentally. The values of Ca∗

increases with λ as shown in Table I. For a high viscosity ratio,
the deformation of the RBC tends to be suppressed because
the effect of the inner viscosity becomes significant. As a
result, the tumbling regime extends to higher Ca values and
Ca∗ increases as λ increases.
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TABLE I. Interval of critical capillary number Ca∗.

γ = 1 Ca∗ ∈ [0.013, 0.036]
γ = 2 Ca∗ ∈ [0.029, 0.04]
γ = 3 Ca∗ ∈ [0.055, 0.066]

B. Cell deformation

We investigate the RBC deformation with various Ca and λ.
Flow-induced deformation directly correlates to the membrane
tension, so that knowledge of the deformation can be used to
estimate the membrane tension in shear flow. The maximum
and averaged longest axis length calculated over one period are
shown in Figs. 6(a) and 6(b), respectively. The RBC gradually
elongates in the flow direction as Ca increases. The slope
becomes smaller with Ca, because the membrane is modelled
by the SK law, which is strain hardening and thus opposes large
deformation. The deformation also tends to be suppressed
when the viscous effects inside the capsule become large,
i.e., for high values of λ. These results suggest that not only
the shear rate, but also the viscosity ratio of the internal and
external liquids, influences the deformation of the RBC in
shear flow.

C. Membrane tension under shear flow

The membrane tension level can be used to predict the
rupture and mechanotransduction of RBCs. We thus investi-
gate the largest in-plane principal tensions τi (τ1 � τ2) and
the isotropic tension τp in the membrane of the RBC. In the
case of a two-dimensional (2D) isotropic elastic membrane,
the isotropic membrane tension can be calculated by τp =
(τ1 + τ2)/2.

In Fig. 7(a), distributions of the elastic strain energy w

in the shear plane during a tank-treading period are shown
(Ca = 3 and λ = 1). The w distribution changes periodically
together with the shape oscillation. Accordingly, the principal
tension τ1 oscillates periodically [Fig. 7(b)]. When the RBC is
most elongated along the flow direction (γ̇ t = 27.0,43.0 in the
figure), high values of τ1 appear on the plane perpendicular to

the minor axis of the deformed RBC. When the RBC is most
elongated along the x3 direction (γ̇ t = 21.0, 36.0, and 51.0),
however, τ1 becomes highest on the plane perpendicular to
the x3 axis, which is the maximum value during the period.
In the case of a hyperelastic membrane, high values of the
principal tension should correlate with the yield tension of
the material, i.e., the tolerated maximum elastic tension. Thus,
these results regarding the high τ1 region may be important for
understanding the haemolysis mechanism.

Recently, several researchers have worked on the mechan-
otransduction of biological cells [2,3,23]. Yoshimura et al. [23]
reported that the mechanosensitive ion channel MscL found
in Escherichia coli cells is opened by isotropic tension τp.
Though the ion channel structures of an RBC membrane are
more complicated than those of bacteria, the isotropic tensions
likely play an important role in the regulation of ion channels.
The distribution of τp is also shown in Fig. 7(c). High values
of τp appear only on the plane perpendicular to the minor
axis of the deformed RBC, though the region of the high
principal tension periodically oscillates. Thus, the distributions
of τ1 and τp are qualitatively different in the RBC in shear
flow.

We define the maximum principal tension as

max τ1 = max
t

[max
x

τ1(x,t)], (9)

where maxt indicates the maximum value in one tank-
treading period and maxx indicates the maximum value on
the membrane. The values of max τ1 as a function of Ca
and λ are shown in Fig. 8. This figure clearly shows a linear
relationship between the maximum tension and the capillary
number. When Ca is invariant, the maximum tension tends to
be larger as λ decreases. To see the relationship between the
tension and deformation, the maximum tension as a function
of the long axis length L1 is also shown in Fig. 9. We see
that the strain-hardening behavior of the RBC is due to the
nonlinearity of the SK law.

Next, we calculate the instantaneous maximum isotropic
tension max τp, which may be considered as the criterion
for the opening of the mechanosensitive ion channel (see
Fig. 10). We also calculate the averaged value of τp by using

FIG. 6. (a) Maximum and (b) time average values of the long axis L1. L0
1 is the initial length of L1.
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FIG. 7. (Color) Distributions of (a) the elastic energy function w, (b) in-plain elastic principal tension τ1, and (c) the isotropic membrane
tension τp . Diamond and dot on the membrane indicate material points of the membrane, which are initially located on the major and revolution
axes, respectively.

the equation

τ̄ p = 1

ST

∫
T

∫
S

τp(x,t)dSdt, (10)

where S is the surface area of the membrane and T is the
period of tank-treading motion.

Since the molecular release due to the RBC deformation
may be proportional to the time of channel opening and the
number of open channels, τ̄ p may correlate with the total
amount of molecules released from the RBC. We again observe
the almost linear relationships between max τp and Ca as well
as τ̄ p and Ca. Wan et al. [3] investigated shear-induced release
of ATP from RBCs using a microfluidic channel. They reported
that the amount of released ATP increased linearly with the

FIG. 8. Maximum principal tension during a tank-treading period
as a function of Ca with λ = 1, 2, and 3.

shear rate. Since τ̄ p increases linearly with the shear rate as
shown in Fig. 8(b), this suggests that the mechanotransduction
reported by Wan et al. might also be regulated by the isotropic
tension on the membrane.

We now quantitatively compare our numerical results with
experimental data of the literature. The shear elastic modulus
Gs of an RBC membrane is estimated in recent optical tweezer
experiments to be Gs = 1–22 μN/m [24]. The range of the
value is strongly dependent on the selection of constitutive
laws. In the case of strain-hardening laws, such as the SK law,
it is commonly estimated to be Gs

∼= 4–5 μN/m [25].
Using Gs = 4 μN/m, we first analyze the results of

isotropic tension τp. Wan et al. [3] investigated shear-induced
release of ATP from RBCs using a microfluidic channel. In

FIG. 9. Maximum principal tension as a function of the deforma-
tion of RBC.
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FIG. 10. (a) Maximum isotropic tension and (b) averaged τp as a function of Ca with λ = 1, 2, and 3.

their experiment, the average fluid shear stress is controlled
from 0.4 to 3.3 Pa. When we assume the characteristic length
to be equal to � = 2.82 μm [20], Wan’s experimental condition
is equivalent to Ca = 0.3–2.3. In this Ca regime, the average
isotropic tension during a tank-treading period τ̄ p is estimated
to be 0.7–6.4 μN/m (λ = 1), 0.5–4.4 μN/m (λ = 2), and
0.3–2.6 μN/m (λ = 3) [cf. Fig. 8(b)]. These results indicate
that τ̄ p = 1 μN/m is high enough to induce molecular release
from RBCs. In the case of E. coli cells, on the other hand,
the mechanosensitive calcium ion channel was activated by
5–10 kPa stress exerted by micropipette aspiration [23]. These
results clearly illustrate that the threshold value to open the
mechanosensitive channels is completely different between
RBCs and E. coli. Thus, detailed analysis about membrane
tension is needed to better understand the molecular release
from RBCs. Our results on the isotropic tension can
provide information on the mechanotransduction phenomena
in the RBC.

Haemolysis is one of the biggest problems in the research
field of artificial organs. Due to the nonphysiological fluid
stress levels in artificial organs, RBCs are often destroyed.
Many researchers have investigated the correlation between
the applied fluid shear stress and RBC membrane rupture.
The threshold value is now believed to be on the order of
100 Pa in plasma solution [26]. If we again assume a length
scale � = 2.82 μm, shear stress of 100 Pa is estimated to
Ca = 70. This is beyond the stable region of our computation
and we therefore cannot obtain the results of the maximum
tension on the membrane in this range. But if the maximum
principal tension (cf. Fig. 8) increases linearly to Ca = 70, the
maximum tension would be about 4 × 10−4 N/m (λ = 3) to
6 × 10−4 N/m (λ = 1). In microcirculation, the average shear
rate can be estimated to be several hundreds (1/s) [27], which
corresponds to a capillary number of the order of 10−1. It can
reach larger values (a few thousands 1/s) in blood vessels with

complex geometries (e.g., when flowing into the pores of the
spleen). But in all cases, the typical capillary number remains
much smaller than Ca = 70, so that lysis is unlikely to occur
in the microcirculation.

IV. CONCLUSION

In this study, we investigated the kinematic motion of the
RBC in simple shear flow. Three types of motion are observed:
tumbling motion, swinging motion, and transition. We also
investigated RBC deformation. The RBC gradually elongates
towards the flow direction as Ca increases, but the deformation
is saturated in the high Ca regime due to the strain-hardening
property of the membrane.

In Sec. III C, we investigated the principal and isotropic
tension that appear on the RBC membrane. Principal tension
distributions change periodically together with the shape
oscillation, and the maximum tensions appear on the shear
plane. The high isotropic tension, however, appears only at
the plane perpendicular to the minor axis of the deformed
RBC. We also investigated the maximum principal tension
and isotropic tension on the membrane. These tensions
increase monotonically with Ca even though the deformation
is suppressed in the high Ca regime. Last, we compare
our numerical results with former experimental results, and
quantitatively discussed about the threshold of tension for
ATP release and for haemolysis. These membrane tension
findings may be useful to better understand the mechanisms
of haemolysis and mechanotransduction of RBCs.
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