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The large deformations of an initially-ellipsoidal capsule in a simple shear flow are7

studied by coupling a boundary integral method for the internal and external flows and8

a finite-element method for the capsule wall motion. Oblate and prolate spheroids are9

considered (initial aspect ratios: 0.5 and 2) in the case where the internal and external10

fluids have the same viscosity and the revolution axis of the initial spheroid lies in the11

shear plane. The influence of the membrane mechanical properties (mechanical law12

and ratio of shear to area dilatation moduli) on the capsule behaviour is investigated.13

Two regimes are found depending on the value of a capillary number comparing14

viscous and elastic forces. At low capillary numbers, the capsule tumbles, behaving15

mostly like a solid particle. At higher capillary numbers, the capsule has a fluid-like16

behaviour and oscillates in the shear flow while its membrane continuously rotates17

around its deformed shape. During the tumbling-to-swinging transition, the capsule18

transits through an almost circular profile in the shear plane for which a long axis19

can no longer be defined. The critical transition capillary number is found to depend20

mainly on the initial shape of the capsule and on its shear modulus, and weakly on21

the area dilatation modulus. Qualitatively, oblate and prolate capsules are found to22

behave similarly, particularly at large capillary numbers when the influence of the23

initial state fades out. However, the capillary number at which the transition occurs24

is significantly lower for oblate spheroids.25
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1. Introduction27

A microcapsule is a small liquid droplet enclosed in a thin hyperelastic membrane.28

Artificial capsules have numerous applications in cosmetics, drug vectorization and29

cell encapsulation. Cells (particularly red blood cells, which do not have a nucleus)30

can also be modelled mechanically as capsules.31

When placed in a simple shear flow, an initially-spherical capsule elongates in the32

straining direction of the flow; provided that the flow strength remains moderate,33

a steady state can be reached. Due to the vorticity of the flow, the membrane of34

the capsule rotates around the deformed shape, in a tank-treading motion. This35

behaviour was analysed theoretically in the small deformation limit by Barthès-36

Biesel & Rallison (1981) and later reproduced numerically for large deformations37

(e.g. Ramanujan & Pozrikidis 1998; Lac et al. 2004; Doddi & Bagchi 2008; Li &38
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Sarkar 2008). However, the experimental work of Chang & Olbricht (1993) and39

Walter, Rehage & Leonhard (2001) showed a more complex behaviour of the capsule:40

the deformation and inclination of the capsule shape were found to undergo small41

oscillations, with a periodicity determined by the tank-treading period and thus the42

shear rate. This phenomenon, which shall be referred to as swinging in this article, can43

be interpreted by considering that the capsules had slightly-non-spherical reference44

shapes (Walter et al. report aspect ratios of approximately 0.97). Thus, the successive45

states of the capsule as the membrane tank-treads are not completely equivalent46

and the deformation and inclination can vary over time. Ramanujan & Pozrikidis47

(1998) studied the motion of oblate spheroids in a simple shear flow numerically48

and found that they indeed exhibited swinging, while spherical capsules did not.49

Since even a slight deviation from sphericity in experimental capsules leads to a50

noticeable swinging phenomenon, it appears that numerical models need to take into51

account these effects, even for quasi-spherical capsules. Furthermore, recent advances52

in encapsulation in microfluidic channels (e.g. Xiang et al. 2008; Liu et al. 2009) are53

paving the way for the production of highly-non-spherical capsules with arbitrary54

aspect ratios, whether oblate or prolate. Such artificial capsules have a higher surface-55

area-to-volume ratio than spherical ones and may therefore have interesting transport56

and diffusion applications.57

Another reason for studying non-spherical capsules is understanding the motion58

of red blood cells. It has long been known that red blood cells placed in a59

Couette flow exhibit a solid-like tumbling motion at low shear rates and a tank-60

treading motion at high shear rates (Schmid-Schönbein & Wells 1969; Goldsmith &61

Marlow 1972). However, the recent experimental work of Abkarian, Faivre &62

Viallat (2007) showed that swinging is noticeable at intermediate shear rates.63

This means that the wall of a red blood cell can behave similarly to an elastic64

membrane having a non-spherical reference shape. Such a behaviour is likely to65

be induced by the protein cytoskeleton that lines the intracellular side of the cell66

wall. Abkarian et al. also reported that the tumbling-to-swinging transition occurred67

through an intermittent regime, during which the cell alternates between tumbling and68

swinging. These findings have led to a renewed interest in non-spherical capsules,69

with several theoretical and numerical articles published on the subject in recent70

years.71

Skotheim & Secomb (2007), extending the analysis of Keller & Skalak (1982),72

developed a simplified analytical model in order to predict the regime of deformation73

of a capsule as a function of two parameters: the ratio of the viscosities of the internal74

and external fluids and a capillary number, which compares the work of the fluid75

shear forces to the elastic energy stored in the membrane. This model is based on the76

strong hypothesis that the three-dimensional shape of the capsule remains unchanged77

over time. It postulates that the capsule behaviour is dominated by the competition78

between two energies: the energy provided by the viscous flows, which causes the79

tank-treading motion of the wall, and the strain energy of the membrane, which tends80

to restore the original configuration. The equations of this model lead to the tumbling81

and swinging regimes, as well as the intermittent behaviour at the transition. For a82

given fixed shape of the capsule, a phase diagram can be constructed distinguishing83

the motion modes as a function of the two non-dimensional parameters. The model84

also provides values for the amplitude and the mean value of the oscillations of the85

inclination. In a recent article, Finken, Kessler & Seifert (2010) conducted a more86

general study by performing a systematic expansion of the equations of motion for87

the small deformation of a quasi-spherical capsule. They found that, contrary to the88
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assumption of Skotheim & Secomb (2007), the deformation of the capsule shape89

plays a large part in its dynamics.90

The first three-dimensional numerical study of non-spherical capsules was the91

work of Ramanujan & Pozrikidis (1998) referred to above. Because of computing92

limitations, this study was limited to a few particular cases, mostly for capsules with93

an aspect ratio of 0.9, and did not investigate very low flow rates: it therefore did94

not find the tumbling regime. Sui et al. (2008) studied oblate spheroidal capsules with95

identical viscosities for the internal and external fluids and modelled the membrane96

behaviour with the neo-Hookean law. They found both the tumbling and swinging97

regimes, and explored some values of the parameters governing the two regimes and98

their transition, showing that the oscillation of the capsule deformation was maximum99

at the transition. In the swinging regime, the oscillations were found to decrease as the100

flow strength was increased. Le & Tan (2010) also studied oblate spheroidal capsules,101

with various values of the aspect ratio and viscosity ratio. Large amounts of wrinkling102

were found to occur at low shear rates, rendering the computations unstable. These103

authors also briefly investigated the behaviour of capsule with a biconcave reference104

shape in the tumbling regime.105

Two systematic studies were conducted in order to draw up phase diagrams that106

could be compared with the theory of Skotheim & Secomb (2007). Kessler, Finken &107

Seifert (2008) studied oblate spheroids that were only slightly non-spherical (aspect108

ratio of 0.9). They considered moderate deformation and modelled the capsule wall109

using Hooke’s law, to which they added a small bending stiffness. They showed that,110

even if the analytical model of Skotheim & Secomb provides an insight into the111

physical phenomena governing the capsule deformation, it does not fully account112

for the behaviour of the capsule. In particular, the shape of the capsule does not113

remain constant during motion as well as when the parameters vary. We are, however,114

surprised by some of the results obtained by Kessler et al. (2008) in that study. The115

authors validated their numerical model by providing results on the deformation of116

a very viscous spherical capsule with a viscosity contrast λ= 10 between the internal117

and external phases. The steady state deformation values are larger than those found118

by earlier numerical models for λ = 5 (Ramanujan & Pozrikidis 1998; Doddi &119

Bagchi 2008) or those predicted by the asymptotic theory for highly viscous capsules120

(Barthès-Biesel & Rallison 1981). Furthermore Kessler et al. (2008) used a bending121

modulus which is very large compared to the surface shear modulus. Indeed, if122

one assumes that the membrane is a 3D sheet of isotropic material, the value of123

the bending modulus corresponds to a membrane thickness that is 17 % of the124

capsule radius (the detailed computation is developed in the Discussion section).125

Such a large thickness is expected to create correspondingly large bending effects that126

limit the deformation even further. Being interested in capsules with aspect ratios127

quite different from unity (1.5 and 0.5) and with a membrane dominated by in-plane128

elasticity rather than bending, we do not expect to be able to use the results of Kessler129

et al. for quantitative comparisons.130

Recently, Bagchi & Kalluri (2009) also constructed phase diagrams for oblate131

spheroids (aspect ratios 0.7 and 0.9) with membranes described by the hyperelastic132

law proposed by Skalak et al. (1973). They studied the so-called vacillating–breathing133

regime, which is similar to the swinging regime but with much larger amplitudes of134

the oscillations. It is noteworthy that none of the five numerical studies cited above135

were able to reproduce the intermittent regime described by Abkarian et al. (2007).136

The aim of the present study is to compare the behaviour of prolate and oblate137

spheroidal capsules in a simple shear flow. This work appears to be the first numerical138
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study on the behaviour of prolate spheroidal capsules. Particular attention will be139

paid to the various regimes observed and to the transition between them, with the140

intent of confronting the physical understanding of these motion modes with the141

results of the computations. A systematic study of the influence of the properties of142

the capsule wall (material law and ratio of the area dilatation modulus to the shear143

modulus) will be conducted. However, the influence of the viscosity ratio will not be144

studied; the internal and external fluids will be assumed to have the same viscosity145

throughout the study.146

In §§ 2 and 3, we introduce the problem at stake, the numerical method as well as147

the notations adapted to the study of ellipsoidal capsules. We then present in § 4 the148

characteristics of the tumbling and swinging regimes, and investigate the transition149

between them. The results of a full parametric study are presented in § 5, in which we150

consider the influence of the capillary number on the motion for two membrane laws151

and two aspect ratios. The Poisson ratio is then varied in § 6 and its influence on the152

swinging regime and on the tumbling-to-swinging transition is investigated. Finally,153

a discussion of the key phenomena governing the dynamics of ellipsoidal capsules is154

conducted in § 7.155

2. Problem description156

The motion of a capsule in flow can now be considered as a classical problem,157

which is only briefly outlined here (for more details, see Pozrikidis 1992; Barthès-Biesel158

2003).159

2.1. Hydrodynamics160

Consider a capsule of typical dimension �, filled with an incompressible liquid and161

enclosed by an infinitely thin membrane of surface shear elastic modulus Gs and area162

dilatation modulus Ks . The capsule is freely suspended in another incompressible163

liquid undergoing a simple shear flow with shear rate γ̇ . The external and internal164

liquids are Newtonian with equal viscosity µ and density ρ. Gravitational effects are165

thus neglected as the capsule is neutrally buoyant. The Reynolds number of the flow166

based on the capsule dimension, Re = ργ̇ �2/µ, is assumed to be very small, so that167

the motion of the internal and external liquids is governed by the Stokes equations. In168

the laboratory Cartesian frame of reference (e1, e2, e3) centred at the capsule centre169

of mass, the interfacial velocity can be written in terms of an integral equation over170

the instantaneous deformed capsule surface S (Pozrikidis 1992)171

v(x) = v∞(x) − 1

8πµ

∫
S

G(x, y) · [σ ( y)] · n( y) dS( y) , (2.1)

where [σ ] is the stress tensor jump across the interface, n is the outward unit normal172

vector to S and v∞ is the undisturbed flow velocity. The Oseen tensor G is defined as173

G(x, y) =
1

r
I +

1

r3
r ⊗ r , (2.2)

where r = x − y, r = ‖r‖ and I is the identity tensor. This formulation ensures that174

the velocity disturbance vanishes far from the capsule. Two fluid–structure coupling175

conditions are next introduced:176

(i) The kinematic condition requires continuity of the membrane velocity and of177

the interfacial fluid velocity178

v(x, t) =
∂x(X, t)

∂t
, x ∈ S . (2.3)
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The vector x is the current position of a membrane material point, which is located179

at X in the reference state.180

(ii) The dynamic condition requires that the load q exerted on the membrane be181

equal to the viscous traction’s jump across the interface182

[σ (x)] · n = q. (2.4)

An important parameter of the problem is the ratio of viscous and elastic forces183

expressed by the dimensionless group184

Ca =
µγ̇ �

Gs

, (2.5)

that plays the role of a capillary number, where surface tension is replaced by the185

membrane shear elastic modulus. For a given capsule, Ca may also be viewed as a186

non-dimensional shear rate.187

2.2. Membrane mechanics188

When the thickness of a capsule membrane is small compared to the capsule189

dimensions and typical radius of curvature, the membrane can be modelled as a190

hyperelastic surface devoid of bending resistance (e.g. Skalak et al. 1973). Even with191

this simplification, quantifying the capsule deformation is a complicated geometrical192

problem involving the description of curved surfaces and their deformation. We will193

briefly outline the basic necessary concepts.194

A membrane material point, identified by its position X in the reference state, is195

displaced to the position x(X, t) in the deformed state. By convention, all quantities196

in the reference state are denoted by capital letters. Because the bending stiffness is197

neglected, deformation occurs only in the plane of the membrane and the normal198

vector to the surface remains normal during deformation. The gradient of the199

transformation F is defined as200

dx = F · dX . (2.6)

The local deformation of the surface can be measured by the Green–Lagrange strain201

tensor202

e = 1
2
(FT · F − I). (2.7)

The membrane deformation can also be quantified by the principal dilatation ratios203

λ1 and λ2 in its plane. Two deformation invariants are generally used:204

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1 = J 2

s − 1. (2.8)

The Jacobian Js = λ1λ2 represents the ratio of the deformed to the undeformed205

surface areas.206

Elastic stresses in an infinitely thin membrane are replaced by elastic tensions207

corresponding to forces per unit arclength measured in the plane of the membrane.208

When the membrane is a two-dimensional isotropic material, the Cauchy tension209

tensor τ can be related to a strain energy function per unit area of undeformed210

membrane ws(I1, I2) by211

τ =
1

Js

F · ∂ws

∂e
· FT. (2.9)

A number of laws are available to model thin hyperelastic membranes (Oden 1972).212

Different material behaviours can be described for a large deformation, including the213

strain-softening behaviour of gelled membranes exhibiting rubber-like elasticity or the214

strain-hardening behaviour of membranes made of a polymerized network with strong215
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covalent links. Only simple laws with constant material coefficients are considered in216

this analysis. In the limit of small deformation, all laws reduce to the two-dimensional217

Hooke law with surface shear elastic modulus Gs and surface Poisson ratio νs218

(νs ∈ ] − 1, +1[). The area dilatation modulus is then Ks = Gs(1 + νs)/(1 − νs) and an219

area-incompressible membrane corresponds to νs =1.220

The widely used neo-Hookean law (NH) describes the behaviour of an infinitely221

thin sheet of a three-dimensional isotropic and incompressible material222

wNH
s =

GNH
s

2

(
I1 − 1 +

1

I2 + 1

)
. (2.10)

Because of volume incompressibility, area dilatation is balanced by membrane223

thinning, and the area dilatation modulus is KNH
s =3GNH

s . Another law (Sk) has224

been derived by Skalak et al. (1973) for two-dimensional materials with independent225

surface shear and area dilatation moduli226

wSk
s =

GSk
s

4

(
I 2
1 + 2I1 − 2I2 + CI 2

2

)
, C > −1/2. (2.11)

The area dilatation modulus is KSk
s = GSk

s (1 + 2C). The Sk law was initially designed227

to model the area-incompressible membrane of biological cells, such as red blood228

cells, corresponding to C � 1. However, the law is very general and can be used to229

also model other types of membranes, for which the shear and area dilatation moduli230

are of the same order of magnitude, as in the case of albumin–alginate membranes231

(Carin et al. 2003).232

Equivalence between the laws arises when233

Gs = GNH
s , νs = 1/2, for NH law, (2.12)

and234

Gs = GSk
s , νs =

C

1 + C
, for Sk law. (2.13)

When C =1, the NH and Sk laws predict the same small deformation behaviour of235

a membrane with Ks = 3Gs , corresponding to νs = 1/2. However, different nonlinear236

tension–strain relations are obtained under a large deformation. In particular, it237

can be easily checked that the NH law is strain-softening under uniaxial stretching,238

whereas the Sk law is strain-hardening (Barthès-Biesel, Diaz & Dhenin 2002).239

Because of the negligible inertia of a membrane with small thickness, the membrane240

motion is governed by the local equilibrium equation241

∇s · τ + q = 0, (2.14)

where q is the external load exerted by the fluids and ∇s · is the surface divergence242

operator in the deformed configuration. Equation (2.14) can also be written in a weak243

form using the virtual work principle: for any virtual displacement field û, balancing244

the internal and external virtual work requires245 ∫
S

û · q dS −
∫

S

ε̂(û) : τ dS = 0, (2.15)

where ε̂(û) = 1
2
(∇s û + ∇s ûT) is the virtual strain tensor.246

Since the bending modulus of the membrane has been neglected, the capsule wall247

should be under tension everywhere; otherwise it may buckle locally in the regions248

where the elastic tensions are compressive. This phenomenon is well known for thin249



Ellipsoidal capsules in simple shear flow 7

elastic sheets, see for example Cerda & Mahadevan (2003) and Luo & Pozrikidis250

(2007). In that case, a full shell model including bending moments and transverse251

shear forces would be necessary to describe properly the mechanics of the capsule252

wall.253

2.3. Motion of an ellipsoidal capsule in a simple shear flow254

We consider a capsule that is initially spheroidal in its reference undeformed state,255

with semi-axes along the revolution axis and the orthogonal directions denoted a256

and b, respectively. If a/b < 1, the spheroid is oblate and if a/b > 1, it is prolate. We257

choose as length scale � the radius of the sphere, which has the same volume as the258

ellipsoid259

� =
3

√
ab2 = a(b/a)2/3. (2.16)

The capsule is freely suspended in a simple shear flow in the (x1, x2) plane260

v∞ = γ̇ x2 e1. (2.17)

When the initial shape of the capsule is spherical, all the material points are equivalent261

and the capsule takes a steady deformed profile around which the membrane rotates262

because of the flow vorticity (tank-treading motion). However, when the reference shape263

is ellipsoidal, the membrane points are not equivalent. Consequently, a stationary264

steady state is not possible and a periodic motion of the deformed capsule must265

occur. To simplify the situation, we consider a capsule with its revolution axis along266

e2 at time t = 0. Thus, the initial profile equation is given by267 (
X1

b

)2

+

(
X2

a

)2

+

(
X3

b

)2

= 1. (2.18)

Since the capsule profile may be quite difficult to characterize, we evaluate the capsule268

distortion by the deformation of its ellipsoid of inertia (Ramanujan & Pozrikidis269

1998). This method is widely used, but gives approximate results when the deformed270

particle shape is far from ellipsoidal. By symmetry, the material points initially271

located in the shear plane (x1, x2) remain in it and two of the principal axes of the272

ellipsoid of inertia with semi-axes L1 and L2 (L1 � L2) are also located in the shear273

plane. Correspondingly, it is convenient to quantify the three-dimensional capsule274

deformation with the deformation of the intersection of the profile with the shear275

plane. The Taylor deformation parameter is then defined as276

D12 =
L1 − L2

L1 + L2

. (2.19)

Note that, contrary to a spherical capsule, the initial value of D12 is not zero and is277

given by D0
12 = |a − b|/(a + b).278

The motion of a capsule is quite complex as it continuously undergoes deformation279

and orientation change over time, while the membrane rotates around it. To280

decompose and evaluate these two motion components, we adopt the notations281

of Kessler et al. (2008) and follow in time the position of a material point P in the282

shear plane. As shown in figure 1, the angle between OP and e1 is denoted α(t), while283

the angle between the ellipsoid long axis (L1) and e1 is denoted β(t). The difference284

δ(t) = α(t) − β(t) − [α(0) − β(0)] measures the angular displacement of P with respect285

to its initial position in the ellipsoid principal axes. By definition, δ(0) = 0. We consider286

the values of β(t) and δ(t) modulo 2π and arbitrarily limit their respective variations287

to the interval [−π, π].288
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δ

α

β

P

P

O

L1

L2

e1

e2

(a) (b)

Figure 1. Representation in the shear plane (e1, e2) of (a) the initial state for prolate (a/b = 2,
full line) and oblate (a/b = 0.5, dashed line) ellipsoidal capsules of equal volume and of (b) the
ellipsoid of inertia of the deformed capsule with principal semi-axes L1 and L2 in the shear
plane. The angle β gives the inclination of the deformed capsule; α shows the instantaneous
position of the membrane material point P and δ(t) the position of P with respect to the
ellipsoid principal axes.

When a periodic steady state is reached, we measure the period T of the capsule289

motion as the period of α(t). For the various quantities of the problem, we compute290

their mean value (denoted with an over line, e.g. β̄) and their peak-to-peak amplitude291

(denoted by brackets, e.g. [β]) over one period.292

3. Numerical method293

The objective is to compute the motion and deformation of the capsule under the294

hydrodynamic stress until a periodic state is reached.295

At time t = 0, the undeformed capsule is positioned in the external fluid (see § 2.3)296

and the flow is started. At any given time t , the position x(X, t) of a membrane297

material point is known. The deformation of the capsule membrane may therefore298

be computed from (2.7) by comparison with the initial reference state. The elastic299

tensions τ follow from (2.9), where the strain energy function ws is given by the300

membrane constitutive law. The variational form (2.15) of the membrane equilibrium301

equation is solved by means of a finite-element method. It provides the values of the302

load q and thus of the traction jump [σ ] · n on the membrane. The velocity v(x) of the303

membrane points is then computed explicitly from (2.1) using the boundary integral304

method. Finally, time integration of the kinematic condition (2.3) leads to the new305

position of the membrane material points and the process is repeated.306

This algorithm is implemented by coupling the boundary integral method that307

solves for the internal and external flows with a membrane finite-element method that308

solves for the deformation of the capsule wall. This method, introduced by Walter309

et al. (2010) for initially-spherical capsules, was shown to be particularly efficient310

to deal with cases where the membrane is undergoing compression. In this case,311

discretizing the local equilibrium equation (2.14) requires the use of C2-continuous312

functions, such as cubic B-splines (Lac et al. 2004). When the membrane grid points are313

squeezed together by compression, the polynomial tends to oscillate a lot, rendering314

the numerical scheme eventually unstable. Solving the membrane equilibrium equation315

(2.15) instead provides a better numerical stability, as the equation is integrated over316
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the surface. It was indeed shown that the method of Walter et al. (2010) was very317

stable in the presence of in-plane compression.318

In the following, we briefly explain the coupling algorithm steps; more details may319

be found in the article by Walter et al. (2010) or in the book chapter by Barthès-Biesel,320

Walter & Salsac (2010).321

3.1. Mesh generation322

One of the main advantages of the boundary integral method besides its accuracy, is323

the need to only mesh the capsule wall surface. Moreover, a single mesh can be used324

to discretize all the unknowns of the problem: the position x, the velocity v, the load325

q and the virtual displacement û. The capsule wall is meshed using curved, triangular326

P2 elements with six nodes (Cook et al. 2001), based on a quadratic interpolation of327

the unknowns within each element, which provides continuity from one element to328

the next, but discontinuous derivatives.329

The initial mesh is constructed by first inscribing an icosahedron (regular330

polyhedron with 20 triangular faces) in a sphere. A new node is placed at the331

middle of each edge, so that each element is divided into four new elements; the332

new node is projected onto the sphere. The procedure is repeated until the desired333

number of elements is reached. To construct the P2 elements, the edges are cut in half334

one last time and the nodes are projected onto the sphere (Ramanujan & Pozrikidis335

1998). Finally, the mesh undergoes a linear transformation in one direction to create336

a spheroid with the desired aspect ratio.337

3.2. Finite-element procedure338

For a given instantaneous deformed shape, we define a finite-element space Vh339

corresponding to the mesh described above. The discretized solid problem consists of340

finding q ∈ Vh, such that the virtual work principle (2.15) is satisfied, i.e. ∀û ∈ Vh.341

We are going to show that it can be written as a system of linear equations involving342

the values of q and û at the nodes of the mesh, denoted respectively {q} and {û}.343

Considering (2.15), one can see that the left-hand side depends linearly on q and344

û, and therefore on their nodal values; it can be written element-wise as345

∫
S

û · q dS =
∑

el

{ûel}T[Mel]{qel}, (3.1)

where the vectors {qel} and {ûel} hold the values of the load and the virtual346

displacement at the nodes of each element and the matrix [Mel] depends only on347

the metric properties of the element. In the next step, the elementary vectors and348

matrices are assembled into their global counterparts {q}, {û} and [M] (see e.g. Cook349

et al. 2001). We thus obtain350

∫
S

û · q dS = {û}T[M]{q}, (3.2)

the matrix [M] being a sparse matrix. Likewise, the right-hand side of (2.15) depends351

linearly on û and its nodal components; it can thus be written as352

∫
S

ε̂(û) : τ dS =
∑

el

{ûel}T{Rel}. (3.3)
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One can note that the vector {Rel} depends nonlinearly on the current deformation,353

as it contains the tensions τ . After assemblage, the right-hand side becomes354 ∫
S

ε̂(û) : τ dS = {û}T{R}. (3.4)

Details on the construction of [M] and {R} are given in the article by Walter et al.355

(2010).356

The discretized solid problem therefore becomes a linear system, from which the357

test function {û} can be eliminated, yielding358

[M]{q} = {R}. (3.5)

In order to solve the solid problem, [M] and {R} are first computed; surface359

integration is performed using six integration points on each element (Hammer,360

Marlowe & Stroud 1956). Equation (3.5) is then solved using the sparse solver361

PARDISO (Schenk & Gärtner 2004, 2006), yielding the load q on the capsule wall.362

3.3. Boundary integrals363

Once the load q is known, the velocity v at the points of the membrane can be364

obtained explicitly from (2.1). The equation is discretized on the same mesh as the365

solid problem. Twelve integration points are used on each element. Note that, when366

the integration point y approaches the node point x, the kernel G becomes singular.367

Even if, numerically, the integration points do not coincide with the nodes, the368

distance r between them can become small enough to generate large numerical errors.369

When x and y belong to the same element, we switch to polar coordinates centred370

on x. This introduces a Jacobian, which goes to 0 as fast as r and eliminates the371

singularity in G. In this case, six Gauss points are used for integration along each of372

the polar coordinates.373

3.4. Stability and convergence374

For all the following computations, we use a mesh with NE = 1280 curved P2375

elements, corresponding to NN = 2562 nodes. The numerical method was shown376

to be conditionally stable when the time step satisfies the condition377

γ̇ 	t < O(hCa), (3.6)

where h is the typical non-dimensional mesh size (Walter et al. 2010). For Ca � 0.5,378

we use γ̇ 	t = 5 × 10−3, and decrease the time step proportionally with Ca for lower379

values. When using Skalak’s law for C > 1, we find that the stability condition becomes380

γ̇ 	t <O(hCa/C); the time step is then modified accordingly. As shown by Walter381

et al. (2010), the convergence error obtained with these values of the mesh and time382

step is lower than 0.1 %.383

It turns out that in many cases, part of the membrane undergoes compression.384

However, the numerical method introduces a membrane stiffness that contributes385

to the stability of the problem. It allows the numerical procedure to remain stable386

when in-plane compression and high curvatures may render other methods (e.g. B-387

spline projection) unstable. While it stabilizes the numerical procedure, the stiffness388

introduced is a byproduct of the numerical method: it, therefore, cannot be controlled389

or used to model the physical bending resistance of a capsule.390

3.5. Elastic energy391

In order to analyse the computational results, we propose to look at the elastic energy392

stored in the capsule wall. An energy Em corresponding to the in-plane stresses can393
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be directly computed from the Lagrangian strain energy ws for a given deformed394

state S as395

Em(S) =

∫
S0

ws(X, t) dS0. (3.7)

When the membrane behaviour follows Skalak’s law, it is interesting to divide Em into396

two parts: the first part EG
m corresponds to shear strain effects and the second part397

EK
m to areal dilatation effects. Separating both effects is particularly useful to study398

the influence of the parameter C = Ks/2Gs − 1/2. The two terms can be expressed as399

EG
m =

∫
S0

Gs

4

(
I 2
1 + 2I1 − 2I2 − I 2

2

2

)
dS0 , EK

m =

∫
S0

2KsI
2
2 dS0. (3.8)

Note that, with this expression, the strain component of the membrane energy EG
m400

may take negative values; the total energy Em, however, always remains positive.401

Even though the membrane model does not incorporate a bending stiffness, we are402

at times interested in estimating the importance of the wrinkling phenomenon, which403

occurs due to in-plane compression. We thus compute an approximate curvature404

energy Eb405

Eb =

∫
S

κ

2
(2H )2 dS , (3.9)

where κ is the bending modulus and H is the mean curvature (Helfrich 1973). As406

this definition of Eb implies a linear mechanical behaviour of the capsule wall and407

does not take into account the capsule reference curvature, it cannot be considered408

as strictly accurate. It is, however, sufficient to estimate ‘how wrinkled’ a capsule is.409

It can be noted that the absence of a reference curvature leads to a non-zero value410

of the curvature energy E0
b in the reference state.411

Computing exactly the mean curvature H would require a C2-continuous412

representation of the capsule wall, whereas our discretization is only piecewise C2-413

continuous. The curvature is therefore computed approximately from the angles414

between the normals to contiguous elements. Each P2 element is divided into four415

flat, three-node P1 elements. Following Dyn et al. (2001), the mean curvature at a416

given node n is approximated by417

|Hn| ≈ 1

4Sn

ne∑
i=1

li |θi | , (3.10)

where ne is the number of edges connected to node n, li is the length of edge i, θi is418

the angle between the normal vectors to the two elements connected at edge i and Sn419

is the Voronoi area associated with node n. The curvature energy may then take the420

form421

Eb ≈
NN∑
n=1

2κ |Hn|2Sn. (3.11)

4. Motion modes: tumbling and swinging422

Depending on the value of the capillary number Ca, a given ellipsoidal capsule423

may exhibit two types of motion. At low flow strength, a ‘solid-like’ regime occurs,424

called tumbling. The capsule rotates like a quasi-rigid ellipsoid subjected to the flow425

vorticity, while the internal flow is almost stationary with respect to the membrane.426
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(a) Ca = 0.1

19 21.5 24 25 27.5

(b) Ca = 0.3

20.5 24 26 27.5 29.5

(c) Ca = 0.9

23.5 25.5 30.5 32 34

Figure 2. (a)–(c) Evolution of the capsule shape in the shear plane over one half-period. The
initial shape is a prolate spheroid, a/b = 2, and the membrane follows the Sk law with C = 1.
The grey scale corresponds to the normal component of the load, q · n. The dot shows the
position of material point P, originally on the short axis. The value of the non-dimensional
time step γ̇ t is given below each shape.

At higher flow strength, a ‘fluid-like’ regime occurs, called swinging. The membrane427

rotates around the deformed shape of the capsule similarly to the tank-treading428

motion observed for spherical capsules. Due to the initial anisotropy of the reference429

shape, the deformation of the capsule varies periodically with time in both regimes.430

As shown in figures 2 and 3, oblate and prolate spheroids both exhibit the two431

regimes. We now illustrate the salient features of the two types of motion for a432

prolate ellipsoidal capsule with initial aspect ratio a/b = 2 (a/� = 1.59) and an Sk433

membrane with C = 1 (figure 2). From here on, we assume the material point P to434

be initially on the small axis of the ellipsoid.435

4.1. Tumbling436

Figure 2(a) shows a tumbling capsule at different times within one half-period at437

Ca = 0.1. The capsule motion corresponds to a rigid-body rotation as illustrated438

by the fact that point P remains in the vicinity of its initial location. The time439

evolution of the characteristic angles of the motion is shown in figure 4(a). The angle440

β (measuring the major axis orientation) varies between −π and π, which indicates441

that the capsule rotates like a solid body. The small oscillations of the angle δ about442

zero show that the material points experience small displacements about their initial443

position and that the membrane undergoes moderate deformation. Nevertheless,444

owing to the initial shape flaccidity (measured by the surface area to volume ratio),445

the membrane can undergo large displacements without large deformation. The large446

displacements are shown by the oscillation of the Taylor parameter D12 (figure 4b).447

The profile deformation D12 is maximum when the ellipsoid long axis is aligned with448

the straining direction of the flow, i.e. β ≈ π/4 (figure 2a, γ̇ t =19). This occurs for449
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(a) Ca = 0.01

19 20 22

(b) Ca = 0.03

19.5 21 22.5

(c) Ca = 0.5

14 16.5

14.5 17

17.5 19.5 23.5 25.5 27

Figure 3. (a)–(c) Evolution of the capsule shape in the shear plane over one half-period. The
initial shape is an oblate spheroid, a/b = 0.5, and the membrane follows the Sk law with C = 1.
The grey scale corresponds to the normal component of the load, q · n. The dot shows the
position of material point P, originally on the short axis. The value of the non-dimensional
time step γ̇ t is given below each shape.
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Figure 4. Tumbling regime (Sk law C = 1, a/b = 2, Ca =0.1): (a) The oscillation of angle β
between −π and π indicates that the capsule rotates as a whole, whereas the small oscillation
of δ shows that point P does not deviate much from its initial position. (b) Taylor parameter
D12 as a function of β over one period; the initial value D0

12 is indicated by the dotted line.

values of β slightly below π/4, since the flow vorticity tends to tilt the capsule in the450

flow direction. Such a phenomenon is also observed for initially-spherical capsules451

(Ramanujan & Pozrikidis 1998; Lac et al. 2004). Conversely, the minimum values of452

D12 are observed when the ellipsoid long axis is around 3π/4 (figure 2a, γ̇ t = 24). It453

corresponds to the capsule position where the compression exerted by the external454

flow is maximum.455
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Figure 5. Swinging regime (Sk law C = 1, a/b = 2, Ca = 1.2): (a) The small variation of
β indicates that the capsule oscillates around a constant angulation, whereas the periodic
variation of δ between −π and π shows the membrane rotation. (b) D12 as a function of δ over
one period; the initial value D0

12 is indicated by the dotted line.

4.2. Swinging456

The same capsule is now studied at a capillary number Ca =0.9 in the swinging457

regime. Figure 2(c) shows the evolution of the capsule shape at different times over458

one half-period. The capsule assumes an elongated shape with a long axis aligned459

with the maximum flow strain direction, while the membrane continuously rotates460

around the deformed shape. In the case of swinging, the angle β oscillates slightly461

around a mean value between 0 and π/4 (figure 5a). The rotation of the membrane462

is evidenced by the variations of the angle δ(t) between −π and π. Figure 5(b) shows463

the periodic oscillation of the deformation D12 as a function of δ. In the swinging464

regime, δ can be considered as a marker of the initial position of the membrane465

material points (this role is played by β in the tumbling regime). The capsule reaches466

its maximum deformation for δ ≈ 0, π, i.e. when the material points located originally467

on the larger axis of the ellipsoid are in the straining direction (figure 2c, γ̇ t = 23.5).468

Conversely, D12 is minimum when the points originally on the smaller axis are in469

the straining direction, or equivalently, when the points originally on the larger axis470

are aligned with the flow compression direction, i.e. for δ ≈ ± π/2 (γ̇ t = 30.5). It can471

be noted that D12 oscillates around a mean value that is larger in the swinging regime472

than in the tumbling regime. Such oscillations of D12 had previously been observed in473

the swinging regime for artificial capsules that were not perfectly spherical (Chang &474

Olbricht 1993; Walter et al. 2001).475

4.3. Transition476

In order to study the tumbling-to-swinging transition, we consider the same capsule477

(a/b = 2) at a capillary number Ca = 0.3. One characteristic difference between the478

tumbling and swinging regimes is the time evolution of the capsule long axis. In the479

tumbling regime, the long axis rotates over time so that [β] = 2π; in the swinging480

regime, it oscillates around a mean value β̄ and [β] is small. The transition has thus481

been previously defined by the value of capillary number for which β no longer482

varies between [−π, π] (Kessler et al. 2008; Bagchi & Kalluri 2009). However, we483

believe that such a criterion is not quite appropriate to determine the critical capillary484

number Ca� at which the transition occurs. Indeed, figure 2(b) shows the capsule485

profile at various times in one half-period. During each half-cycle, the capsule takes486

an almost circular profile in the shear plane (here at γ̇ t =26). At this time, the487
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Figure 6. Tumbling-to-swinging transition (Sk law C = 1, a/b = 2, Ca = 0.3): (a) Taylor
parameter D12 as a function of time. (b) Approximate bending energy Eb as a function
of time. In both cases, the initial value is indicated by the dotted line. The largest values of Eb

correspond to the minimum values of D12.

two principal axes of the ellipsoid of inertia in the shear plane have roughly the488

same length (L1 ≈ L2), thus there is no clearly identified ‘long’ axis and β cannot be489

measured. Consequently, it is impractical to use β to determine the critical capillary490

number Ca�. At transition, the capsule profile becomes quasi-circular in the shear491

plane, so that D12 ≈ 0. Thus, transition occurs when the minimum value of the Taylor492

parameter over one period, denoted min D12, becomes almost zero, as in figure 6(a).493

However, the shape of the capsule no longer being ellipsoidal when D12 ≈ 0, the494

ellipsoid of inertia cannot be entirely relied upon to define the lengths of the axes.495

Consequently, setting the transition at the value of Ca for which minD12 reaches its496

minimum value would provide a false sense of precision. We thus propose to define497

the critical capillary number Ca� as an interval using the criterion498

min D12 < 0.05. (4.1)

This corresponds to a relative difference of 10 % between the lengths L1 and L2 of499

the axes.500

Figure 2 shows that the transition is associated with an increased wrinkling of501

the capsule wall. The most extensive wrinkling is seen to occur as D12 approaches502

0, i.e. as the long axis of the undeformed ellipsoid becomes shorter. To estimate the503

importance of wrinkles, we plot in figure 6(b) the time evolution of the approximate504

bending energy Eb defined in (3.9). Initially, the capsule has a small bending energy505

E0
b/κ = 30.9 due only to its curved shape. A sharp increase in the bending energy506

occurs when D12 goes through its minimum value. However, wrinkling is transient507

during the cycle and the wrinkles disappear (Eb minimum) when the capsule long508

axis is in the direction of the viscous stretch (γ̇ t = 20.5 in figures 2b and 6b).509

Having defined the transition in practical terms, let us briefly analyse it from an510

energetic perspective. In their semi-analytical theory, Skotheim & Secomb (2007)511

suppose that the shape of the capsule remains constant and postulate that the strain512

energy of the membrane varies as Em =E�
m sin2 δ, where E�

m is an energy barrier. The513

tank-treading motion occurs when the external flow transfers enough energy to the514

capsule membrane to reach E�
m. Otherwise, δ oscillates around 0, which corresponds515

to the tumbling motion. Figure 7(a) shows the actual evolution of Em as a function of516

δ for two values of Ca. Slightly above transition (Ca = 0.4), Em is indeed maximum517

for δ = ± π/2. However, Em does not go to 0 when δ ≈ 0, as postulated by the518
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Figure 7. (a) Total strain energy of the capsule wall and (b) local strain energy at point P for
a capsule around the tumbling-to-swinging transition. The capsule is tumbling at Ca = 0.20
(solid line) and swinging at Ca =0.40 (dash line).

model of Skotheim & Secomb (2007). This is due to the fact that the capsule shape519

continuously changes over time and that the capsule is in a deformed state even when520

δ ≈ 0: its overall membrane energy is therefore never zero. Since the transition occurs521

when material points initially on the short axis of the capsule manage to go on to522

the long axis, it is interesting to consider the energy per unit area ws of the material523

point P, as shown in figure 7(b). In the swinging case (Ca = 0.4), the energy of point524

P is maximum when δ = ± π/2, i.e. when the material point, initially on the short525

axis, moves on to the long axis. For the transition to occur, the critical stage for point526

P is to have enough energy to go beyond δ = ± π/2. This is not the case at Ca =0.2:527

point P moves away from its initial position, but returns towards it when the energy528

associated with the membrane deformation equals the total available energy. It thus529

appears that the transition can be understood as the crossing of an energy barrier as530

proposed by Skotheim & Secomb (2007). However, the energy variation with respect531

to δ is more complex than predicted in the theoretical model because the capsule532

shape changes over time.533

4.4. Effect of capsule shape534

In the following sections, all studies are conducted for two initial values of the aspect535

ratio: a/b = 0.5 (oblate spheroid) and a/b = 2 (prolate spheroid). These two aspect536

ratios are well-suited for comparing the influence of the capsule initial shape. The537

two spheroids have, by definition, the same internal volume and therefore the same538

length scale, l. With initial surface areas differing by less than 2 %, the two capsules539

essentially have the same initial value of the surface-area-to-volume ratio. They also540

share the same initial value for the Taylor parameter in the shear plane (D0
12 = 0.33).541

Any difference in their behaviour is then only due to the difference in their initial542

geometry in the orthogonal direction. As shown in figures 2 and 3, the behaviours of543

the two types of capsules are qualitatively similar; tumbling and swinging occur in544

both cases. Quantitative differences exist, however, which are detailed in the following545

sections.546

5. Influence of the capillary number and material law547

We now conduct a systematic study of the motion of a spheroidal capsule in a548

simple shear flow as a function of the capillary number. Two material laws are used549

to describe the membrane, the neo-Hookean law (2.10) and Skalak’s law (2.11) with550
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Figure 8. Peak-to-peak amplitude of the oscillations of the angles β and δ for two initial
shapes and two material laws. (a) Oblate spheroid, a/b = 0.5. (b) Prolate spheroid, a/b =2.0.

C = 1, which have the same behaviour at small deformations. Two initial aspect ratios551

are studied: a/b =0.5 and a/b = 2. This makes it possible to compare the behaviour552

of oblate and prolate spheroids, but a systematic study of the influence of the aspect553

ratio is outside the scope of this article.554

5.1. Kinematics555

Figure 8 shows the peak-to-peak amplitudes of the angles β and δ for the two556

initial shapes and material laws. The general evolution of the angles depends only557

moderately on the capsule initial shape (oblate/prolate), but strongly on the motion558

regime (tumbling/swinging). No data are shown in the interval of the transition, since559

the angles can no longer be determined accurately as discussed in § 4.3. During the560

tumbling regime ([β] = 2π), the oscillations [δ] increase with Ca. This means that561

the membrane deformation oscillation increases with flow strength. In the swinging562

regime, as the membrane tank-treads around the capsule ([δ] = 2π), the amplitude [β]563

of the oscillation of the capsule inclination decreases with Ca. Indeed, as the capsule564

gets more deformed, the influence of the initial ellipsoidal shape fades out and565

the capsule behaviour tends towards that of an initially-spherical capsule (constant566

angle β).567

We show the minimum value min D12 as a function of Ca and membrane law in568

figure 9. It is clear that minD12 indeed goes through a global minimum in all cases.569

The criterion min D12 < 0.05 provides values of Ca� confined within a small interval,570

because of the sharp variations of min D12 around the global minimum. To determine571

the intervals for the critical capillary number Ca�, the capillary number was increased572

systematically by steps of 0.01 for oblate spheroids and by steps of 0.05 for prolate573

spheroids. The values of capillary number for which min D12 < 0.05 are provided in574

table 1. Note that, for a given aspect ratio, the Ca� intervals are almost equal for the575

two material laws considered. This is due to the fact that the transition takes place576

at moderate deformation levels, for which the two laws behave similarly. However,577

oblate and prolate capsules have values of Ca� that differ by a factor ∼ 10 in order578

of magnitude. This point will be discussed in § 7.2.579

In order to evaluate the influence of the capsule material law and initial shape on580

deformation, we plot D̄12 and the mean axis length L̄3/� along e3 as functions of581

Ca for the two laws and the two initial shapes in figure 10. Only in the tumbling582

regime, can a difference be observed between oblate and prolate capsules. Indeed,583

oblate capsules experience an initial decrease in D̄12 with Ca, whereas in the swinging584
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a/b = 0.5 a/b = 1 a/b = 2

NH Ca� ∈ [0.02, 0.04] � Ca� ∈ [0.20, 0.25]
CaH = 0.70 CaH = 0.63 CaH = 0.35

Sk, C = 1 Ca� ∈ [0.02, 0.05] � Ca� ∈ [0.25, 0.35]
CaH = 2.5 CaH = 2.4 CaH = 1.4

Table 1. Values of the critical capillary numbers Ca� and CaH for the cases studied. The
values of CaH are provided for an initially-spherical capsule for reference (as given by Lac
et al. 2004).
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Figure 9. Minimum value of the Taylor parameter over one period for an oblate spheroid
(a/b =0.5, filled symbols) and a prolate spheroid (a/b = 2, open symbols). �: NH law; �: Sk
law with C = 1. The horizontal line corresponds to the limit minD12 = 0.05 used to define the
transition.

regime, D̄12 increases with Ca in both cases, while the influence of initial shape585

eventually fades out. A larger value of Ca is required to reach the same value of586

D̄12 with the Sk law than with the NH law. If the NH and Sk (C = 1) laws behave587

similarly at small deformation levels, they are known to diverge at larger deformation,588

the Sk law exhibiting a strain-hardening behaviour and the NH law a strain-softening589

one. As shown in figure 10(b), L̄3/� tends towards a constant value when Ca increases590

for the Sk law. The deformation induced by the shear flow therefore occurs mainly591

along the profile in the shear plane (x1, x2). No such convergence is found for the NH592

law.593

5.2. Membrane tensions594

It is shown in figure 2 that widespread in-plane compression can occur. In the595

absence of a physical bending stiffness in the numerical model, such compressive596

tensions cause numerical wrinkles. In order to study in-plane compression, figures 11597

and 12 show the minimum principal tension denoted τmin(t) and its maximum value598
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Figure 10. Mean values of the Taylor parameter D̄12 (a) and semi-diameter L̄3 (b) of the
ellipsoid of inertia for an oblate spheroid (a/b = 0.5, filled symbols) and a prolate spheroid
(a/b = 2, open symbols). �: NH law; �: Sk law with C = 1.

over one period denoted max τmin,599

max τmin = max
t

(τmin(t)) = max
t

(
min

x,i=1,2
(τi(x, t))

)
, (5.1)

where τi are the principal tensions. In all the cases studied, τmin is negative through600

most of the period indicating that compression always occurs somewhere for601

spheroidal capsules (see examples in figure 11). The positive values of τmin occur when602

the long axis of the original ellipsoid is in the straining direction, i.e. β ≈ π/4, −3π/4603

in the tumbling regime and δ ≈ 0, −π in the swinging regime.604

Figure 12 shows that, for large values of Ca, even the maximum value of τmin is605

negative. It means that negative tensions occur even when the capsule reaches its606

maximum elongation. The reason is that, at large values of Ca, negative tensions607

and wrinkles appear at the tips of the elongated capsule (figure 13). Lac et al. (2004)608

observed this phenomenon for an initially-spherical capsule and defined CaH as the609

capillary number above which negative tensions appear at steady state. In the case610

of spheroidal capsules, we define CaH as the critical capillary number above which611

max τmin < 0. The values of CaH found for the different cases studied are provided in612

table 1.613

In order to estimate the amount of wrinkling caused by the negative tensions, the614

maximum value of the approximate curvature energy Eb over one period is shown615
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Figure 11. Minimum principal tension as a function of the angles β and δ. The capsule is
a prolate spheroid (a/b = 2) and the membrane follows the Sk law with C =1. (a) Tumbling
regime, Ca = 0.1; (b) swinging regime, Ca = 0.9.
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Figure 12. Maximum value during a period of the minimum principal tension for an oblate
spheroid (a/b = 0.5, filled symbols) and a prolate spheroid (a/b = 2, open symbols). �: NH
law; �: Sk law with C = 1.

in figure 14. For all values of Ca, max Eb is far above the value computed for the616

initial shape (E0
b/κ = 33.8 and 30.9 for oblate and prolate spheroids, respectively).617

This confirms that the capsule undergoes large wrinkling during motion. Except618

for a prolate NH spheroid, the largest amount of wrinkling occurs in the swinging619

regime, for values of Ca slightly above Ca�. During tank-treading motion, strong620

wrinkling tends to occur when δ ≈ π/2, i.e. when the long axis of the initial ellipsoid621

has to be compressed to become the short axis of the deformed capsule. However,622

as the capillary number is increased and the capsule becomes more elongated, the623
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Figure 13. Elongated capsule (a/b =2) buckling at the tips when Ca = 1.8 >CaH and the
elongation is maximum (δ ≈ 0). The membrane follows the Sk law with C =1.
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Figure 14. Maximum value during a period of the approximate curvature energy for an
oblate spheroid (a/b = 0.5, filled symbols; E0

b/κ = 33.8) and a prolate spheroid (a/b = 2, open

symbols; E0
b/κ = 30.9). �: NH law; �: Sk law with C = 1.

isotropic component of the tensions (related to the Poisson ratio of the membrane)624

increases and compensates the negative tensions at δ ≈ π/2; wrinkling then becomes625

less important. The maximum amount of wrinkling therefore occurs during transition626

and for capillary numbers slightly above it.627

In the case of a prolate NH spheroid, the wrinkling does not subside as Ca628

increases. This is a consequence of the proximity of the two critical capillary numbers629

Ca� ∈ [0.20, 0.25] and CaH = 0.35 in this particular case. Indeed, if we consider a630

material point originally on the long axis of the ellipsoid, at Ca ≈ 0.35, when δ ≈ π/2,631

the point is on the short axis of the deformed capsule and strong wrinkling occurs,632

since Ca is only slightly above Ca�. A quarter of a period later, the material point is in633

the straining direction, but buckling and wrinkling occur at the tips, as Ca is around634

CaH . These two phenomena then lead to a constant wrinkling of the membrane, that635

even seems to amplify over time, but this is probably a numerical artefact due to the636

lack of a proper bending stiffness in the model of the capsule wall.637
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Figure 15. Amplitude of the oscillations of (a) the inclination angle β , (b) the Taylor
parameter and (c) the maximum of the approximate curvature energy as a function of
the Poisson ratio at Ca = 0.9 for an oblate spheroid (a/b = 0.5, filled symbols) and a prolate
spheroid (a/b = 2, open symbols). The membrane follows the Sk law.

6. Influence of the areaa dilatation modulus638

In § 5, we have studied two material laws that have the same behaviour at small639

deformations, corresponding to Ks = 3Gs , or equivalently to a Poisson ratio νs = 0.5.640

To study the influence of the area dilatation modulus, we now vary the ratio Ks/Gs641

by using Skalak’s law and changing the value of the parameter C. The two quantities642

are related by Ks/Gs = 1 + 2C, so that νs = C/(1 + C). In the following study, C is643

varied within the range 0 � C � 20, which corresponds to 1 � Ks/Gs � 41 and644

0 � νs � 0.95. Negative or zero values of νs = 0 correspond to materials that are645

naturally wrinkled perpendicularly to the membrane plane and that expand (or keep646

the same length if νs =0) in the direction orthogonal to the uniaxial extension one.647

Values of νs near unity correspond to a membrane that is almost area-inextensible.648

6.1. Influence of νs on the swinging regime649

We first study the influence of C at a given value of the capillary number, Ca = 0.9,650

for the two aspect ratios a/b = 0.5 and a/b = 2. For all the values of C considered,651

the capsule is in the swinging regime.652

As νs is increased, the capsule becomes stiffer and deforms less. Consequently, the653

mean value of the Taylor parameter D̄12 decreases, the mean value of the inclination654

angle β̄ increases and the tank-treading period T decreases. These results are well655

known for initially-spherical capsules (Lac et al. 2004; Li & Sarkar 2008) and are656

therefore not shown here.657

We concentrate instead on the amplitudes of the oscillations of these quantities. As658

shown in figure 15(a), the oscillations of the inclination angle do not disappear when659

νs increases, and even tend to increase for oblate spheroids. This is consistent with the660

observations of Abkarian et al. (2007) on red blood cells (νs ≈ 1), which have been661

seen to oscillate in a simple shear flow. We also estimate the effect of the Poisson662

ratio on the amount of wrinkling in figure 15(b). It indicates that the maximum of663

the approximate bending energy maxEb decreases sharply as νs increases. Higher664

values of νs increase the importance of the isotropic part of the tensions, leading to665

decreased wrinkling when δ ≈ ± π/2. This is consistent with the reasoning given in666

§ 5.2.667
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6.2. Influence of νs on the tumbling-to-swinging transition668

We now look at the range of values of the capillary number for which the tumbling-669

to-swinging transition occurs, as defined by (4.1). The ranges, shown in figure 16,670

are determined by increasing Ca by steps of 0.01 when a/b = 0.5 and steps of 0.05671

when a/b = 2. It is remarkable that the intervals for Ca� depend only moderately on672

the area dilatation modulus. For instance, for a/b = 2, when C is increased from 0673

to 20, the ratio Ks/Gs is multiplied by 41, but Ca� only increases by approximately674

30 %. Ca� is even found to remain constant for νs � 0.5. Similar results are found for675

a/b = 0.5. It shows that most capsules have a tumbling-to-swinging transition that676

hardly depends on the area dilatation modulus Ks regardless of the material they are677

made of. The main capsule mechanical property that governs the transition is thus678

its shear modulus Gs .679

In order to understand this phenomenon, one can consider the energy barrier680

described in § 4.3 that the capsule has to cross to go from tumbling to swinging.681

Figure 17 shows the membrane strain energy Em for a value of Ca slightly above682

Ca� when νs = 0.5 along with its decomposition into a shear term EG
m and an area683

dilatation term EK
m , as defined by (3.8). It is apparent that the energy barrier at684

δ = ± π/2 consists mainly of shear energy EG
m , which explains why the transition685

depends much more on the value of Gs than on Ks . It can therefore be surmised686

that the intervals for Ca� would not differ much from the values obtained here if an687

area-incompressible capsule wall were considered.688

7. Discussion689

We have modelled the behaviour and large deformation of an ellipsoidal capsule in a690

simple shear flow using the novel method of Walter et al. (2010), that couples boundary691

integrals for the flows to finite membrane elements. The study has shown that the692

coupling method is well-suited to the simulation of non-spherical capsules and that it693
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Figure 17. Strain energy function Em of the capsule wall slightly above the transition and
its decomposition into a shear term EG

m and an area dilatation term EK
m . The energy barrier

at δ = ± π/2 consists mainly of shear energy. (a) Oblate spheroid, a/b = 0.5, Ca = 0.06;
(b) prolate spheroid, a/b =2.0, Ca = 0.4. The membrane follows the Sk law with C = 1.

remains numerically stable even in the presence of in-plane compression. It allowed us694

to study the behaviour of oblate and prolate spheroids, with aspect ratios a/b = 0.5695

and a/b = 2, and to recognize two regimes: a quasi-solid regime (‘tumbling’) and696

a quasi-fluid regime (‘swinging’). Oblate and prolate spheroids behave qualitatively697

similarly in most respects, apart from the tumbling-to-swinging transition, which698

occurs at a much lower value of Ca for oblate spheroids. We also studied the699

effect of a variation of the Poisson ratio on the behaviour of the capsule. While it700

has a quantitative impact on several characteristics of the motion, it only marginally701

changes the capillary number Ca� at which the transition occurs. We now discuss three702

important questions raised by our study: the definition and number of mechanical703

regimes that exist for the cases studied, the similarities and differences between oblate704

and prolate spheroids and the importance of the bending stiffness of the capsule wall.705

7.1. Regimes706

In this study, two distinct regimes are found: the tumbling regime at low capillary707

numbers where the long axis of the capsule rotates in the shear plane and the swinging708

regime at high capillary numbers where this axis oscillates around a mean inclination709

and membrane rotation (tank treading) occurs. These two regimes are separated by710

a transition region, during which the capsule transits through a phase where the two711

axes of the capsule in the shear plane are approximately of the same length (D12 ≈ 0).712

We do not believe that the transition can be considered as a separate regime, distinct713

from tumbling and swinging. It rather corresponds to the parameter range where the714

two regimes behave so closely that they cannot be accurately distinguished from one715

another.716

In their systematic study of the behaviour of ellipsoidal capsules, Kessler et al. (2008)717

also found a transition during which D12 ≈ 0. However, they defined the inclination718

angle of the long axis for all the capillary numbers. The angle was then used to719

determine the exact value of the capillary number at transition. Bagchi & Kalluri720

(2009) did likewise and, in the cases where D12 ≈ 0, they found that the inclination721

angle could become negative; they defined this behaviour as a separate regime, which722

they termed vacillating–breathing. In the present study, we have chosen to refrain723

from using the axes and angles computed by using the ellipsoid of inertia when the724

Taylor parameter is lower than 0.05. This arbitrarily-chosen value corresponds to a725
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relative difference of 10 % between the lengths of the principal axes of the ellipsoid726

of inertia in the shear plane. We strongly believe that, when the lengths of the axes727

become very similar, a long axis can no longer be defined and the inclination angle728

computed with the ellipsoid of inertia is no longer meaningful. We are therefore729

unable to give exact values of Ca at transition or to comment on the existence of730

the vacillating—breathing regime, as those fall into the range for which the capsule731

shape can no longer be analysed accurately.732

Along with the present study, all the existing numerical studies of capsules in733

simple shear flow indicate that the tumbling-to-swinging transition is associated734

with a phase when D12 ≈ 0 (Kessler et al. 2008; Sui et al. 2008; Bagchi & Kalluri735

2009). The semi-analytical study of Finken et al. (2010) also leads to a transition736

with D12 ≈ 0. A similar behaviour has been found experimentally for lipid vesicles737

(Kantsler & Steinberg 2006; Deschamps, Kantsler & Steinberg 2009). These findings738

are, however, at odds with the experiments conducted by Abkarian et al. (2007) on739

red blood cells in a simple shear flow. They observe that, during the tumbling-to-740

swinging transition, the red blood cell maintains an almost constant shape and that741

the transition occurs through an intermittent regime during which the cell alternately742

swings and tumbles. The analytical theory of Skotheim & Secomb (2007), which743

assumes that the capsule shape remains constant, also finds this intermittent regime.744

However, our study and the other numerical studies cited above fail to find such an745

intermittent regime and always observe that the tumbling-to-swinging transition is746

associated with large variations of the capsule shape. One possible explanation is that747

the time during which a red blood cell assumes the shape with D12 ≈ 0 is so short748

that it may be missed experimentally. Another possibility is that a key component749

of the mechanical properties of a red blood cell is missing in the numerical models,750

leading to major differences in the behaviour. Maintaining a quasi-constant shape,751

through a mechanism yet to be determined, may be the key to the existence of the752

intermittent transition regime. One should bear in mind that the red blood cell is a753

very complex kind of capsule; experimental data on artificial capsules with simple754

protein membranes and non-spherical reference shapes are sorely needed to further755

investigate this question.756

7.2. Influence of capsule initial geometry757

Two initial aspect ratios were considered and it has been shown in § 5 that the758

behaviours of these two types of capsules are qualitatively similar; tumbling and759

swinging are observed for both types of capsules, separated by a transition zone.760

Only moderate quantitative differences are found, which can be explained by the761

great similarity in the geometric properties of the initial shapes. The theoretical762

model by Keller & Skalak (1982) sheds some light on the detailed reasons behind763

such similarities. They extended the analysis conducted by Jeffery (1922) on rigid764

ellipsoids and showed that, for a capsule maintaining a constant ellipsoidal shape765

during deformation, the energy dissipation in the fluids is a function of three non-766

dimensional geometric parameters given in the case of spheroids by767

768

f1 = 4z2
1 , f2 = 4z2

1

(
1 − 2

z2

)
, f3 = −4

z1

z2

, (7.1)

where769

z1 =
1

2

∣∣∣∣ab − b

a

∣∣∣∣ , z2 =
(
ã2 + b̃2

)
g′

3 , (7.2)
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a/� b/� A/�2 f1 f2 f3 1/f3
f3

f2−f1

a/b = 0.5 0.63 1.26 13.8 2.25 −2.39 −3.09 −0.32 0.67
a/b = 2 1.59 0.79 13.5 2.25 −3.38 −3.76 −0.27 0.67

Table 2. Initial values of the geometric characteristics of the capsules for two aspect ratios:
lengths of the axes a, b, surface area A, non-dimensional parameters fi used to compute the
energy dissipation in the fluids.

with770

g′
3 =

∫ ∞

0

ds

(ã2 + s)
3
2 (b̃2 + s)2

, ã = a/� , b̃ = b/�. (7.3)

As shown in table 2, the values of these geometric parameters are close or identical771

for the two shapes considered. The external flow can therefore be expected to act772

in a similar way on the two capsules at a given capillary number. The analytical773

model by Keller & Skalak (1982) has then been extended by Skotheim & Secomb774

(2007) to include the effect of the membrane elasticity. Assuming similarly that the775

capsule maintains a constant shape, the latter found that the equations of motion are776

affected (for λ= 1) by the geometry of the capsule through four terms, ab/(a2 + b2),777

|a2 − b2|/(a2 + b2), 1/f3, f3/(f2 − f1) and by the elastic energy E�
m. They defined the778

elastic energy E�
m as the energy barrier at the tumbling-to-swinging transition. When779

using the initial values of a/� and b/�, we find that the first two terms are strictly780

equal for the two aspect ratios considered here and the following two have similar781

values, as shown in table 2. The analytical theory by Skotheim & Secomb (2007) is782

therefore consistent with the fact that the two capsules generally behave similarly.783

However, an important difference is found. The tumbling-to-swinging transition784

occurs at much lower values of the capillary number for the oblate spheroid785

(Ca� ∈ [0.02, 0.05] for the Sk law with C = 1) than for the prolate spheroid786

(Ca� ∈ [0.25, 0.35]). To understand this discrepancy, one must consider the fifth787

parameter, i.e. the elastic energy E�
m. For the Sk law with C = 1, we define E�

m788

as the maximum value of Em over one period and evaluate it at Ca = 0.03 for789

a/b = 0.5 and at Ca = 0.3 for a/b =2.0. We find790

E�
m/(Gs�

2) = 0.025, a/b = 0.5, (7.4)

and791

E�
m/(Gs�

2) = 0.75, a/b = 2. (7.5)

The values differ substantially for the two aspect ratios considered, a much lower792

energy being necessary to reach the shape for which D12 ≈ 0 for the initially-oblate793

spheroid than for the initially-prolate one.794

In conclusion, we have shown that, for a given capillary number, the energy795

brought by, and dissipated in, the flows is of the same order for both aspect ratios,796

and therefore so is the energy Em stored in the capsule membrane. However, the value797

that Em has to reach for the tumbling-to-swinging transition to take place depends798

strongly on whether the capsule is oblate or prolate. This is why the transition occurs799

at much lower values of Ca for the oblate than for the prolate capsule.800

It may be noted that the bending stiffness of the capsule wall has been neglected801

both in the numerical simulations and in the theory presented in this section, and802

one may wonder how it could affect its conclusions. It has indeed been noted in § 4.3803
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that the capsule shapes at transition are strongly wrinkled for both aspect ratios.804

To investigate this point, we have quantified the approximate curvature energy E�
b at805

transition and found806

E0
b/κ = 33.8 , E�

b/κ = 970, a/b = 0.5, (7.6)

and807

E0
b/κ = 30.9 , E�

b/κ = 950 a/b = 2. (7.7)

As the approximate curvature energy E�
b at transition is similar in the two cases, we808

can conclude that the amount of wrinkling does not depend on the capsule initial809

geometry. Therefore, it can be surmised that taking into account the bending stiffness810

in the mechanical model of the capsule wall would not have changed the fact that811

the transition occurs at much lower capillary numbers for oblate than for prolate812

spheroids.813

7.3. Influence of bending stiffness814

In this work, we have used a novel numerical technique coupling a finite element815

and a boundary integral method (Walter et al. 2010). The method is found to remain816

stable despite the large compressive tensions that appear in the membrane of the817

ellipsoidal capsules during their deformation. The presence of compressive tensions818

is a particularl3nsitive issue for non-spherical capsules. For spherical capsules in a819

simple shear flow, there exists a range of capillary numbers in which a steady state820

free of compression can be attained. It is not so for ellipsoidal capsules: compression821

is always present for at least part of a period (i.e. min τmin < 0) and zones where822

compression occurs tend to be more widespread. We believe that the numerical823

stability in the presence of in-plane compression is achieved thanks to the stiffness824

brought by the finite elements. This stiffness is purely numerical; for instance, when825

wrinkles appear, their wavelength is determined by the sq of the mesh. Since it does826

not obey a mechanical law, this stiffness cannot be expected to model the buckling827

of a real capsule accurately.828

The membrane model presently used is therefore not sufficient to predict the829

exact local behaviour of the capsule wall when compression occurs. It is, however,830

sufficient to determine the zones where compression occurs. As shown in figure 18,831

a reduction in the mesh size changes accordingly the wavelength of the wrinkles but832

affects neither the general shape of the capsule nor the location of the compressive833

tensions. It therefore appears that the model used in this work is a reasonably good834

approximation of a real capsule with a very small bending stiffness. In this case, results835

such as the location of negative tensions or the Taylor parameter computed with this836

model can be trusted. For capsules with a large bending stiffness, a numerical model837

incorporating resistance to bending is necessary.838

Of particular interest is the case of the tumbling-to-swinging transition, as wrinkling839

is especially strong during this phase. It is important to determine whether the bending840

stiffness can change the value of the capillary number for which transition occurs.841

For the bending effects to have a negligible influence on the transition, the curvature842

energy of the transition shape S� must be negligible compared to the membrane843

energy, i.e.844

E�
b � E�

m. (7.8)

Using the non-dimensional values of E�
m/Gs�

2 and E�
b/κ given in § 7.2 for a/b =0.5,845

(7.8) leads to κ/Gs�
2 � 2.6 × 10−5. To provide an experimental interpretation of this846

condition, let us consider an artificial capsule with a wall made of a thin sheet847
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(a) (b)

Figure 18. Prolate ellipsoid at Ca = 0.9 meshed with (a) 1280 and (b) 5120 P2 elements. When
the mesh size is divided by 2, so is the wavelength of the wrinkles, but the overall shape of the
capsule is not affected.

of fully-isotropic elastic material. The bending modulus is then κ = Gsϑ
2/6(1 − νs),848

where ϑ is the initial thickness of the capsule wall, and the condition on the bending849

modulus can be replaced by that on the thickness850

ϑ/� � 9 × 10−3. (7.9)

This value may be compared with the data available for spherical artificial capsules.851

For instance, Risso, Collé-Paillot & Zagzoule (2006) report ϑ/� =2 × 10−2 for852

the alginate/human–serum–albumin capsules that they used, while the ovalbumin853

microcapsules used by Lefebvre et al. (2008) have ϑ/� = 3 × 10−3.854

Therefore, neglecting the bending stiffness of the capsule wall, as done in this855

work, can provide reliable results for certain types of capsules, especially far from the856

transition when wrinkling is less important.857

A theoretical study of the wrinkling of a spherical capsule in a shear flow was858

performed by Finken & Seifert (2006) for cases where regular wrinkles with a small859

wavelength develop on the membrane. This analytical study does not cover all the860

complex buckling patterns observed in figures 2 and 3 for non-spherical capsules. To861

the best of our knowledge, a full numerical study exploring the effect of the bending862

modulus on the motion and large deformation of a capsule (spherical or not) in flow863

remains to be conducted. In particular, if one is interested in drawing up a phase864

diagram showing the different types of motion of an ellipsoidal capsule, the bending865

stiffness of the wall will need to be included as a parameter of the diagram.866
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