Jeanne-Bernadette TSE SUM BUI

Research Engineer CNRS

 


 

Background


Masters in Chemical Engineering, UTC

PhD in Biochemical Technology, UTC

Habilitation ‘Biotin synthase and iron-sulfur clusters chemistry’, Université Pierre et Marie Curie, Paris


Research Topics


Development of molecularly imprinted polymers and their applications in sensor technology, separation techniques and drug delivery


Keywords


Molecularly imprinted polymers (MIPS), nanosensors, array chips, bioanalysis, affinity separation


Patents


  • Molecularly imprinted polymer for selectively trapping odorous molecules (2014)

GREAVES A., MANFRE F., HAUPT K.,TSE SUM BUI B.

WO 2014102077 A1

  • Molecularly imprinted polymers of sol-gel type and their use as antidandruff agent (2014)

GREAVES A., RIBAUD C., MANFRE F., HAUPT K., TSE SUM BUI B.

WO 2014102209 A1

  • Method for preparing molecular imprint polymers (pem) by radical polymerisation (2010)

HAUPT K., CUTIVET A., TSE SUM BUI B., CAKIR P.

WO 2010026308 A1

  • Molecularly imprinting polymers for extraction of testosterone from water or biological samples (2009)

HAUPT K., TSE SUM BUI B.

CA 2608931


Publications


  • Cytocompatibility of Molecularly Imprinted Polymers for Deodorants - Evaluation on Human Keratinocytes and Axillary-Hosted Bacteria.

    A. MIER, S. NESTORA, P. MEDINA-RANGEL, Y. ROSSEZ, K. HAUPT, B. TSE SUM BUI.

    ACS Applied BioMaterials, 2019.

    DOI: https://doi.org/10.1021/acsabm.9b00388

  • Molecularly imprinted polymer nanoparticles as potential synthetic antibodies for immunoprotection against HIV.

    J.XU, F. MERLIER, B. AVALLE, V. VIEILLARD, P. DEBRE, K. HAUPT, B. TSE SUM BUI.

    ACS Applied Materials & Interfaces, 2019, 11, 9824-9831.

    DOI: http://dx.doi.org/10.1021/acsami.8b22732

  • Solid-phase synthesis of molecularly imprinted polymer nanolabels: Affinity tools for cellular bioimaging of glycans.

    P. X. MEDINA RANGEL, S. LACLEF, J.XU, M. PANAGIOTOPOULOU, J. KOVENSKY, B. TSE SUM BUI, K. HAUPT.

    Scientific Reports, 2019, 9, 3923.

    DOI: http://dx.doi.org/10.1038/s41598-019-40348-5

  • Competitive fluorescent pseudo-immunoassay exploiting molecularly imprinted polymers for the detection of biogenic amines in fish matrix.

    L. MATTSSON, J.XU, C. PREININGER, B. TSE SUM BUI, K. HAUPT.

    Talanta, 2018, 181, 190-196.

    DOI: https://doi.org/10.1016/j.talanta.2018.01.010

  • Direct and sensitive determination of trypsin in human urine using a water-soluble signaling fluorescent molecularly imprinted polymer nanoprobe.

    J.XU, E. PROST, K. HAUPT, B. TSE SUM BUI.

    Sensors and Actuators B, 2018, 258, 10-17.

    DOI: https://doi.org/10.1016/j.snb.2017.11.077

  • Tracking hyaluronan: molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging. 

    DEMIR B., LEMBERGER M., PANAGIOTOPOULOU M., MEDINA RANGEL P. X., TIMUR S., HIRSCH T., TSE SUM BUI B., WEGENER J., HAUPT K.

    ACS Applied Materials & Interfaces, 2018, 10, 3305-3313.

    DOI: https://doi.org/10.1021/acsami.7b16225

  • Cell and tissue imaging with molecularly imprinted polymers.

    PANAGIOTOPOULOU M., KUNATH S., HAUPT K., TSE SUM BUI B.

    Methods in Molecular Biology, 2017, 1575, 399-415.

    DOI: https://doi.org/10.1007/978-1-4939-6857-2_26

  • Core-shell molecularly imprinted polymer nanoparticles as synthetic antibodies in a sandwich fluoroimmunoassay for trypsin determination in human serum.

    XU J., HAUPT K., TSE SUM BUI B.

    ACS Applied Materials & Interfaces, 2017, 9, 24476-24483.

    DOI: https://doi.org/10.1021/acsami.7b05844

  • Dual-oriented solid-phase molecular imprinting: toward selective artificial receptors for recognition of nucleotides in water.

    MOURAO A. C., BOKELOH F., XU J., PROST E., DUMA L., MERLIER F., BUENO S. M. A., HAUPT K., TSE SUM BUI B.

    Macromolecules, 2017, 50, 7484-7490..

    DOI: https://doi.org/10.1021/acs.macromol.7b01782

  • Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    PANAGIOTOPOULOU M., KUNATH S., MEDINA-RANGEL P. X., HAUPT K., TSE SUM BUI B.

    Biosensors and Bioelectronics, 2017, 88, 85-93.

    DOI: https://doi.org/10.1016/j.bios.2016.07.080

  • Guide to preparation of molecularly imprinted polymer nanoparticles for protein recognition, by solid-phase synthesis.

    XU J., MEDINA-RAGEL P. X., HAUPT K., TSE-SUM BUI B.

    Methods in Enzymology, 2017, 590, 115-141.

    DOI: https://doi.org/10.1016/bs.mie.2017.02.004

  • Light-triggered on/off-switchable graphene-based bioelectronics.

    PARLAK O., BEYAZIT S., JAFARI M. J., TSE SUM BUI B., HAUPT K., TIWARI A., TURNER A. P. F.

    Advanced Materials Interfaces, 2016, 3, 1500353.

    DOI: https://doi.org/10.1002/admi.201500353

  • Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization.

    BEYAZIT S., TSE SUM BUI B., HAUPT K., GONZATO C.

    Progress in Polymer Science, 2016, 62, 1-21.

    DOI: https://doi.org/10.1016/j.progpolymsci.2016.04.001

  • Molecularly imprinted polymer-coated quantum dots for multiplexed cell targeting and imaging.

    PANAGIOTOPOULOU M., SALINAS Y., BEYAZIT S., KUNATH S., MAYES A. G., DUMA L., PROST E., RESMINI M., TSE SUM BUI B., HAUPT K.

    Angewandte Chemie International Edition, 2016, 55, 8244-8248.

    DOI: https://doi.org/10.1002/anie.201601122

  • Nanoparticles in biomedical applications.

    MAXIMILIEN J., BEYAZIT S., ROSSI C., HAUPT K., TSE SUM BUI B.

    Measuring biological impact of nanomaterials 2016, 5, 177-210. J. Wegener, Ed., Springer International Publishing Switzerland.

    DOI: http://dx.doi.org/10.1007/11663_2015_12

  • Plastic antibodies for cosmetics: Molecularly imprinted polymers scavenge precursors of malodors.

    NESTORA S., MERLIER F., BEYAZIT S., PROST E., DUMA L., BARIL B., GREAVES A., HAUPT K., TSE SUM BUY B.

    Angewandte Chemie International Edition, 2016, 55, 6252-6256.

    DOI: https://doi.org/10.1002/anie.201602076

  • Programmable bioelectronics in a stimuli-encoded 3D graphene interface.

    PARLAK O., BEYAZIT S., TSE SUM BUI B., HAUPT K., TURNER A. P. F., TIWARI A.

    Nanoscale, 2016, 8, 9976-9981.

    DOI: https://doi.org/10.1039/C6NR02355J

  • Rapid prototyping of chemical microsensors based on molecularly imprinted polymers synthesized by two-photon stereolithography.

    CHIA GOMEZ L. P., SPANGENBERG A., TON X. A., FUCHS Y., BOKELOH F., MAVAL J. P., TSE SUM BUI B., THUAU D., AYELA C., HAUPT K., SOPPERA O.

    Advanced Materials, 2016, 28, 5931-5937.

    DOI: https://doi.org/10.1002/adma.201600218

  • Solid-phase extraction of betanin and isobetanin from beetroot extracts using a dipicolinic acid molecularly imprinted polymer.

    NESTORA S., MERLIER F., PROST E., HAUPT K., ROSSI C., TSE SUM BUI B.

    Journal of Chromatography A, 2016, 1465, 47-54.

    DOI: https://doi.org/10.1016/j.chroma.2016.08.069

  • Toward a universal method for preparing molecularly imprinted polymer nanoparticles with antibody-like affinity for proteins.

    XU J., AMBROSINI S., TAMAHKAR E., ROSSI C., HAUPT K., TSE SUM BUI B.

    Biomacromolecules, 2016, 17, 345-353.

    DOI: https://doi.org/10.1021/acs.biomac.5b01454

  • A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe.

    TON X. A., ACHA V., BONOMI P., TSE SUM BUI B., HAUPT K.

    Biosensors & Bioelectronics, 2015, 64, 359-366

    DOI: https://doi.org/10.1016/j.bios.2014.09.017

  • A molecularly imprinted polymer-based evanescent wave fiber optic sensor for the detection of basic red 9 dye.

    FOGUEL M. V., TON X. A., ZANONI M. V. B., SOTOMAYOR M. D. P. T., HAUPT K., TSE SUM BUI B.

    Sensors and Actuators B: Chemical, 2015, 218, 222-228

    DOI: https://doi.org/10.1016/j.snb.2015.05.007

  • Initiator-free synthesis of molecularly imprinted polymers by polymerization of self-initiated monomers.

    PANAGIOTOPOULOU M., BEYAZIT S., NESTORA S., HAUPT K., TSE SUM BUI B.

    Polymer, 2015, 66, 43-51

    DOI: https://doi.org/10.1016/j.polymer.2015.04.012

  • Molecularly imprinted polymer nanomaterials and nanocomposites: atom-transfer radical polymerization with acidic monomers.

    ADALI-KAYA Z., TSE SUM BUI B., FALCIMAIGNE-CORDIN A., HAUPT K.

    Angewandte Chemie International Edition, 2015, 54, 5192-5195

    DOI: https://doi.org/10.1002/anie.201412494

  • One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells.

    MARCHYK N., MAXIMILIEN J., BEYAZIT S., HAUPT K. & TSE SUM BUI B.

    Nanoscale, 2014, 6, 2872-2878

    DOI: http://doi.org/10.1039/c3nr05295h

  • Versatile synthesis strategy for coating upconverting nanoparticles with polymer shells by localized photopolymerization using the particles as internal light sources.

    BEYAZIT S., AMBROSINI S., MARCHYK N., PALO E., KALE V., SOUKKA T., TSE SUM BUI B., HAUPT K.

    Angewandte Chemie International Edition, 2014, 126, 9065-9069

    DOI: https://doi.org/10.1002/anie.201403576

  • Water-compatible silica sol-gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid.

    LI B., XU J., HALL A. J., HAUPT K., TSE SUM BUI B.

    Journal of Molecular Recognition, 2014, 27, 559-565

    DOI: https://doi.org/10.1002/jmr.2383

  • A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized in situ.

    TON X.A., TSE SUM BUI B., RESMINI M., BONOMI P., DIKA I., SOPPERA O. & HAUPT K.

    Angewandte Chemie International Edition, 2013, 52, 8317-8321

    DOI: http://dx.doi.org/10.1002/anie.201301045

  • Protein-size molecularly imprinted polymer nanogels as synthetic antibodies, by localized polymerisation with multi-initiators.

    CAKIR P., CUTIVET A., RESMINI M., TSE SUM BUI B. & HAUPT K.

    Advanced Materials, 2013, 25, 1048-1051

    DOI: http://dx.doi.org/10.1002/adma.201203400

  • Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition.

    AMBROSINI S., BEYAZIT S., HAUPT K. & TSE SUM BUI B.

    Chemical Communications, 2013, 49, 6746-6748

    DOI: https://doi.org/10.1039/c3cc41701h

  • Direct fluorimetric sensing of UV-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization

    TON X.A., ACHA V., HAUPT K. & TSE SUM BUI B.

    Biosensors and Bioelectronics 2012, 36, 22-28

    DOI: http://dx.doi.org/10.1016/j.bios.2012.03.033

  • Molecularly Imprinted Polymers

    HAUPT K., LINARES A.V., BOMPART M. & TSE SUM BUI B.

    Topics in Current Chemistry 2012, 325, In "Molecular Imprinting", K. Haupt (Ed.) Springer:Berlin/Heidelberg, pp. 1-28

    DOI: https://doi.org/10.1007/128_2011_307

  • Fluorescence optical spectrally resolved sensor based on molecularly imprinted polymers and microfluidics.

    HARZ S., SHIMMELPFENNIG M., TSE SUM BUI B., MARCHYK N., HAUPT K. & FELLER K.H.

    Engineering in Life Sciences, 2011, 11, 559-565

    DOI: http://dx.doi.org/10.1002/elsc.201000222

  • Immobilization of molecularly imprinted polymer nanoparticles in electrospun poly(vinyl alcohol) nanofibers.

    PIPERNO S., TSE SUM BUI B., HAUPT K. & GHEBERT L.A.

    Langmuir 2011, 27,1547-1550

    DOI: http://dx.doi.org/10.1021/la1041234

  • Preparation and evaluation of a molecularly imprinted polymer for the selective recognition of testosterone – application to molecularly imprinted sorbent assays.

    TSE SUM BUI B. & HAUPT K.

    Journal of Molecular Recognition, 2011, 24 (6), 1123-1129

    DOI: http://dx.doi.org/10.1002/jmr.1162

  • Molecularly imprinted polymers: synthetic receptors in bioanalysis

    TSE SUM BUI B. & HAUPT K.

    Analytical and Bioanalytical Chemistry, 2010, 398, 2481-2492

    DOI: https://doi.org/10.1007/s00216-010-4158-x

  • Toward the use of a molecularly imprinted polymer in doping analysis: selective preconcentration and analysis of testosterone and epitestosterone in human urine.

    TSE SUM BUI B., MERLIER F. & HAUPT K.

    Analytical Chemistry, 2010, 82, 4420-4427

    DOI: http://dx.doi.org/10.1021/ac100128c

  • Comment on 'Isolation and detection of steroids from human urine by molecularly imprinted solid-phase extraction and liquid chromatography' by Gadzala-Kopciuch et al.

    TSE SUM BUI B., HAUPT K.

    Journal of Chromatography B, 2009, 877, 4180-4181

    DOI: http://dx.doi.org/10.1016/j.jchromb.2009.09.048

  • Selective extraction of triazine herbicides from food samples based on a combination of a liquid membrane and molecularly imprinted polymers.

    MHAKA B., CUKROWSKA E., TSE SUM BUI B., RAMSTROM O., HAUPT K., TUTU H. & CHIMUKA L.

    Journal of Chromatography A, 2009, 1216, 6796-6801

    DOI: http://dx.doi.org/10.1016/j.chroma.2009.08.003

  • Molecular recognition of endocrine disruptors by synthetic and natural 17b-estradiol receptors: a comparative study.

    TSE SUM BUI B., BELMONT A.S., WITTERS H. & HAUPT K.

    Analytical and Bioanalytical Chemistry, 2008, 390, 2081-2088

    DOI: https://doi.org/10.1007/s00216-008-1949-4



                      Other Research Interests


                      Affinity separation of proteins, S-adenosylmethionoine radical enzymes, biotin synthase, [Fe-S] clusters assembly


                      Publications


                      • Iron-sulfur cluster dynamics in biotin synthase: a new [2Fe-2S]1+ cluster.

                        M. Lotierzo, B. Tse Sum Bui, H. K. Leech, M. J. Warren, A. Marquet, S. E. J. Rigby

                        Biochem. Biophys. Res. Commun. 2009, 381, 12274-12281

                        DOI: https://doi.org/10.1016/j.bbrc.2009.02.089

                      • Iron-sulfur proteins as initiators of radical chemistry.

                        A. Marquet, B. Tse Sum Bui, A. G. Smith, M. J. Warren

                        Nat. Prod. Rep. 2007, 24, 1027-1040

                      • Biotin synthase mechanism: mutagenesis of the YNHLND conserved motif.

                        M. Lotierzo, E. Raux, B. Tse Sum Bui, N. Goasdoue, F. Libot, D. Florentin, M. J. Warren, A. Marquet

                        Biochemistry 2006, 45,12274-12281

                      • Escherichia coli biotin synthase produces selenobiotin. Further evidence of the involvement of the (2Fe-2S)2+ cluster in the insertion step.

                        B. Tse Sum Bui, T. A. Mattioli, D. Florentin, G. Bolbach, A. Marquet

                        Biochemistry 2006, 45, 3824-3834

                      • Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ ferredoxin-dependent photoreduction of GcpE/IspG.

                        M. Seemann, B. Tse Sum Bui, M. Wolff, M. Miginiac-Maslow, M. Rohmer

                        FEBS Lett. 2006, 580, 1547-1552

                      • Biotin synthase mechanism: an overview.

                        M. Lotierzo, B. Tse Sum Bui, D. Florentin, F. Escalettes, A. Marquet

                        Biochem. Soc. Trans. 2005, 33, 820-823

                      • Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a (4Fe-4S) protein.

                        M. Seemann, P. Wegner, V. Schuenemann, B. Tse Sum Bui, M. Wolff, A. Marquet, M. Rohmer

                        J. Biol. Inorg. Chem. 2005, 10, 131-137

                      • Further investigation on the turnover of Escherichia coli biotin synthase with dethiobiotin and 9-mercaptodethiobiotin as substrates.

                        B. Tse Sum Bui, M. Lotierzo, F. Escalettes, D. Florentin, A. Marquet

                        Biochemistry 2004, 43, 16432-16441

                      • Fate of the (2Fe-2S)2+ cluster of Escherichia coli biotin synthase during reaction: a Mössbauer characterisation.

                        B. Tse Sum Bui, R. Benda, V. Schuenemann, D. Florentin, A. X. Trautwein, A. Marquet

                        Biochemistry 2003, 42, 8791-8798

                      • Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a (4Fe-4S) protein.

                        M. Wolff, M. Seemann, B. Tse Sum Bui, Y. Frapart, D. Tritsch, A. G. Estrabot, M. Rodriguez-Conception, A. Boronat, A. Marquet, M. Rohmer

                        FEBS Lett. 2003, 541, 115-120

                      • Iron-sulfur clusters of biotin synthase in vivo: a Mössbauer study.

                        R. Benda, B. Tse Sum Bui, V. Schuenemann, D. Florentin, A. Marquet, A. X. Trautwein

                        Biochemistry 2002, 41, 15000-15006

                      • Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE or IspG) is a (4Fe-4S) protein.

                        M. Seemann, B. Tse Sum Bui, M. Wolff, D. Tritsch, N. Campos, A. Boronat, A. Marquet, M. Rohmer

                        Angew. Chem. Int. Ed. Engl. 2002, 41, 4337-4339

                      • Biosynthesis of biotin and lipoic acid.

                        A. Marquet, B. Tse Sum Bui, D. Florentin

                        Vitamins and Hormones 2001, Vol. 61, Ed. G. Litwack, Academic Press, 52-91

                      • Enzyme-mediated sulfide production for the reconstitution of [2Fe-2S] clusters into apo-biotin synthase of Escherichia coli.

                        B. Tse Sum Bui, F. Escalettes, G. Chottard, D. Florentin, A. Marquet

                        Eur. J. Biochem. 2000, 267, 2688-2694