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Benjamin Sévéniéa, Anne-Virginie Salsaca,∗, Dominique Barthès-Biesela

aBiomechanics and Bioengineering Laboratory (UMR CNRS 7338), Université de Technologie de Compiègne, CS 60319, 60203 Compiègne,
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Abstract

An inverse analysis of the flow of capsules in a square section microfluidic channel has been proposed to evaluate the elastic mod-

ulus of the membrane of microcapsules. It is based on the comparison of the capsule deformed profiles measured experimentally

with the ones computed numerically in the same flow situation. Experimentally, the microchannel is never exactly square. The

objective of this paper is to evaluate the intrinsic error, which is made by analyzing the flow of a capsule in a slightly rectangular

channel by means of the numerical results obtained in a perfectly square channel. This is done by computing exactly the flow of a

capsule in slightly rectangular channels and comparing the results with those obtained in square channels. It is found that, within

a rectangular channel with an appropriately defined deviation from squareness of 5%, the capsule deformed profiles are close to

those in a square channel, and that the inverse analysis procedure can be used.
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1. Introduction

Microcapsules consist of liquid drops surrounded by a thin elastic membrane that separates the inner fluid from the

outside medium. In addition to being a simple model of red blood cells, such particles can be artificially produced for

diverse applications in pharmaceutics, cosmetics or the food industry. The mechanical properties of the membrane

play an essential role in the control of deformation and breakup. However, capsules are usually fragile and small with

diameters of order of a few micrometers, so that specific measurement techniques must be devised to evaluate the

membrane mechanical properties.

Recently, a new microfluidic method has been proposed to measure the mechanical properties of a population

of initially spherical artificial microcapsules. A dilute suspension of such microcapsules is flowed into a cylindrical

capillary tube with inner diameter of the same order as the capsule one. Under the combined effect of confinement and
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Fig. 1. Microphotograph of a channel cross-section with design specification 100 × 100 μm2 square section.

viscous stresses, the capsules deform. A high-speed camera mounted on a microscope is used to measure the velocity

and deformation of the initially spherical capsules. A numerical model of a flowing capsule has been designed1 and

a database has been created which gives the capsule deformation as a function of the flow strength, the membrane

mechanical properties and the confinement ratio. An inverse analysis technique then allows one to find the membrane

elastic modulus from the capsule deformation under flow. This technique has been successfully applied to characterize

capsules with a polymerized ovalbumin membrane2.

With the growing amount of microfluidic applications, such as in-line fabrication of microcapsules3,4,5, it is con-

venient to be able to perform in-line characterization. The measurement technique has thus been extended to square-

section microfluidic channels. To analyze the data and proceed with the inverse analysis technique, a database was

created6 using the model of the flow of a capsule in a square-section channel7.

The most common method used to make microfluidic channels is PDMS (polydimethylsiloxane) replica molding8.

It consists of pouring and curing PDMS onto a silicon wafer with channel network etched on a resin layer. The PDMS

is peeled off and the resulting inprint is bound to a glass plate to create a microfluidic channel, the geometry of which

depends on that of the mold. The depth 2h of the channel is controlled by the thickness of the resin deposit, which is

achieved by spin coating. The width 2w is determined by the precision of the photolithography mask used to make

the resin mold. Altogether, the channel size specifications are often fulfilled within a few micrometers. For small

channels (e.g. a square channel with a specified 100 × 100 μm2 section) the fabrication errors can lead to significant

distortions of the section geometry as shown in Fig. 1. In the pioneering work of Hu et al.6, the channel section was

assumed to be a square with the same surface area as the actual section. The side of this square was then used as the

reference length scale to normalize the experimental data and search the square channel database.

The question which arises then pertains to the precision of the inverse analysis in a slightly rectangular channel,

knowing that the database corresponds to a perfectly square channel. In order to answer this question, we perform a

numerical study of the flow of a capsule in slightly rectangular channels and compare the results to the ones that are

obtained in a square channel with the same surface area. Finally, we perform an inverse analysis on the rectangular

channel results and show how the channel geometry affects the precision of the parameter values that are thus obtained.

2. Problem statement and numerical method

2.1. Problem description

An initially spherical capsule (radius a) flows along the z-axis of a microfluidic channel of rectangular cross-section

2h × 2w in the perpendicular xy-plane (Fig. 2). The deviation from squareness of the channel cross-section is defined

as

δ =
w − h

w + h
. (1)

In this study we consider channels, which are either wider than deep (h < w, δ > 0) or deeper than wide (h > w, δ < 0)

with δ = ±5,±10 and ±15%.

The interior and exterior of the capsule are incompressible Newtonian fluids with the same density ρ and viscosity

μ. The thin membrane of the capsule is an impermeable hyperelastic isotropic material with surface shear modulus Gs

and area dilatation modulus Ks. As the membrane thickness is negligibly small compared to the capsule dimensions,

the membrane is treated as a hyperelastic surface devoid of bending stiffness. The in-plane deformation is then mea-



108   Benjamin Sévénié et al.  /  Procedia IUTAM   16  ( 2015 )  106 – 114 

inlet outlet

xx

yz
2w

2h

Fig. 2. Prismatic channel with axis Oz. The cross-section is rectangular with dimensions 2h × 2w.

sured by the principal extension ratios λ1 and λ2. Owing to the combined effects of hydrodynamic forces, boundary

confinement and membrane deformability, the capsule can be highly deformed as shown in Fig. 3. Consequently the

choice of the membrane constitutive law is important. In this study, we consider the widely used neo-Hookean law,

which models the membrane as an infinitely thin sheet of a three-dimensional isotropic and incompressible material.

The principal Cauchy in-plane tensions (forces per unit arc length of deformed surface curves) are expressed as9

τ1 =
Gs

λ1λ2

[
λ2

1 −
1

(λ1λ2)2

]
(likewise for τ2). (2)

The membrane dilatation modulus Ks is then given by Ks = 3Gs. The flow Reynolds number is assumed to be very

small, so that the internal and external liquid motions satisfy the Stokes equations. Far from the capsule, the flow field

is undisturbed by the presence of the capsule. For each channel geometry, we implement the corresponding analytical

solution10 of the velocity profile with mean velocity V . Apart from the capsule membrane mechanical properties, the

other main parameters of the problem are the size ratio a/h between the radius of the initially spherical capsule and

the channel depth, the channel aspect ratio δ and the capillary number

Ca = μV/Gs, (3)

which measures the ratio between viscous and elastic forces.

2.2. Numerical model

The motion and deformation of a capsule flowing in a rectangular channel under Stokes conditions is solved by

means of the method developed by Hu et al.7. The numerical model has already been well documented and is just

briefly explained here. The problem is solved by coupling a boundary integral method to compute the fluid flow and

a finite element method to compute the membrane mechanics. The equations are solved in a reference frame moving

with the capsule center of mass, so that the capsule remains centered in the tube domain. The advantage of the

procedure is that only the boundaries of the flow domain are discretized. The capsule mesh is composed of 1280 P2

elements and 2562 nodes. The mesh of the external tube walls is generated using P1 elements with Modulef (INRIA

Rocquencourt, France) and is refined in the central portion of the channel, where the capsule is located 7. Three

different channel geometries are considered corresponding to δ = 5% (3020 nodes and 5998 elements), δ = 10 and

15% (3340 nodes and 6634 elements). The results are obtained with a non-dimensional time step Δt×V/h = 1×10−4.

All the following results pertain to the equilibrium state. At steady-state, the membrane and the internal fluid

translate as a rigid body. This means that assuming the same value of viscosity for the internal and external liquids

does not limit the validity of the results, as the viscosity ratio only influences the time the capsule needs to reach a

steady state. For a given channel aspect ratio δ, the model inputs are the capillary number Ca, the size ratio a/h and

the membrane law. The model outputs are the capsule centroid velocity vo and the steady deformed capsule shape.

In the experimental set-up, all we can observe is the projection of the deformed profile onto the xz-plane (Fig. 3a).

Correspondingly, we plot the deformed capsule profile in the plane y = 0, as shown in Fig. 3b, where the overall

capsule deformation is quantified by the maximum length L/h in the z-direction and the parachute depth Lp/h. An

apparent capsule volume is defined as the volume of the cylinder with height 2h and basis the surface area S of the xz

capsule profile. The apparent capsule radius is then aapp = 3
3
√

2hS /(4π). The relation between the apparent and actual

radius of the capsule can be computed numerically and used to infer a from the measurement of aapp
6.
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Fig. 3. (a) Experimental capsule profile in a specified 50 × 50 μm2 channel. (b) Numerical deformed profile in the plane y = 0, Lp = L − La, S is

the contour surface area.

2.3. Comparison between the rectangular and square channel results

The results obtained in the slightly rectangular channels are compared to the corresponding ones in a square channel

following the method proposed by Hu et al. 6. We first define the side 2� of the equivalent square channel by

2� =
√

4wh = 2h

√
1 + δ

1 − δ , (4)

which corresponds to the side of a square with the same area as the rectangular section. We then compare capsules

with corresponding confinement ratios a/� in the square channel and a/h in the rectangular one. The two ratios are

related by

a/� = a/h

√
1 − δ
1 + δ

. (5)

3. Results

3.1. Effect of δ on capsule profiles for a/� = 1

We first investigate the effect of Ca and δ on the deformation of a capsule with confinement ratio a/� = 1. We focus

on the profiles in the y = 0 plane, which are the ones that can be observed experimentally. In Fig. 4, the dotted lines

correspond to a square channel and the full lines to the slightly rectangular channel with a given value of δ. We first

consider a rectangular channel with δ > 0 that is therefore wider and shallower than the square one (Fig. 4a,b,c). For a

slight distortion of the channel (δ = 0.05), the boundaries of the two channels are very close, and not surprisingly, the

deformed profiles of the capsules are almost superimposed (Fig. 4a). For more distorted channels (δ = 0.1 or 0.15),

the profiles in the equivalent square channel and in the rectangular one are quite distinct (Fig. 4b,c). The capsule is

less deformed in the rectangular channel than in the square one, because it is less constrained by the lateral walls. For

δ = 0.15, the parachute depth Lp, which is an important criterion in the inverse analysis, is greatly underestimated

even for the fairly large value Ca = 0.08.

In Fig. 4d,e,f, we consider the complementary case, when the channels are narrower and deeper than the equivalent

square channel (δ < 0). For the slight distortion of the channel (δ = −0.05), the square and rectangular profiles are

again very close. For larger distortions (δ = −0.1 or −0.15), the capsule is more deformed in the rectangular than in

the square channel. For δ = −0.15 and Ca = 0.02, the back of the capsule is undergoing the transition from a convex

to concave (parachute) shape; it experiences buckling because it is under compression.

The relative difference in profile geometry between the square and rectangular channels may be measured by

ΔL/� = |Lsquare − Lrectangle|/� (6)

with a similar expression for ΔLp/�. These relative length differences are plotted as a function of δ for different values

of Ca in Fig. 5. We note that, for |δ| ≤ 5%, the differences in total length ΔL/� and in parachute depth ΔLp/� remain

less than 0.04, which is the typical experimental tolerance. For larger deviations from squareness (|δ| ≥ 10%), the

differences in characteristic lengths increase sharply.
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Fig. 4. Deformed profiles of a capsule in the plane y = 0 for a square (dotted line) or slightly rectangular channel (full line) with a/� = 1. The

horizontal lines correspond to the channel walls. (a) δ = 0.05, a/h = 1.05; (b) δ = 0.1, a/h = 1.1; (c) δ = 0.15, a/h = 1.16; (d) δ = −0.05,

a/h = 0.95; (e) δ = −0.1, a/h = 0.9; (f) δ = −0.15, a/h = 0.86.

3.2. Effect of confinement ratio for δ = 5%

We now focus on δ = 5% for which we study the effect of confinement ratios a/� varying from 0.95 to 1.1 (Fig.

6). For the smallest capsule (a/� = 0.95), the superposition of the two profiles is almost perfect and the section
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Fig. 6. Effect of a/� on the deformed profile in the plane y = 0 for a capsule in a square (dotted line) or slightly rectangular channel (full line) with

δ = 0.05 and Ca = 0.05.

deviation from squareness has a negligible effect. The relative difference on the parachute depth is only 11%, which

is considered as negligible experimentally. As the confinement increases, the capsule is getting closer to the walls, so

that the profiles become more distinct. Still, the relative difference ΔL remains below 2%, while ΔLp is below 20%.

3.3. Inverse analysis results

We have previously shown that it is possible to infer the membrane elastic shear modulus of capsules flowing in

a square microchannel6. The principle of the inverse analysis is briefly outlined. A capsule profile is extracted from

an experimental image such as Fig. 3a. The two characteristic lengths L, Lp = L − La and the profile area S are

measured (Fig. 3b) and the apparent radius aapp is computed. From the solution of the numerical model of a capsule

flowing in a square-section channel of side 2�, a numerical database has been created7, which relates the values of

L/�, Lp/�, aapp/� and vc/V to Ca and a/� on an interpolated regular grid (10−3 and 5 × 10−3 intervals for Ca and

a/�, respectively). The algorithm then determines the ensemble of geometric and dynamic parameters {a/�,Ca} on

the database grid, for which the experimental and numerical values of {aapp/�, L/�, Lp/�} correspond to one another

within tolerances linked to the experimental uncertainties. For each value of Ca ∈ {a/�,Ca}, we calculate the mean

fluid velocity V from the capsule velocity vc and the velocity ratio vc/V of the database. We then calculate the shear

modulus that corresponds to each Ca ∈ {a/�,Ca} by means of the relation Gs = μV/Ca. The mean value of the

possible shear modulus ensemble is finally computed.

The present objective is not to characterize the surface shear modulus Gs of a capsule population, but to evaluate

the intrinsic error that is made by analyzing the flow of a capsule in a slightly rectangular channel by means of the
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numerical results obtained in a perfectly square channel. We thus apply the inverse analysis to the numerical profiles

calculated in a slightly rectangular channel as if they were experimental results. We consider the same tolerances that

have been used to study experimental profiles: ±0.04 on L/� and Lp/�, ±0.02 for aapp/�. If Lp/� < 0.04, we consider

that Lp ∈ [0, 0.04]. We denote a/� and Ca the mean ensemble values of all possible inverse analysis fits {a/�,Ca}. We

then compare the couple of parameters {a/�,Ca} provided by the inverse analysis technique in the case of a perfectly

square channel to the cases of slightly rectangular ones.

The results are gathered in Table 1 for a/� = 1 and different values of δ and Ca. The δ = 0 results, which correspond

to the application of the inverse analysis to the exactly square channel results, give an estimate of the precision of the

method. We find that, for δ = 0, the value of Ca differs from the actual value by 15% for Ca = 0.02 and is as low as

1% for Ca = 0.08. This is due to the fact that the inverse analysis method is based on the relation between the capsule

deformation (measured by L/� and Lp/�) and the flow strength (measured by Ca). At low Ca, the capsule is not much

deformed so that the tolerance on the deformed lengths is relatively large, particularly so for the parachute depth Lp.

Table 1. Results of the inverse analysis for various δ and Ca values for a confinement ratio a/� = 1.

δ (%) Ca a/� Ca (Ca −Ca)/Ca (%)

0 0.02 1.00 0.023 15

0.05 1.00 0.051 2

0.08 1.00 0.081 1

5 0.02 0.99 0.020 0

0.05 1.00 0.042 -16

0.08 1.00 0.073 -9

-5 0.02 1.00 0.024 20

0.05 1.00 0.057 14

0.08 0.99 0.087 9

10 0.02 0.98 0.016 -20

0.05 1.01 0.032 -36

0.08 1.00 0.066 -18

-10 0.02 1.00 0.025 25

0.05 0.99 0.064 28

0.08 0.98 0.091 14

15 0.02 1.00 0.007 -65

0.05 1.01 0.025 -50

0.08 1.00 0.060 -25

-15 0.02 1.01 0.006 70

0.05 1.00 0.067 34

0.08 0.98 0.095 19

Table 2. Results of the inverse analysis for Ca = 0.05 and different size ratios.

a/� δ (%) a/� Ca (Ca −Ca)/Ca (%)

0.95 0 0.95 0.049 -2

5 0.95 0.041 -18

-5 0.94 0.058 16

1.00 0 1.00 0.051 2

5 1.00 0.042 -16

-5 1.00 0.057 14

1.10 0 1.10 0.050 0

5 1.10 0.046 -8

-5 1.09 0.053 6
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From Table 1, one first notes that the size ratio a/� is well calculated with the inverse analysis algorithm whatever

the value of δ or of Ca. This means that the estimation of the confinement ratio based on the apparent capsule radius

aapp is quite insensitive to δ. We also note that the capsule deformation increases as Ca increases. For δ > 0, the

channel is slightly wider than the square one: the capsule has more space to expand and is thus less deformed (Fig.

4a,b,c). This leads to a value of Ca that is underestimated as compared to the true value Ca. For δ < 0, the channel is

narrower than the square one, so that the capsule is more constrained and has to deform more. It then follows that Ca

is systematically overestimated compared to the true value Ca. For δ = 5%, the estimated capillary number Ca falls

within 20% of the true value Ca at most. This is within what is considered an acceptable margin in actual experiments,

where there are slight variations between the capsules of a population2. For δ ≥ 10%, the deviation between Ca and

Ca is too large to be acceptable except maybe for high flow strengths (Ca ≥ 0.08), which are not always easy to attain.

We finally consider the effect of the confinement ratio for the small channel distortion (δ = 5%) and a mid-range

value of flow strength Ca = 0.05 (Table 2). For the square channel, the error on the estimation Ca(0) decreases with

the confinement ratio a/�, since a larger confinement leads to a larger capsule deformation. We find excellent results

for a/� = 1.1 with little error. The square tube results can thus be used to analyze the data obtained on channels with

a small distortion from squareness, provided we can satisfy ourselves with a 20% precision for the method.

4. Discussion and conclusion

The present study was focused on the flow of capsules in slightly rectangular channels and on the possibility to

deduce the capsule elastic resistance from its deformed shape. The objective was to find the effect that the channel

distortion from squareness may have on the precision of an inverse analysis, if one analyzes the results using a

numerical database computed in a perfectly square channel. The goal was also to assess the validity of the method

used by Hu et al.6, i.e. to approximate slightly rectangular channels with square channels and neglect the experimental

uncertainty due to mould fabrication.

By comparing profiles of a capsule flowing into a square channel and a rectangular channel with δ = 5%, we show

that this approximation can be made with a fair accuracy. The profile differences are of the order of the precision in

the detection of the membrane contour on experimental images. The resulting uncertainty on the characteristic lengths

is small, and within the tolerances admitted by the inverse analysis procedure. The latter then provides reliable results

that are very close to results that would be obtained in a square channel. This means that we can validate the study of

Hu et al., in which δ � 5%.

Larger δ values were also studied to determine when the square approximation can no longer be made with good

precision. For δ = 10%, the profile difference is larger than the contour detection precision. It is only for high

flow strengths (Ca > 0.08) that the inverse analysis becomes about 18% accurate. Another approach to render the

measurement more accurate is to use a channel that is smaller than the capsule size to ensure a confinement ratio larger

than at least 1.1. But, for δ ≥ 15%, the deviated channel can no longer be treated as a square channel to perform the

inverse analysis method whatever the values of capillary number and size ratio. One either needs to resort to using the

numerical database corresponding to the rectangular channel at stake, or, preferably, make more accurate channels.

In conclusion, the squareness of the channel appears as a limit to the microfluidic method to determine the mechan-

ical property of microcapsules, but it is a satisfying result that the method remains accurate in the case of rectangular

channels that have up to a 5% deviation from squareness. We have shown that the capsule resistance can still be

inferred by analyzing the capsule deformed shape by means of the numerical results obtained in a perfectly square

channel.
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