Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicula networks

Conclusion

Experiments with Self-Stabilizing Distributed Data Fusion

B. Ducourthial, V. Cherfaoui

Sorbonne universités Université de Technologie de Compiègne UMR CNRS UTC 7253 Heudiasyc

September 2016

◆□
◆□
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●</p

Ducourthial Cherfaoui

- Data fusion
- Motivation Frameworks Data Operators Example
- Distributed data fusion Motivation Algorithm
- Discounting
- Complexity Locality Self-stab.
- Applications for vehicular networks
- Conclusion

Université de Technologie de Compiègne

- Université de Technologie de Compiègne ~4500 students, master degree (engineer diploma), PhD http://www.utc.fr
 - One of the first French engineering school for computer science
 - Close to Paris and Charles de Gaulle airport

 Heudiasyc lab from the UTC & CNRS Equipex Robotex, Labex MS2T https://www.hds.utc.fr

• Dynamic networks team https://airplug.hds.utc.fr

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

1 Data fusion

2 Distributed data fusion

3 Study of the discounting**r**

4 Applications for vehicular networks

5 Conclusion

Agenda

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

heudiasvc

 Data fusion Motivation Frameworks Data representation Fusion operators Example of Basic Belief Assignment

Distributed data fusion

Study of the discounting r

4 Applications for vehicular networks

Conclusion

3 4

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks

Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

Data fusion Motivation

Frameworks Data representation Fusion operators Example of Basic Belief Assignment

Data fusion Motivation

Distributed Data Fusion

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Locality Self-stab.

Applications for vehicular networks

Conclusion

• Several sources of information

- How to deal with?
- Could disagree
- Take benefit of all of them
- Imperfect measures
 - Can we trust data?
 - Imprecision
 - Uncertainty
 - Ambiguity

• Main applications

- Fusion of experts opinions
- Fusion of classifiers
- Multisensors data-fusion

< 目)
 < 目)
 < 目)
 < 目)
 < 目)
 < 回)
 <

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

1 Data fusion Motivation

Frameworks

Data representation

Fusion operators Example of Basic Belief Assignment

Data fusion Frameworks

Distributed Data Fusion

Ducourthial Cherfaoui

Data fusion

- Motivation Frameworks Data Operators Example
- Distributed data fusion Motivation Algorithm
- Discounting
- Complexity Locality Self-stab.
- Applications for vehicular networks
- Conclusion

- How to deal with imprecise and uncertain data?
 - Imprecision : Set Membership Approach uncertainty?
 - Aleatory uncertainty : Probability theory imprecision?
 - Theory of Belief Function: generalizes both Transferable Belief Model Dempster-Shafer Theory of Evidence
- Belief Function Framework
 - Information modeling
 - Combination rules

[Dempster 1968, Shafer 1976, Smets 1990s]

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

Data fusion

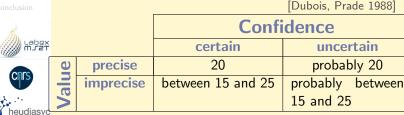
Motivation

Frameworks

Data representation

Fusion operators Example of Basic Belief Assignment

Ducourthial Cherfaoui


Data X with value in Ω

- Representation of X
 - (value, confidence)
 - value: subset of Ω
 - confidence: indication on the reliability of the item of information

Distributed data fusion

Data representation

- Interest:
 - Imprecision of X
 value
 - Uncertainty of X → confidence

< (17) < ∃⇒ < ∃⇒

э

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicula networks

Conclusion

Data fusion Motivation

Frameworks

Data representation

Fusion operators

Example of Basic Belief Assignment

Data fusion Fusion operators

Distributed Data Fusion

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data

Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicula networks

Conclusion

- Frame of discernment: set Ω
- Basic belief assignment
 - Mass function
 - $m^{\Omega}: \mathcal{P}(\Omega) \rightarrow [0,1]$
 - $\sum_{X \subset \Omega} m^{\Omega}(X) = 1$
 - Our algorithm: vector of weights
- Dempster operator
 - Emphases the agreement of reliable and independent sources [Smets 1990,Shafer 1976] $m_{1\bigcirc 2}(A) = \sum_{B\cap C=A} m_1(B) \cdot m_2(C)$
 - Spread the conflict over other sets [Dempster]
- Cautious operator

[Denoeux 2008]

- Do not assume independent sources
- Least commitment principle
- Avoid the data incest

<□> </□>
</□>
</□>
</□>
</□>
</□>
</□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>

◆□>
<

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicula networks

Conclusion

1 Data fusion

Motivation Frameworks Data representation Fusion operators Example of Basic Belief Assignment

↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □
↓ □</

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

- Distributed data fusion Motivation Algorithm
- Discounting
- Complexity Locality Self-stab.
- Applications for vehicula networks
- Conclusion

Distributed data fusion

Example of Basic Belief Assignment 1/3

Pressure measurement

- Weather forecast
 - Compare current measure with the last one

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

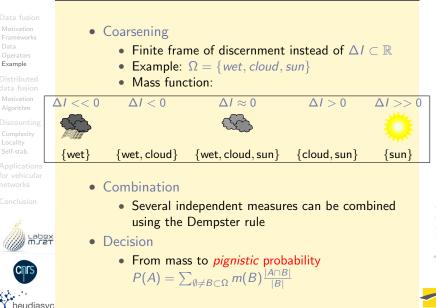
Applications for vehicular networks

Conclusion

• Barometer?

Distributed data fusion

Example of Basic Belief Assignment 2/3


• Measure:

- Pressure measurement: interval $I \subset \mathbb{R}^+$
- Pressure gradient: interval $\Delta I \subset \mathbb{R}$
- Simple mass function:
 - Only two subsets: ΔI and \mathbb{R}
 - \mathbb{R} : lack of knowledge
 - $m^{\mathbb{R}}(\Delta I) = 1 \alpha$
 - $m^{\mathbb{R}}(\mathbb{R}) = \alpha$
 - α : uncertainty of the barometer

 <

Distributed data fusion Example of Basic Belief Assignment 3/3

Distributed

Data Fusion Ducourthial

Cherfaoui

э

Ducourthial Cherfaoui

Data fusion Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

Data fusion

 Distributed data fusion Motivation Algorithm

Study of the discounting r

4 Applications for vehicular networks

5 Conclusion

< ∰ >

< ≞ → ह

10 17

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion

Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

2 Distributed data fusion Motivation

Algorithm

<

Ducourthial Cherfaoui

Distributed data fusion Motivation 1/2

Data fusion

Motivation Frameworks Data Operators Example

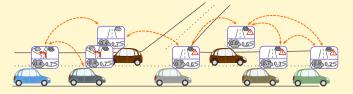
Distributed data fusion

Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks


Conclusion

Problem

- Direct confidence (regularly) produced locally Using an external uncertain device
- Node's confidence computed using other values
- Avoiding data collection
- Locality
 - One result per node
 - Depends on its position in the network

\rightsquigarrow Distributed approach for data fusion

< 🗇 >

Ducourthial Cherfaoui

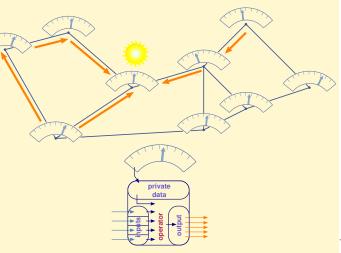
Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion

Motivation Algorithm

- Discounting
- Complexity Locality Self-stab.
- Applications for vehicular networks
- Conclusion



• Result on any node v now depends on all other nodes, not only its neighbors.

Distributed data fusion

Motivation 2/2

< @ > < 注 > < 注 >

æ

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

2 Distributed data fusion Motivation

Algorithm

Ducourthial Cherfaoui

Distributed data fusion Algorithm: properties

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

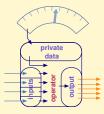
Complexity Locality Self-stab.

Applications for vehiculations networks

Conclusion

• Our distributed data fusion algorithm [SSS2012]

- · Combine all direct confidences of the system
- Relies on local periodic broadcast


• Properties

- Finite data set Discretization + adapted operators
- Asynchronous and anonymous system
- Unreliable message passing system
- Intermittent faults on memories/messages
- Crash faults on nodes

 <

Distributed data fusion Algorithm: details

Upon (local) timer expiration $PRIV_v \leftarrow$ current direct confidence $OUT_v \leftarrow PRIV_v$ for each entry u in IN_v do $OUT_v \leftarrow OUT_v \oslash r(IN_v[u])$ end forpush(OUT_v)Reset IN_v Restart the timer

Distributed Data Fusion

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

Ducourthial Cherfaoui

Data fusio

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

• Local computation $OUT_v \leftarrow OUT_v \otimes r(IN_v[u])$

- (1): cautious operator defined on weights
- r: discounting function
- Discounting **r**
 - Decreases the information
 - Application-dependent

Distributed data fusion Algorithm: discounting

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

🚺 Data fusior

Distributed data fusion

Study of the discounting r Complexity Locality Self-stabilization

4 Applications for vehicular networks

Conclusion

◆ 置 き ◆ 置 重 の<(や)

Summary

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity

Locality Self-stab.

Applications for vehicular networks

Conclusion

Study of the discounting r Complexity

Locality Self-stabilizatior

Ducourthial Cherfaoui

Discounting Complexity

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality

Applications for vehicular networks

Conclusion

• Local computation $OUT_v \leftarrow OUT_v \oslash r(IN_v[u])$

• Stabilization time supposing a synchronous system

- O(k+D)
- k: defined by r^k (smallest value) = largest value
- D: diameter of the stabilized topology

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexit Locality Self-stab.

Applications for vehicular networks

Conclusion

Study of the discounting r Complexity Locality

Self-stabilization

Discounting Locality

Data fusio Motivation Frameworks Data

Distributed

Data Fusion Ducourthial Cherfaoui

Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicular networks


Conclusion

• Without discounting

- A single result per connected component
- With discounting
 - Limited influence of a node
 - Locality of the result
- Demo:

▲ 目目 ○

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting Complexity Locality Self-stab.

Application: for vehicula networks

Conclusion

3 Study of the discounting r Complexity

Self-stabilization

Discounting Self-stabilizing proof

[SSS2007]

Distributed Data Fusion

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting Complexity Locality Self-stab.

Applications for vehicula networks

Conclusion

• r-operator

- \bigcirc : r-operator defined by $x \oslash y = x \oslash r(y)$
- Condition 1: endomorphism $\mathbf{r}(\mathbf{w}_1 \otimes \mathbf{w}_2) = \mathbf{r}(\mathbf{w}_1) \otimes \mathbf{r}(\mathbf{w}_2)$
- Condition 2: expansion
 w ≺_∞ r(w)

Result

[SSS 2005, SSS 2007]

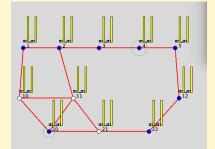
The cautious operator with the discounting r defines an r-operator which ensures the self-stabilization of the algorithm.

Discounting Self-stabilizing proof

Ducourthial Cherfaoui

Distributed

Data Fusion


- Self-stab.

- Without discounting

 - No convergence after a fault In a message, in a memory or in the input device
- With discounting
 - Convergence in finite time after the transient failure ceases
- Demo:

< 🗇 > < ∃→ э

Ducourthial Cherfaoui

Data Tusion Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

1 Data fusion

2 Distributed data fusion

Study of the discounting r

4 Applications for vehicular networks

Conclusion

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

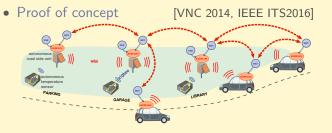
Distributed data fusion Motivation Algorithm

Discounting Complexity

Locality Self-stab.

Applications for vehicular networks

Conclusion


Testbed for icy roads detection
3 RSU, 6 sensors + vehicles

[WiSARN 2014]

Applications

Detecting icy roads

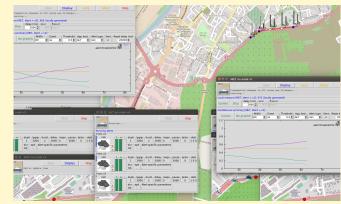
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applications Detecting heavy rains on the roads

- Distributed data fusion
 - Enforce confidences in the rain event
- Decision phase

Distributed

Data Fusion


Cherfaoui

Applications for vehicular networks

heudiasvc

[ITSC2015]

- Pignistic probability
- Exceeding the threshold \rightsquigarrow generate an alert

Ducourthial Cherfaoui

Data Tusion Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Complexity Locality Self-stab.

Applications for vehicular networks

Conclusion

1 Data fusion

2 Distributed data fusion

Study of the discounting r

4 Applications for vehicular networks

5 Conclusion

しょう

● 注 >
◆ 注 >
◆ 注 >

Ducourthial Cherfaoui

Data fusion

Motivation Frameworks Data Operators Example

Distributed data fusion Motivation Algorithm

Discounting

Complexity Locality Self-stab.

Applications for vehicula networks

Conclusion

Experiments with Self-Stabilizing Distributed Data Fusion

• Data fusion

- Dealing with imprecise and uncertain data
- Belief Function framework
 [Dempster Shafer]
- Distributed data fusion
 - Avoiding the data collection phase
 - One result per node depending on its position
 - Self-stabilizing algorithm [SSS 2012]
 - Cautious operator → saves the data incest
 - Discounting \rightsquigarrow decreases the information
- Discounting: complexity, locality, self-stabilization
- Future work
 - Designing new applications
 - Studying other operators

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

