B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Vlethodology Reference mag Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

Bertrand Ducourthial

Université de Technologie de Compiègne UMR CNRS UTC 7253 Heudiasyc

> IWCMC August 2015

heudiasyc

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology Reference map Region of Interest

Results

Comparing maps Robustness against errors

Conclusion

2 Introduction

3 Methodology

4 Results

5 Conclusion

B. Ducourthial

Team

- Introduction Architecture for sensing Pollution
- Methodology Reference map Region of Interest Kriging
- Results
- Comparing maps Robustness against errors
- Conclusion

2 Introduction

3 Methodology

4 Results

Team Institutions

Mobile Pollution Sensing

B. Ducourthial

Team

- Introduction Architecture for sensing Pollution Summary
- Methodolog Reference ma Region of Interest

Results

- Comparing maps Robustness against errors
- Conclusion

Université de Technologie de Compiègne ~4500 students, master degree (engineer diploma), PhD http://www.utc.fr

- One of the first French engineering school for computer science
- Close to Paris and Charles de Gaulle airport

Heudiasyc lab from the UTC & CNRS http://www.hds.utc.fr Equipex Robotex, Labex MS2T

 <

B. Ducourthial

Team

- Introduction
- Architecture fo sensing Pollution
- Methodology
- Reference ma Region of Interest Kriging
- Results
- Comparing maps Robustness against errors
- Conclusion

- Point of view
 - Dynamic networks are different!
- Methodology
 - Real applications
 - 2 Designing new algorithms
 - Proof of concept Performances issues Analytic proofs
 Proof of concept Tests or network emulation Distributed algorithms
- Tools
 - Airplug Software Distribution
 - Communicating embedded disposals
 - On-Board-Units, Road-Side-Units in Compiègne

https://www.hds.utc.fr/airplug

Team

Approach

Team Projects

Team

Introduction Architecture for sensing Pollution Summary

Mobile

Pollution Sensing

B. Ducourthial

- Methodology
- Reference ma Region of Interest Kriging
- Results
- Comparing maps Robustness against errors
- Conclusion

- Inter-vehicles cooperative perception for road safety National project 2008-2011
- Distributed system for vehicle dynamic evaluation Regional project 2008-2011
- Data gathering from VANET to infrastructure Industrial project Orange lab
 2008-2010
- Distributed applications for dynamic networks Regional project 2007-2010
- SafeSPOT European IP project 2006-2010
- Network services for com. between mobiles objects Industrial project Orange lab 2004-2008
- Road anticipating

P NSEIL NAL ROIE

Regional project 2004-2007

< 🗇 >

< ∃→

э

Team Contributions

Mobile Pollution Sensing

B. Ducourthial

Team

- Introduction
- Architecture for sensing Pollution
- Methodology
- Reference ma Region of Interest Kriging
- Results
- Comparing maps Robustness against errors
- Conclusion

• Experiments with dist. data fusion	I [VNC	2014]
• Experiments with sensors	[WiSARN	2014]
 I2V experiments 	[ITSC	2014]
V2I experiments	[IWCMC	2014]
 V2V unicast communication 	[WCNC	2014]
 Distributed data fusion 	[SSS	2012]
 Data collection on the road 	[IV	2012]
• Performances in a convoy of vehic	les [VTC	2011]
V2I architecture	[Mobiwac	2010]
• Distributed dynamic group service	[SPAA	2010]
 Vehicular networks emulation 	[ICCCN	2010]
• Simulation of vehicular networks	[VTC	2010]
 Experimenting on the road 	[VTC	2009]
 Messages forwarding 	IEEE TVT	2007]

Université de Tec Compiègne

B. Ducourthial

Team

- Introduction
- Architecture for sensing Pollution Summary
- Methodology Reference map Region of Interest
- Results
- Comparing maps Robustness against errors
- Conclusion

- POSIX OS
- Core program
 - user-space process

Airplug framework 1/2

Team

- networking
- Applications
 - user-space process
 - read on stdin
 - write on stdout
 - API close to IEEE WSMP
- Ensure tasks and OS independence for robustness
- Open to any programming language

utc

Team Airplug framework 2/2

Team

Introduction

Mobile

Pollution Sensing

B. Ducourthial

- Architecture for sensing Pollution
- Methodology
- Reference ma Region of Interest Kriging

Results

- Comparing maps Robustness against errors
- Conclusion

• New protocols developed in user space processes

- Open to new networking solutions
- Cross-layer solutions facilitated

Team Complete platform

Team

Introduction Architecture for sensing Pollution Summary

Mobile

Pollution Sensing

B. Ducourthial

- Methodology Reference map
- Interest Kriging

Results

Comparing maps Robustness against errors

heudiasy

Conclusion

• Airplug-term \rightarrow rapid prototyping

- Airplug-emu \sim study by emulation
- Airplug-live → real experiments (vehicles, UAV)
- + remote, notk...

(airplup) app=005 ident=10

000 C Portà

B. Ducourthial

Introduction

2 Introduction

Architecture for sensing Measuring pollution in cities Summary

5 Conclusion

Agenda

< (17) > < ∃⇒ < ≣⇒ æ

B. Ducourthial

Team

Introduction

Architecture for sensing Pollution

Summary

Methodology

Reference map Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

2 Introduction

Architecture for sensing Measuring pollution in cities Summary

heudiasyc

Sommaire

Architecture	for	sensing
Horizo	ontal	architecture

Mobile Pollution

Mobile Pollution Sensing	Architecture for sensing	11
B. Ducourthial	Vertical architecture	
Team		
Introduction Architecture for sensing Pollution Summary		
Methodology Reference map Region of Interest Kriging		
Results Comparing maps Robustness against errors Conclusion		
CITS		
heudiasyc		utc Université de Te Complègny

Université de Technologie Complègne

Mobile Pollution Sensing	Architecture for sensing	12
B. Ducourthial		
Team		
Introduction Architecture for sensing Pollution Summary		
Methodology Reference map Region of Interest Kriging		
Results		
Comparing maps Robustness against errors Conclusion		
CITS heudiasvc		・ () () () () () () () () () () () () ()

Mobile

Pollution Sensing

heudiasyc

Mobile

Pollution Sensing

Compiègne

Mobile

Pollution Sensing

Compiègne

Mobile

Pollution Sensing

Mobile

Pollution Sensing

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology Reference map Region of

Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

2 Introduction

Architecture for sensing Measuring pollution in cities Summary

Sommaire

Introduction Pollution problem

Team

Introduction Architecture for sensing Pollution Summary

Mobile

Pollution Sensing

B. Ducourthial

Methodology Reference mar

Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

• Context

- Excessive accumulation of the pollutants can occur in parts of cities
- Detailed maps help at notifying people
- But
 - Pollution mapping relies on very precise sensors
 - Very high cost → limited number
- Mobile cheaper sensors to improve the maps?

・

Mobile sensing Objectives: Ozone case study

B. Ducourthial

Mobile

Pollution Sensing

Team

- Introduction
- Architecture for sensing Pollution
- Summary
- Methodology
- Reference ma Region of Interest Kriging
- Results
- Comparing maps Robustness against errors
- Conclusion

Good ozone

- In the stratosphere 15 to 50 km above the Earth
- Protects the life from the sun's harmful UV-b
- ${\sim}80\%$ of 0_3 but the layer is thin...
- Bad ozone
 - In the troposphere 0 to 15 km above the Earth
 - Air pollutant damaging human health, vegetation...
 - Ground ozone created by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOC) with sunlight
- Consequences
 - Even low level of 0_3 can cause health effect
 - Eg. inflame the lining of the lungs Especially children because their lungs are developping

Mobile sensing Objectives: Compiègne case study

Mobile Pollution Sensing

B. Ducourthial

Team

- ntroduction Architecture for sensing Pollution Summary
- Methodology Reference map Region of Interest Kriging

Results

- Comparing maps Robustness against errors
- Conclusion

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
<li

Mobile sensing Objectives: Compiègne case study

B. Ducourthial

Team

- Introduction Architecture for sensing Pollution Summary
- Methodology
- Reference map Region of Interest Kriging

Results

- Comparing maps Robustness against errors
- Conclusion

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
<li

Mobile sensing Objectives: Compiègne case study

Mobile Pollution Sensing

B. Ducourthial

Team

ntroduction Architecture for sensing Pollution Summary

Viethodology

Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

Parameters	Station 1	Station 2	Station 3	
station_european_code	FR18014	FR18015	FR18032	
station_local_code	FR18014	FR18015	FR18032	
country iso code	FR	FR	FR	
country_name	France	France	France	
station_name	A. Thierry COMPIEGNE	Mairie COMPIEGNE	Desbordes Compiegne	
station_start_date	01/01/79	01/01/79	05/11/97	
station_end_date				
type_of_station	Industrial	Background	Background	
station_ozone_classific ation			urban	
station_type_of_area	suburban	urban	suburban	
station_subcat_rural_ba ck				
street_type				
station_longitude_deg	2.838.058	2.827.789	2.818.055	
station_latitude_deg	49.425.556	49.418.613	49.402.500	
station_altitude	35	53	57	
station_city				
lau_level1_code	6097	6097	6097	
lau level2 code				
lau_level2_name	Compiègne	Compiègne	Compiègne	
EMEP_station	no	no	no	
Measured indexes	SO2	SO2	SO2, PM10, O3, NO2, NOX, NO	

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology Reference man

Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

2 Introduction

Architecture for sensing Measuring pollution in cities

Summary

Curs heudiasyc

Sommaire

B. Ducourthial

Team

- Introduction Architecture for sensing Pollution Summary
- Methodology
- Reference ma Region of Interest Kriging
- Results
- Comparing maps Robustness against errors

neudiasvo

Conclusion

Mobile sensing Objectives: summary and methodology

- Objectives
 - Comparing static and mobile sensing
 - To estimate the pollutant levels in a Rol
 - while varying the number of samples
 - and taking sensor errors into account.
- Methodology
 - Reference map
 - 2 Extrapolating measures to compute a map
 - Comparing the reference and the computed maps

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference may Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

1 Tean

Introduction

Methodology Reference map Region of Interest Kriging

Introduce

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference map Region of

Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

3 Methodology Reference map

Region of Interest Kriging

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference map Region of Interest

Kriging

Results

- Comparing maps Robustness against errors
- Conclusion

- Adapting spatial patterns from city of Badajoz [Moral-García et al. 2010]
- Using the June map
 - Appears to be more difficult to estimate

•
$$f(x) = ae^{-\frac{1}{2}(\frac{x-x_0}{\sigma})^2} + d$$

• Determining the parameters

Methodology Reference map 2/2

Team

Introduction Architecture for sensing Pollution Summary

Mobile

Pollution Sensing

B. Ducourthial

Methodology

Reference map Region of Interest Kriging

Results

Comparing maps Robustness against errors

heudiasyc

- Extending the function to two dimensions
- Determining hot spots
- → Reference map for Compiègne

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference ma Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

3 Methodology

Reference map Region of Interest Kriging

Kri

Methodology Region of Interest (Rol)

B. Ducourthial

Mobile

Pollution Sensing

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference ma Region of Interest Kriging

Results

Comparing map Robustness against errors

- All bus stops
- Line 5 bus stops
- Line 5 route

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference map Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

3 Methodology

Reference map Region of Interest Kriging

Sommaire

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference map Region of Interest Kriging

Results

- Comparing maps Robustness against errors
- Conclusion

- Extrapolating the measures to compute the map → kriging
- Require to estimate the

co-variance

Mean variation as the distance from a sample increases

• Depends on the samples set All bus stops vs. line 5

Methodology

Extrapolating the measures

Team

Introduction Architecture for sensing Pollution Summary

Methodology Reference map Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

1 Team

2 Introduction

3 Methodolog

4 Results

Comparing maps Robustness against errors

5 Conclusion

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology Reference map Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

4 Results

Comparing maps

Robustness against errors

heudiasyc

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

1.87%

Methodology

Reference ma Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

Using all bus stops: average value of the relative absolute error =

23

Results

4000 5000

Reference map vs. computed map 1/3

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology

Reference ma Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

• Using only bus stops of Line 5

average value of the relative absolute error = 5.33% (in the Rol)

Results

Reference map vs. computed map $2/3\,$

B. Ducourthial

Team

- Introduction Architecture for sensing Pollution Summary
- Methodology Reference map
- Interest

Results

Comparing maps Robustness against errors

Conclusion

Using the measures on the moving bus: average value of the relative absolute error = 2.27% in the Region Of Interest

Results

Reference map vs. computed map 3/3

B. Ducourthial

Team

- Introduction Architecture for sensing Pollution Summary
- Methodology Reference map Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

Comparing maps

Robustness against errors

Crrs heudiasyc

Results Robustness against errors 1/2

Mobile

Pollution Sensing

B. Ducourthial

- Robustness against errors

- All bus stops
 - Measure errors up to 5% → minimal impact
 - Only 60% of bus stops ~> minimal impact

< A < ∃→ э

B. Ducourthial

Team

- Introduction
- Architecture fo sensing Pollution
- Mathadalaw
- Reference ma Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

Robustness against errors 2/2

Results

- Line 5 bus stops
 - Measure errors has a greater impact (linear)
- Moving sensor on the Bus 5
 - Less impact with the moving sensor
 - Measure error of $10\% \rightarrow$ result error of 6.7%

B. Ducourthial

Team

Introduction Architecture for sensing Pollution Summary

Methodology Reference map Region of Interest Kriging

Results

Comparing maps Robustness against errors

Conclusion

1 Team

2 Introduction

3 Methodology

4 Results

↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓</li

Conclusion

Mobile Pollution Sensing

B. Ducourthial

Team

- Introduction
- Architecture for sensing Pollution
- Methodology
- Reference map Region of Interest Kriging

Results

- Comparing maps Robustness against errors
- Conclusion

• Problem

- Detailed pollutant maps are mostly unavailable
- What about using cheaper less precise but mobile sensors instead?

• Method

- Generating a reference map
- Pick up some exact measures All bus stations / Line 5 only / Bus 5 only
- Extrapolating using kriging
- Measuring errors
- Results
 - A single equipped bus:
 - \sim 40% of all bus stations
 - 2% better than only Line 5 stations
- Mobile sensing
 - Promizing
 - Still many things to confirm

