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Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering useful
additional information, but suffers from a much higher computational burden. A lot of
work has been done to reduce the time complexity of information fusion with
Dempster’s rule, which is a pointwise multiplication of two zeta transforms, and optimal
general algorithms have been found to get the complete definition of these transforms.
Yet, it is shown in this paper that the zeta transform and its inverse, the Möbius transform,
can be exactly simplified, fitting the quantity of information contained in belief functions.
Beyond that, this simplification actually works for any function on any partially ordered
set. It relies on a new notion that we call focal point and that constitutes the smallest
domain on which both the zeta and Möbius transforms can be defined. We demonstrate
the interest of these general results for DST, not only for the reduction in complexity of
most transformations between belief representations and their fusion, but also for theoret-
ical purposes. Indeed, we provide a new generalization of the conjunctive decomposition of
evidence and formulas uncovering how each decomposition weight is tied to the corre-
sponding mass function.
1. Introduction

Dempster-Shafer Theory (DST) [16] is an elegant formalism that generalizes Bayesian probability theory by considering
the specificity of evidence. This means that it enables a source (e.g. some sensor model) to represent its belief in the state of a
variable by assigning credit not only directly to a possible state, as in Bayesian probability theory, but also to groups of states,
reflecting some model uncertainty or randomness. This assignment of belief is called a mass function. It generalizes the
notion of probability distribution by providing meta-information that quantifies the level of uncertainty about one’s believes
considering the way one established them, which is critical for decision making.

Nevertheless, this information comes with a cost: let X be the set containing all possible states. This set X has 2jXj subsets.
Thus, in DST, we consider 2jXj potential values instead of only jXj in Bayesian probability theory, which can lead to compu-
tationally and spatially very expensive algorithms. Computations can become difficult to perform for more than a dozen pos-
sible states (e.g. 20 states in X generate more than a million subsets), although we may need to consider much more of them
e French
2).
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(e.g. for classification or identification). This imposes a choice in DST between expressiveness of the model (i.e. jXj) and fast
computations (especially considering limited resources such as in embedded systems). To tackle this issue, a lot of work has
been done to reduce the complexity of transformations used to combine belief sources with Dempster’s rule [6]. We distin-
guish between two approaches that we call powerset-based and evidence-based.

The powerset-based approach concerns all algorithms based on the structure of the powerset 2X. They have a complexity
dependent on jXj. Early works [1,10,18,17] proposed optimizations by restricting the structure of evidence to only singletons
and their negation, which greatly restrains the expressiveness of DST. Later, a family of optimal algorithms working in the

general case, that is, those based on the Fast Möbius Transform (FMT) [13], was discovered. Their complexity is O jXj:2jXj
� �

in

time and O 2jXj
� �

in space. The FMT has become the de facto standard for the computation of every transformation in DST.

Consequently, efforts were made to reduce the size of X to benefit from the optimal algorithms of the FMT. More specifically,
[21] refers to the process of conditioning by the combined core (intersection of the unions of all sets of nonnull mass of each
belief source) and lossless coarsening (partitioning of X into super-elements that each represents a group of elements always
appearing together in all sets of nonnull mass). There are also approximation methods such as Monte Carlo methods [21],
which depend on a number of trials that must be large and grows with jXj, and lossy coarsening [9], but we focus here
on exact methods. More recently, DST has been generalized to any lattice (not just 2X) in [11], which has been used to pro-
pose a method [8] limiting its expressiveness to only intervals in X in order to keep DST transformations tractable. If there is
no order between the elements of X, this method comes down again to restricting the assignment of credit to only
singletons.

The evidence-based approach concerns all algorithms that aim to restrict computations (not expressivity) to the only sub-
sets that have a nonnull mass, i.e. that contain information (evidence). These are called focal sets and are usually far less
numerous than 2jXj. This approach, also refered as the obvious one, implicitly originates from the seminal work of Shafer
[16] and is often more efficient than the powerset-based one since it only depends on information contained in sources
in a quadratic way. Doing so, it allows for the exploitation of the full potential of DST by enabling one to choose any frame
of discernment, without concern about its size. Moreover, the evidence-based approach benefits directly from the use of
approximation methods, some of which are very efficient [15]. Therefore, this approach seems superior to the FMT in most
use cases, above all when jXj is large, where an algorithm with exponential complexity is just intractable.

But, unfortunately, focal sets are not sufficient to define the zeta and Möbius transforms. In particular, if one wishes to
compute the multiplicative Möbius transform of an additive zeta transform (e.g. computing the conjunctive or disjunctive
weight function from the commonality or implicability function), focal sets are not enough in the general case. For this,
we already proposed in [4]1 the notion of focal point, which is sufficient to completely define the conjunctive and disjunctive
decompositions.

One other argument against the evidence-based approach is the lack of knowledge about the structure of the set of focal
sets due to its inconstancy. Indeed, the FMT draws its power from the knowledge of the structure of Boolean lattices. Doing
so, all algorithm using only focal sets is forced to have a quadratic complexity in the number of these focal sets, which can be
worse than the complexity of FMT algorithms when this number approaches the size of the powerset 2X. Yet, focal points do
have a specific structure that has been successfully exploited in [5], where we proposed methods with complexities that are
variable but always inferior to the complexity of the FMT, its trimmed version [2] andmore generally the Fast Zeta Transform
[3,12], and may be even lower than O jXj:Fð Þ in some cases, where F is the number of focal sets.

This present article extends our previous works [4,5], focusing on the study of these focal points to provide their gener-
alization to any partially ordered set and the reformulation of the Möbius inversion theorem based on them, which were
missing. This new contribution also applies to the multiplication of any function by the zeta or Möbius function in any inci-
dence algebra [14]. The second part of this article proposes applications in DST exploiting these focal points. We limit this
second part to the classical DST, for the sake of clarity, although our results are applicable to its generalization [11] to any
lattice.

This paper is organized as follows: Section 2 presents the elements on which our notions are built. Section 3 presents our
contributions to the zeta and Möbius transforms. Section 4 discusses multiple applications to DST. Finally, we conclude this
article in Section 5.
2. Background of our method

Let P;6ð Þ be a semifinite (lower semifinite for 6, upper semifinite for P) set partially ordered by some binary operator

noted 6, e.g. the powerset 2X; #
� �

or 2X;�
� �

containing all subsets of a set X ordered by inclusion, the set N�; jð Þ of all pos-
itive integers ordered by divisibility, the set N;6ð Þ of all nonnegative integers ordered by 6, etc.
1 This short reference is written in French, but does not need to be read to follow this article.



2.1. Zeta transform (‘‘Discrete integral”)

The zeta transform g : P ! R of a function f : P ! R is defined as follows:
8y 2 P; g yð Þ ¼
X
x6y

f xð Þ ð1Þ
It is analogous to integration in a discrete domain. Its name comes from incidence algebra [14], in which it corresponds
to the multiplication of f : P2 ! R with the zeta function f : P2 ! 0;1f g, such that f x; yð Þ ¼ 1 if x 6 y, i.e.
8a; b 2 P; f � fð Þ a; bð Þ ¼
X
a6x6b

f a; xð Þ:f x; bð Þ ¼
X
a6x6b

f a; xð Þ ¼ g a; bð Þ
Example 1. In DST, the implicability function b is defined as the zeta transform of the mass function m in 2X; #
� �

, i.e.

8y 2 2X; b yð Þ ¼ P
x# y

m xð Þ.
Example 2. In DST, the commonality function q is defined as the zeta transform of the mass function m in 2X;�
� �

, i.e.

8y 2 2X; q yð Þ ¼ P
x�y

m xð Þ.
2.2. Möbius transform (‘‘Discrete derivative”)

The Möbius transform of g is f. It is analogous to differentiation in a discrete domain and is defined by the Möbius inver-
sion formula:
8y 2 P; f yð Þ ¼
X
x6y

g xð Þ:lP;6 x; yð Þ ð2Þ
where lP;6 is the Möbius function of P;6ð Þ, defined in its general form in [14] as follows:
8x; y 2 P;
X
x6z6y

lP;6 x; zð Þ ¼
X
x6z6y

lP;6 z; yð Þ ¼ 0; ð3Þ
with lP;6 x; xð Þ ¼ 1. This can be rewritten in the following recursive form:
8x; y 2 P; lP;6 x; yð Þ ¼
1 if x ¼ y

�
X
x<z6y

lP;6 z; yð Þ otherwise

8<
: ð4Þ
In an incidence algebra, the Möbius transform of g corresponds to the multiplication of g : P2 ! R with the Möbius func-
tion l, i.e.
8a; b 2 P; g � lP;6

� �
a; bð Þ ¼

X
a6x6b

g a; xð Þ:lP;6 x; bð Þ ¼ f a; bð Þ
Example 3. Taking back the functions m and b from Example 1, m is the Möbius transform of b in 2X; #
� �

, i.e.

8y 2 2X; m yð Þ ¼ P
x# y

b xð Þ: �1ð Þjyj�jxj.
Example 4. Taking back the functions m and q from Example 2, m is the Möbius transform of q in 2X;�
� �

, i.e.

8y 2 2X; m yð Þ ¼ P
x�y

q xð Þ: �1ð Þjyj�jxj.
2.3. Multiplicative Möbius inversion theorem

There is also a multiplicative version of the zeta and Möbius transforms with the same properties in which the sum is
replaced by a product:
8y 2 P; g yð Þ ¼
Y
x6y

f xð Þ () f yð Þ ¼
Y
x6y

g xð ÞlP;6 x;yð Þ



Example 5. In DST, the disjunctive weight function v is defined as the inverse of the multiplicative Möbius transform of b

from Example 1 in 2X; #
� �

, i.e. 8y 2 2X; v yð Þ ¼ Q
x# y

b xð Þ� �1ð Þjyj�jxj
.

Example 6. In DST, the conjunctive weight function w is defined as the inverse of the multiplicative Möbius transform of q

from Example 2 in 2X;�
� �

, i.e. 8y 2 2X; w yð Þ ¼ Q
x�y

q xð Þ� �1ð Þjyj�jxj
.

2.4. Support of a function in P
The support supp fð Þ of a function f : P ! R is defined as supp fð Þ ¼ x 2 P = f xð Þ–0f g. For example, in DST, the set of focal
elements of a mass function m is supp mð Þ.

With this notion, it is obvious that Eq. (1) can be reduced to:
8y 2 P; g yð Þ ¼
X

x2supp fð Þ
x6y

f xð Þ ð5Þ
2.5. Order theory

Minimal/Maximal elements. Minimal elements of a set S are its elements such that there is no element in S that is less
than them. The set containing them is noted min Sð Þ. If there is only one minimal element in S, it is itsminimum. For example,
in a totally ordered set (i.e. a chain), there can only be one minimal element, i.e. its minimum. Dually, the same principle
holds for maximal elements of a set S, noted max Sð Þ, and its maximum.

Supremum/Infimum. The supremum (also known as join) of a set S of elements of P is its least upper bound, i.e. the least
element in P that is greater than or equal to every element of S. It is noted

W
S, but only exists if the set of the upper bounds of

S has only one minimal element. In particular, if S has a maximum, then it is
W
S. Dually, the infimum (also known as meet) of

a set S of elements of P is its greatest lower bound, i.e. the greatest element in P that is less than or equal to every element of
S. It is noted

V
S.

Lattice and semilattice. An upper semilattice S is a set such that every of its nonempty subsets has its supremum in S. A
lower semilattice S is a set such that every of its nonempty subsets has its infimum in S. A lattice is both an upper and a lower
semilattice. In particular, all element of a finite lattice L can be described as either

V
L or the supremum (join) of a nonempty

subset of its join-irreducible elements.

3. Focal points and our Efficient Möbius inversion formula

The purpose of this section is to present our work on what we call the Efficient Möbius inversion formula and its develop-
ments. Section 3.1 gives an overview of the approach. Section 3.2 tries to simplify the Möbius inversion formula of Eq. (2),
highlighting the emergence of our focal points. Section 3.3 properly defines these focal points and exposes the simplifications
they allow on the Möbius inversion formula. Section 3.4 proposes ways to compute them. Finally, Section 3.5 exploits one of
these ways to uncover links between the additive and multiplicative Möbius transforms of a same function. In addition, Sec-
tion 3.6 discusses some aspects of our approach and Section 3.7 bridges the gap between our theoretical results and their
usage.

Let us note P;6ð Þ the set P partially ordered by some binary operator noted 6, and let g and f be the functions of Eq. (1).
For the sake of simplicity, we will consider in this section that P is finite. If P is semifinite or infinite, see Section 3.6. We
assume that f is defined in a compact way, simply through supp fð Þ. We also assume that g is defined in a compact way,
through a partition of P, noted G, into parts X such that all elements of P greater than at least one element of min Xð Þ and
less than at least one element of max Xð Þ is in X and has the same image through g as any other element of X. Multiple par-
titions may fullfill these conditions. For instance, we could force these parts to be intervals (i.e. to force
jmin Xð Þj ¼ jmax Xð Þj ¼ 1 for all part X) or not. This is of no importance for what follows, but the fewer parts there are,
the fewer computations will be needed. An example of such an image partition is illustrated in Fig. 1. The image through
g of all elements in P is thus determined by only minimal and maximal elements of parts. Also, note that all of our following
results can be applied to any incidence algebra, simply considering g a; �ð Þ and the support supp f a; �ð Þð Þ ¼ x 2 P = f a; xð Þ–0f g
for some a 2 P instead of supp fð Þ, since functions are then defined on intervals instead of single elements.

3.1. Problem statement and intuition

Let us start by translating the problems stated in introduction of this article into formal terms. As showed in Eq. (5), g can
be computed from supp fð Þ only. However, g cannot be completely defined in the general case from g supp fð Þð Þ alone. Fur-
thermore, it is not possible to determine supp fð Þ from the definition of g before computing f. These two issues prevent us
from limiting computations so that it scales linearly with the quantity of information in these transforms, i.e. jsupp fð Þj. Nev-



Fig. 1. Example of image partition G of P corresponding to some function g. The (discretized) area of the diamond represents P, which has a minimum in this
example. Each point of it corresponds to one of its elements. The arrow on the left represents the order 6. Two points are ordered only if the upward vector
aligning them makes an angle between �45� and 45� with the big arrow vector on the left. If so, then, of the two points, the one that is lower in the figure is
lower in P. Each color represents an image through g. Each part X of this partition G contains elements of same image through g and can be described as all
elements between min Xð Þ and max Xð Þ. In this example, each color also represents a part. We see that g can be defined in a compact way as a list or tree of
parts, each described by its minimal and maximal elements.
ertheless, it is possible to determine the smallest set containing both supp fð Þ and all the defining elements of P for g, either
from f or from g.

Giving some reduced common superset for these has been done in the past: For conjunctive fusion in DST, one can find in
[21] that computations can be limited to the powerset of supp f 1ð Þ \ supp f 2ð Þ, where f 1 and f 2 are two mass functions to com-
bine. In [2], a method was proposed to limit computations of the zeta transform to the elements of the powerset that are
greater than an element of min supp fð Þð Þ. In contrast, here we propose the smallest common superset for f and g in any semi-
lattice. To the best of our knowledge, our approach is also the first one to propose a reduced common superset based on g
alone for the computation of its Möbius transform (i.e. f). The elements of this smallest common superset are what we call
the focal points of f and g.

The idea is simple: track the influence of f on g by looking at elements from P that are greater than the same elements
from supp fð Þ, since they are necessarily associated with the same image through g, and select one representative for each
of these configurations. Computing the zeta transform of f on these representatives only will yield the complete definition
of g. Then, use the Möbius function associated with the partially ordered set made of these representatives to compute the
Möbius transform of g and get the complete definition of f.

These representatives are our focal points. By definition, their image through g contains all possible images through g,
excepted 0 under some conditions. The same can be stated with f. However, several questions arise: How to get the images
of all other elements of P? Is there a best representative and how to select it for each of these subsets of supp fð Þ? See Sec-
tion 3.3. How to find them efficiently and how to find them without knowing supp fð Þ? See Section 3.4. Is the Möbius trans-
form for these representatives really the same in this reduced set as in P? See Section 3.2.

3.2. Simplifying the Möbius inversion formula

Let us start by showing that these focal points are unique and arise naturally in the expression of the Möbius transform
defined in P. In the following, we will mainly focus on the additive Möbius inversion formula since it displays the same prop-
erties as the multiplicative form (think of the multiplicative form as the exponential of the additive form). In the end, our
study exploits the neutrality of some values in the sum or product. For the addition, the neutral element is 0, hence our
use of the support supp(f). To transpose our findings to the multiplicative form, consider instead supp(f-1), as the neutral
element for the multiplication is 1.

Definition 1 (Level partition). For any subset S# P, let us refer to the elements of S less than some element x 2 P as the lower
closure # xð Þ \ S of x in S, i.e. # xð Þ \ S ¼ s 2 S = s 6 xf g. In accordance with convention, let us also use the notation
# Xð Þ \ S ¼ s 2 S = 9x 2 X; s 6 xf g, where X# P.

For conciseness, we will use the aliases #
Sx ¼ # xð Þ \ S and S

"x ¼ " xð Þ \ S in the following, where x can be a subset of P or one
of its elements.

We define a level partition, noted P= S;6ð Þ and read as P divided according to S and the order 6, as the partition of P such that

for any distinct parts X;Y 2 P= S;6ð Þ, we have #
S X – #

SY and such that for any part X 2 P= S;6ð Þ, any element x 2 X satisfies #
Sx ¼#

S X.
We say that all elements in X are at the same level regarding the elements of S and the order 6. We would have used the
upper closure for the dual order. This concept is illustrated in Fig. 2a. To summarize, we have:
P= S;6ð Þ ¼ X# P = X–£; 8y 2 P; 8x 2 X; #
S x ¼ #

S y
� � () y 2 X

� �



Fig. 2. Same format as in Fig. 1. (a) Illustration of the concept of level partition. Each color represents a part of the partition P= S;6ð Þ , where S ¼ s1; s2; s3f g. In a
level partition, every part X is made of elements of same lower closure in S, i.e. # Xð Þ \ S. The part delimited by a dashed contour is the lower closure of some
element y in P, i.e. # y. We see that all elements of S are in the lower closure of y. So, the lower closure in S of y is S. (b) Projection of all the elements of the
join-closure _S onto the level partition of (a), assuming each part X of P= S;6ð Þ where X# " S (i.e. all parts except the gray one) has a minimum (no assumption
on min Pð Þ is made).
In particular, one may notice that P= supp fð Þ;6ð Þ is also an image partition of P with respect to g.
Definition 2 (Möbius function aggregate). For any element y 2 P, for any nonempty set of elements S# P and for any part X of
the partition P= S;6ð Þ, we define our Möbius function aggregate g as follows:
gS;6;P X; yð Þ ¼
X
z2X
z6y

lP;6 z; yð Þ
Notice that if y 2 min Xð Þ, then gS;6;P X; yð Þ ¼ lP;6 y; yð Þ ¼ 1, according to Eq. (4). The notation gS;6;P is similar to P= S;6ð Þ and is
read as g given S and the elements of P above it, where the term above depends on the order 6.

Thanks to Definition 1 and Definition 2, we can propose a compact reformulation of the Möbius transform of Eq. (2) in the
form of Lemma 1.

Lemma 1 (Compact reformulation of the Möbius inversion formula). For any set S � supp fð Þ, we have 8y 2 P:
f yð Þ ¼
X

X2P= S;6ð Þ
y2"X
X# "S

g Xð Þ:gS;6;P X; yð Þ ð6Þ
where g Xð Þ ¼ g xð Þ for any x 2 X.
Proof. See Appendix A.1. h

However, this reformulation is not a simplification and is thus of little use if our Möbius function aggregate g must be
computed from the original Möbius function l as in Definition 2. Fortunately, it is possible to compute g recursively, inde-
pendently from l, as shown in the following Lemma 2.

Lemma 2 (Recursive aggregation of Möbius function images). For any nonempty set of elements S# P and for any part X 2 P= S;6ð Þ,

if every part Z 2 P= S;6ð Þ verifying
#
SX# #

SZ has a minimum, i.e. jmin Zð Þj ¼ 1, then we have for any y 2 P where ^X < y:
gS;6;P X; yð Þ ¼ �
X

Z2P= S;6ð Þ
^X<^Z6y

gS;6;P Z; yð Þ; ð7Þ
and gS;6;P X; yð Þ ¼ 1 if y ¼ ^X.



Proof. See Appendix A.2. h

In other words, for any part Xwith a minimumm, if every part containing elements greater thanm has a minimum, then g
can be written in a recursive form that only depends on itself. In fact, it is easy to see that g is an extension of the Möbius
function l of Eq. (4) associated with the partially ordered set made of every minimum of part that is in the upper closure of S
(See Definition 4). So, the minimum of each of these parts constitutes one of the representatives we were looking for in Sec-
tion 3.1, i.e. our focal points. The following Section 3.3 will focus on them.

Notice that we specifically target the parts that are in the upper closure of S in order to avoid any unnecessary constraint
on min Pð Þ. Indeed, the lowest parts contain minimal elements of P and may not have a minimum if P does not have one.
However, if they are not in the upper closure of S, then their image through both f and g is 0, which means that they have
no influence in Eqs. (5) and (6) and so do not contribute to the definition of f nor g. They are not used in Eq. (7) either since
this recursion goes upward in P. On the other hand, if they are in the upper closure of S, then each of them necessarily has an
element s of S as its minimum since there is no other part below it to contain s and since s is the least element of P that is
greater than or equal to s. Thus, we simply ignore the parts that are outside the upper closure of S.

3.3. Focal points and their implications

The purpose of Definition 3 is to introduce the join-closure operator that will be used to formalize the notion of focal
point. Then, Property 1 will give the image through f and g of all non focal points. Finally, Definition 4 will define the Möbius
function extension to use in Theorem 1, which contains what we called the Efficient Möbius inversion formula.

Definition 3 (Join-closure). For any nonempty set of elements S# P, we note _S the smallest join-closed subset of P
containing S, i.e.:
2 Thi
coming
_S ¼
_

F =£ � F# S
n o
The operator _� : 2P ! 2P is thus a closure operator, i.e. for any sets S; S0 # P, we have: S# _S; S# S0 ) _S# _S0 and
_ _Sð Þ ¼ _S. This notion is illustrated in Fig. 2b.

By definition of the supremum, i.e. the least upper bound, each element of _S is the minimum of a part X 2 P= S;6ð Þ verifying
#
SX –£. Reciprocally, if a part X 2 P= S;6ð Þ verifying #

SX –£ has a minimum, then it is in _S. Therefore, _S is the set made of the
minimum of each part from P= S;6ð Þ in the upper closure of S. In particular, we have S # _S. Yet, parts that do not contain any
element of Smay not have a minimum. Thus, it may be necessary to check the existence of all these minima before anything.
It is equivalent to checking that _S is an upper subsemilattice of P, i.e. a subset of P for which the supremum (as defined in P)
of every nonempty subset exists in it. For instance, if P is itself an upper semilattice, then all these minima exist.

The elements of _supp fð Þ are what we call focal points2.

Example 7. Let P;6ð Þ ¼ 2X; #
� �

, where X ¼ a; b; cf g. In this partially ordered set, the supremum operator _ is the union

operator [. Let m be a mass function such that m Xð Þ ¼ 0:1;m a; bf gð Þ ¼ 0:1;m b; cf gð Þ ¼ 0:2 and m af gð Þ ¼ 0:6. We have
supp mð Þ ¼ X; a; bf g; b; cf g; af gf g. It is easy to see that the union of any selection of support elements gives another support
element. Therefore, we have _supp mð Þ ¼ supp mð Þ.

It may help, for one that is familiar with DST, to notice that _supp mð Þ ¼ supp m0ð Þ, where m0 = m and is the

disjunctive fusion operator.
Example 8. Taking back Example 7, but looking at the dual closure operator ^�, we get in particular
T

a; bf g; b; cf gf g ¼ bf g
and

T
bf g; af gf g ¼ £. We have ^supp mð Þ ¼ X; a; bf g; b; cf g; af g; bf g;£f g ¼ supp mð Þ [ bf g;£f g. This meet-closed subset of P

contains the focal points of m in 2X;�
� �

.

It may help, for one that is familiar with DST, to notice that ^supp mð Þ ¼ supp m0ð Þ, where m0 = m and is the
conjunctive fusion operator.

By definition of a level partition (Definition 1), we get Property 1, which determines the image through f and g of all ele-
ments of P that are not focal points.

Property 1 (Images of non focal points). For any upper subsemilattice _S of P such that _S � supp fð Þ, and for any element y R _S,
we have f yð Þ ¼ 0. Also, if y 2" _S, then g yð Þ ¼ g sð Þ, where y covers s in _S, i.e. s is the maximum among the elements of _S lower
than y. Otherwise, g yð Þ ¼ 0.
s name stands for an analogy in the field of optics: a focal point is the point of the spatial domain (P) where an image is formed by the intersection of rays
from a distant source (supp fð Þ) passing through a lense (subset of supp fð Þ)



Example 9. Taking back m from Example 7 and the implicability function b from Example 1, we see that the elements from
2X that are not focal points are a; cf g; cf g; bf g and £. So, we have m a; cf gð Þ ¼ m cf gð Þ ¼ m bf gð Þ ¼ m £ð Þ ¼ 0;
b a; cf gð Þ ¼ b af gð Þ and b cf gð Þ ¼ b bf gð Þ ¼ b £ð Þ ¼ 0.
Example 10. Taking backm from Example 8 and the commonality function q from Example 2, we must look this time at the
minimum among the elements of ^supp mð Þ greater than some non focal point. We see that the elements from 2X that are not
focal points are a; cf g and cf g. So, we have m a; cf gð Þ ¼ m cf gð Þ ¼ 0; q a; cf gð Þ ¼ q Xð Þ and q cf gð Þ ¼ q b; cf gð Þ.

Furthermore, thanks to Lemma 2 and Definition 3, we can now define (Definition 4) the extension of the Möbius function
to be applied in our compact reformulation of the Möbius transform.

Definition 4 (Möbius function extension). For any nonempty set of elements S# P such that _S is an upper subsemilattice of P,
we define the extension gS;6;P : _S� P ! Z of the Möbius function l_S;6 : _S� _S ! Z as follows:

For any part X 2 P= S;6ð Þ such that X# " S and for any y 2 P where
V
X < y,
gS;6;P

^
X; y

� �
¼ gS;6;P X; yð Þ ¼ �

X
Z2P= S;6ð ÞV
X<
V

Z6y

gS;6;P

^
Z; y

� �
;

which is equivalent to stating that for any s; yð Þ2_S� P where s < y,
gS;6;P s; yð Þ ¼ �
X
p2_S
s<p6y

gS;6;P p; yð Þ; ð8Þ
with gS;6;P s; sð Þ ¼ 1.
The final part of this section consists in proposing our so-called Efficient Möbius inversion formula in the form of

Theorem 1, which exploits the compact reformulation of Lemma 1, the focal points of Definition 3 and the extended
Möbius function defined in Definition 4.

Theorem 1 (Efficient Möbius inversion formula). For any upper subsemilattice _S of P such that _S � supp fð Þ, we have 8y 2 P,
f yð Þ ¼
X
s2_S
s6y

g sð Þ : gS;6;P s; yð Þ ð9Þ
Proof. Eq. (9) is a simple reformulation of Eq. (6) from Lemma 1 with the focal points of Definition 3 and the extended
Möbius function g of Definition 4 (given Lemma 2), combined with the fact that _ _Sð Þ ¼ _S, which also means that
P= _S;6ð Þ ¼ P= S;6ð Þ. h

Notice that S in fact need not contain supp fð Þ, as long as _S does. So, for example, _S can be a sublattice of P verifying
_S � supp fð Þ, with S ¼ I [ V

If g, where I is the set containing the join-irreducible elements of _S, as is the case with the lattice
support from [5], where S may not contain supp fð Þ. Also, note that P= _S;6ð Þ ¼ P= S;6ð Þ since _ _Sð Þ ¼ _S, which means that all
computations can be made only based on the upper semillatice _S, without actually having to determine any set S.

Example 11. Taking back Example 3, we get that for any focal point s 2 _supp mð Þ, the Möbius transformm of b in 2X; #
� �

is

the Möbius transform of b in _supp mð Þ; #ð Þ, i.e. noting S ¼ supp mð Þ, we have
8y2_S; m yð Þ ¼
X
s2_S
s# y

b sð Þ : l_S;# s; yð Þ
Example 12. Similarly, taking back Example 4, we get that for any focal point s 2 ^supp mð Þ, the Möbius transform m of q in

2X;�
� �

is the Möbius transform of q in ^supp mð Þ;�ð Þ, i.e. noting S ¼ supp mð Þ, we have
8y2^S; m yð Þ ¼
X
s2^S
s�y

q sð Þ : l^S;� s; yð Þ
3.4. Ways to compute focal points

This section focuses on methods allowing one to compute focal points in an efficient way. Property 2 describes a direct
scheme for computing the join-closure _S of any set S# P, while Theorem 2 indicates how to find _supp fð Þ based on G alone.



Property 2 (Computing the join-closure of S directly). Every element in _S can be described as either y, where y 2 S, or s _ y,
where s 2 _S. Doing so, all focal points can be found through a double loop: the outer one iterating through S and the inner one
dynamically iterating through already found focal points (starting with S). Therefore, all elements of _S can be found in O j_Sj:jSjð Þ. It
is even possible to further optimize since for any x; y 2 P, if x 6 y or x P y, then x _ y ¼ y or x _ y ¼ x, which means in our case that
it is useless to compute the supremum of two elements if there exists an order between them.

This Property 2 can be used to compute focal points directly from supp fð Þ, but supp fð Þ is not always known beforehand.
One may want to find all focal points from g alone. The problem is that for any two elements
x; y 2 P; g xð Þ – g yð Þ ) #

S x –
#
S y, but the converse is not true. Therefore, some elements from _supp fð Þ may not be directly

apparent in the compact definition of g through its image partition G. See Fig. 3. The following Theorem 2 explains how focal
points can be found from G alone, in spite of this fact.

Theorem 2 (Finding _supp fð Þ from G). Let Y be the set made of every supremum x _ a, where x 2 G nM and a 2 M, where

M ¼ min Pð Þ \ supp gð Þ and G ¼ [
X2G

min Xð Þ. If _G is an upper subsemilattice of P (e.g. if P is itself an upper semilattice), then we

have _supp fð Þ# _ Y [ G nMð Þ# _G.
Proof. See Appendix A.3. h

Consequently, one can find all focal points of f and g, from either supp fð Þ or the minimal elements of G, either using a
variation of the procedure described in Property 2 or by building a sublattice L of P as done in Proposition 2 of [5]. This latter
method, of complexity O n:jLjð Þ, potentially generates more elements but features a better worst-case complexity O n:jPjð Þ,
where n is the number of join-irreducible elements of L. In addition, this lattice L contains both _supp fð Þ and ^supp fð Þ.

It is also worth noting that we do not even have to compute the join-closure of G if f is nonnegative, since there can be no
compensation of images through f. This means that the image through g of a focal point cannot be equal to the one of an
element it covers (See Appendix A.3). Hence Property 3.

Property 3 (Finding _supp fð Þ from G when f is nonnegative). If _supp fð Þ is an upper subsemilattice of P (e.g. if P is itself an upper

semilattice) and if f is nonnegative, then we have _supp fð Þ#G nM, where M ¼ min Pð Þ \ supp gð Þ and G ¼ [
X2G

min Xð Þ.
Example 13. The mass functionm is required to be nonnegative. Therefore, no matter the partition defining the implicability
function b and the commonality function q, the partition for b always contains its focal points among the minimal elements
of its parts, and the partition for q (the dual of b) always contains its focal points among the maximal elements of its parts
(provided that q and b indeed correspond to mass functions). However, the disjunctive weight function v from Example 5 and
the conjunctive weight function w from Example 6, which are multiplicative Möbius transforms in DST, are allowed to have
values below 1. Thus, they do not satisfy the multiplicative equivalent of Property 3.
3.5. Focal points for both additive and multiplicative Möbius transforms

In this section, we will see which place takes the focal points of two functions f : P ! R and h : P ! R� when they are
linked by the following equation:
Fig. 3. Example of image partition G from Fig. 1. Each color represents an image through g. Suppose that g is the zeta transform of f in P;6ð Þ and that the
image through g of the gray part is 0. Then, this partition is the consequence of the support of f displayed in the figure with the following conditions:
f s2ð Þ ¼ f s1ð Þ; f s4ð Þ ¼ �f s1ð Þ and f s3ð Þ ¼ f s5ð Þ. In this case, the image through g of the elements in the green part is f s1ð Þ, the one in the orange part is
f s1ð Þ þ f s3ð Þ, the one in the violet part is f s1ð Þ þ f s3ð Þ þ f s6ð Þ and the one in the white part is f s1ð Þ þ 2:f s3ð Þ þ f s6ð Þ. Notice that not all elements from supp fð Þ
are minimal elements of a part. However, they are all contained in the join-closure of G n V

Pf g, noted _ G n V
Pf gð Þ, where G ¼ [

X2G
min Xð Þ. In fact, we even

have _ G n V
Pf gð Þ ¼ _supp fð Þ.



8y 2 P; g yð Þ ¼
X
x6y

f xð Þ ¼
Y
x6y

h xð Þ ð10Þ
We will not consider the case where h is allowed to have null images since they make impossible the inversion of prod-
ucts. Indeed, any element of P that is greater than an element associated with a null value through h is guaranteed to get a
null image through the zeta transform g, no matter what image it has through h. Therefore, retrieving their image through h
from g becomes impossible. The following Property 4 reflects this constraint.

Property 4. For any minimal element y 2 min Pð Þ, Eq. (10) gives us g yð Þ ¼ f yð Þ ¼ h yð Þ. In particular, if y R supp fð Þ, then
g yð Þ ¼ f yð Þ ¼ h yð Þ ¼ 0, which we forbid. Thus, we have min Pð Þ# supp fð Þ.
Example 14. Taking back the implicability function b from Example 1 and the disjunctive weight function v from Example 5,
we have:
8y 2 2X; b yð Þ ¼
X
x# y

m xð Þ ¼
Y
x# y

v xð Þ�1
;

which implies that m £ð Þ ¼ v £ð Þ�1 and so m £ð Þ– 0, which is in accordance with Property 4.
Example 15. Taking back the commonality function q from Example 2 and the conjunctive weight function w from Example
6, we have:
8y 2 2X; q yð Þ ¼
X
x�y

m xð Þ ¼
Y
x�y

w xð Þ�1
;

which implies that m Xð Þ ¼ w Xð Þ�1 and so m Xð Þ– 0, which is in accordance with Property 4.
From this Property 4 and Theorem 2, we can link the focal points of f and h, and thus their respective support elements, in

Corollary 1.

Corollary 1 (Link between _supp fð Þ and _supp h� 1ð Þ). If either _ supp h� 1ð Þ [min Pð Þð Þ or _supp fð Þ is an upper subsemilattice
of P, then we have
_supp fð Þ ¼ _ supp h� 1ð Þ [min Pð Þð Þ
Proof. See Appendix A.4. h

In particular, _supp fð Þ ¼ V
Pf g [ _supp h� 1ð Þ, if P has a minimum.

Example 16. Taking back the mass functionm, the disjunctive weight function v and the conjunctive weight functionw from
Example 14 and Example 15, we get _supp mð Þ ¼ £f g [ _supp v � 1ð Þ and ^supp mð Þ ¼ Xf g [ ^supp w� 1ð Þ.

Finally, Theorem 3 proposes formulas to track the information flow from h to g and f, i.e. the effects of changing one ele-
ment in supp h� 1ð Þ on f and g. This will be used in the application of Section 4.3. The reversed flow, from f to h, is not dis-
played here as it does not simplify well.

Theorem 3 (Information flow from h to g and f). Let h0 be equal to h everywhere, except for the image of some x 2 P. Also, let f 0

and g0 be the functions corresponding to h0 so that they satisfy Eq. (10) in place of respectively f and g. Then we have:
8y 2 P; g0 yð Þ ¼ g yð Þ: h0 xð Þ
h xð Þ if x 6 y

g yð Þ otherwise

(
ð11Þ
and for any upper subsemilattice _S of P such that _S � supp fð Þ [ xf g,
8y 2 P; f 0 yð Þ ¼
0 if y R _S

f yð Þ þ h0 xð Þ
h xð Þ � 1

h i
:f "x yð Þ if x 6 y

f yð Þ otherwise

8>><
>>:
where f "x :" x ! R is the Möbius transform of g in " x;6ð Þ, i.e. 8y 2" x,
f "x yð Þ ¼
X
s2"x
s6y

g sð Þ : l"x;6 s; yð Þ
Proof. See Appendix A.5. h

In particular, notice that if x 2 _supp fð Þ, then _supp fð Þ � supp fð Þ [ xf g.



3.6. Discussions

Several remarks can be made regarding g as input. Firstly, we only consider a compact definition of g in this article
because the point is that it is possible to compute its Möbius transform even in a tremendously vast partially ordered set
by avoiding to consider all elements of P. If g is defined by its image on every element of P, then the usual Möbius transform
should be employed, as the search for focal points would require to check all elements of P at least once. This is all the more
relevant since there are some algorithms like the FMT [13] that operate in O n:jPjð Þ, where P is here a lattice and n is the num-
ber of its join-irreducible elements, where we usually have n � jPj.

Secondly, if P is downward infinite, then there may be parts in G that do not have any minimal element. Since our method
may need these minimal elements in order to find some potentially hidden support elements if f can have negative values,
one might have to add a surrogate element for each downward infinite horizon in P. For example, if P contains an element
that is greater than two infinite chains, then one should add two surrogate elements symbolizing downward infinity, one for
each chain. Of course, this can only be possible if there is a finite number of downward infinite horizons. Finally, jsupp fð Þj
must be finite and G must have a finite number of parts. Otherwise, focal points cannot be determined.

3.7. From theory to practice

In practice, one could wonder how these formulas can be exploited. Actually, even though it is possible to do so, the
Möbius function l (or our extension g) is usually not evaluated when computing the Möbius transform of a function. It
mostly serves a theoretical purpose. Instead, it is enough to consider the zeta transform g of a function f and to simply
rewrite it in a recursive way to express f in terms of g and f:
3 A lo
conside
8y 2 P; g yð Þ ¼
X
x2S
x6y

f xð Þ () f yð Þ ¼ g yð Þ �
X
x2S
x<y

f xð Þ ð12Þ
where S � supp fð Þ. Then, there are two main ways to use these formulas: (i) naively, summing all terms for each element y,
or (ii) efficiently, reusing partial sums common to multiple elements y. With (i), values of g can be computed independently,
while (ii) requires the computation of the image through g of all elements of P. But, if one needs the value of g on every ele-
ment y (i.e. the complete definition of g), whether it is because jsupp fð Þj is close to jPj or otherwise, then (ii) is much more
efficient. The optimal method achieving (ii) for P ¼ 2X is the Fast Möbius Transform (FMT) [13], which has a time complexity

in O N:2N
� �

, where N is the size of the frame of discernment resulting from the best lossless coarsening3 of X regarding

supp fð Þ.
Our contribution to this is the proof that we do not necessarily need the value of g on all elements of P to define g and to

define f from g (without knowledge about supp fð Þ). Our focal points constitute a subset of P that can be substantially smaller
and is necessary and sufficient to define all zeta and Möbius transforms. As seen in Theorem 1, for any element of _S the
Möbius transform of g in P;6ð Þ is the Möbius transform of g in _S;6ð Þ. This means that we can work in the domain of our
focal points instead of P and obtain the exact same results. This finding is mostly useful for (ii) as it exploits the structure
of the domain. For this, we proposed variants of the FMT, called Efficient Möbius Transformations (EMT) [5], which work in
any distributive lattice L and exploit the structure of its subsemilattices. Taking L ¼ 2X, the complexity of the EMT is always

lower than O N:2N
� �

and can be even lower than O N2
� �

, e.g. if supp fð Þ is a chain.

When using (i), only support elements are necessary in computations, but g is only completely defined when its image on
all focal points is given (See Example 17), which is obvious considering its image partition G. In addition, it is important to
mention that changing even only one image through g of an element from supp fð Þ may add or remove elements from
supp fð Þ, but they will always be in _supp fð Þ. Thus, manipulating g only on the elements of supp fð Þ is highly unreliable.
On the contrary, focal points can serve as data structure to completely define g and can be directly found from any compact
definition of g, such as one by intervals.

Furthermore, supp fð Þ may not be known before actually computing f from g. In this case, it is impossible to compute f
with only elements from supp fð Þ. However, it is always possible to find the focal points of f from g.

See Example 18.

Example 17 (Computing q from m). Let us take back Example 8, i.e. X ¼ a; b; cf g and m is a mass function such that
m Xð Þ ¼ 0:1;m a; bf gð Þ ¼ 0:1;m b; cf gð Þ ¼ 0:2 and m af gð Þ ¼ 0:6. We have supp mð Þ ¼ X; a; bf g; b; cf g; af gf g and
^supp mð Þ ¼ supp mð Þ [ bf g;£f g. From m, we get its commonality function q based on Eq. (5) with supp mð Þ on its focal
poins ^supp mð Þ:
ssless coarsened frame of discernment X0 is a partition of the original set X, subject to this coarsening, such that every support element of the
red mass function defined on 2X can be mapped into 2X

0
. The best lossless coarsening results in the smallest X0 possible (see [21]).



	 q Xð Þ ¼ m Xð Þ ¼ 0:1
	 q a; bf gð Þ ¼ m a; bf gð Þ þm Xð Þ ¼ 0:2
	 q b; cf gð Þ ¼ m b; cf gð Þ þm Xð Þ ¼ 0:3
	 q af gð Þ ¼ m af gð Þ þm a; bf gð Þ þm Xð Þ ¼ 0:8
	 q bf gð Þ ¼ m a; bf gð Þ þm b; cf gð Þ þm Xð Þ ¼ 0:4
	 q £ð Þ ¼ m af gð Þ þm a; bf gð Þ þm b; cf gð Þ þm Xð Þ ¼ 1

As already shown in Example 10, the rest of 2X, which does not contain any focal point, is defined by Property 1:
q a; cf gð Þ ¼ q Xð Þ and q cf gð Þ ¼ q b; cf gð Þ.
Example 18 (Computing w from m). Now, from Example 17, suppose that we want to computew. From Corollary 1, we know
that Xf g [ ^supp w� 1ð Þ ¼ ^supp mð Þ. In addition, we have m Xð Þ ¼ w Xð Þ�1 ¼ 0:1– 1, which means that X 2 supp w� 1ð Þ and
so ^supp w� 1ð Þ ¼ ^supp mð Þ. Then, adapting Eq. (12) to the multiplicative form, we get:
4 Fro
case in
8y 2 2X; w yð Þ ¼
1 if y R ^ supp mð Þ

q yð Þ�1
:

Q
s2^supp mð Þ

s
y

w sð Þ�1 otherwise

8><
>:
This result and its dual for the disjunctive weight function vwere already the conclusion of one of our previous papers [4].
So, from this, we get the conjunctive weight function w:

	 w Xð Þ ¼ q Xð Þ�1 ¼ 10

	 w a; bf gð Þ ¼ q a; bf gð Þ:w Xð Þ½ ��1 ¼ 0:5

	 w b; cf gð Þ ¼ q b; cf gð Þ:w Xð Þ½ ��1 ¼ 1
3

	 w af gð Þ ¼ q af gð Þ:w Xð Þ:w a; bf gð Þ½ ��1 ¼ 0:25

	 w bf gð Þ ¼ q bf gð Þ:w Xð Þ:w a; bf gð Þ:w b; cf gð Þ½ ��1 ¼ 1:5

	 w £ð Þ ¼ q £ð Þ:w Xð Þ:w a; bf gð Þ:w b; cf gð Þ:w af gð Þ:w bf gð Þ½ ��1 ¼ 1:6

Since all these images are different from 1, we get here4 that ^supp mð Þ ¼ supp w� 1ð Þ.
4. Implications for Dempster-Shafer Theory

In DST, we work with P ¼ 2X, which is a lattice, i.e. a set of which every nonempty subset has both a supremum and an
infimum. Doing so, all focal points always exist for both the relations # and �. We will see in Section 4.1 how our Efficient
Möbius inversion formula impacts almost all representations of DST and how to fuse belief sources using focal points. In Sec-
tion 4.2, we will propose a generalization of the conjunctive decomposition of evidence to benefit from fusion rules such as
the Cautious one [7], even when the considered mass function is dogmatic. Finally, Section 4.3 will provide formulas to study
the impact of each decomposition weight on the corresponding mass function.

4.1. Efficient representations in Dempster-Shafer Theory

In DST, the mass functionm is central. It is considered as a generalization of the discrete Bayesian probability distribution.
It is defined within the bounds of two constraints [19]: one is that m is nonnegative, and the other is
X

y22X
m yð Þ ¼ 1: ð13Þ
However, other representations are often used to analyse or fuse mass functions. With the exception of the pignistic prob-
ability representation, all of them are linked to the zeta and Möbius transforms. We already introduced them in our examples
throughout this article: the implicability5 function b from Example 1, the commonality function q from Example 2, the disjunc-
tive weight function v from Example 5 and the conjunctive weight function w from Example 6.

In addition, Example 19 displays a classic use case demonstrating how the fusion of two functions of same type in DST can
be performed with focal points.

Example 19 (Efficient combination with Dempster’s fusion rule). Dempster’s combination rule � is defined as the normalized

conjunctive rule , i.e. 8y 2 2X = y–£:
m experience, all focal points of m are most of the time also elements of the support of w� 1 or v � 1, to the point where we in fact never witnessed a
which this was not true.



6 We
[20] for
¼ : m1 s1ð Þ : m2 s2ð Þ ð14Þ
use abusiv
a more acc
1
K

X
s12supp m1ð Þ
s22supp m2ð Þ

s1\s2¼y

¼ 1
K
:
X
x�y

q1 xð Þ : q2 xð Þ : l
2X ;� x; yð Þ ð15Þ
where . Eq. (14) can be used by an evidence-based algorithm in O jsupp m1ð Þj:jsupp m2ð Þjð Þ, observing
that each support element in supp m12ð Þ of the combined mass function m12 is defined as the intersection s1 \ s2 of a pair
of support elements, where s1 2 supp m1ð Þ and s2 2 supp m2ð Þ. Alternatively, Eq. (15) can be used by powerset-based algo-

rithms such as the FMT (this application has been tackled in [13]) in O N:2N
� �

, where N is here the size of the frame of dis-

cernment resulting from the best lossless coarsening of X regarding supp m1ð Þ [ supp m2ð Þ. It consists in separately
computing q1 and q2 with the FMT and then multiplying them element-wise to get q12, before using again the FMT to com-
pute m12 from q12. This second approach is useful when almost all images of m12 are required, e.g. when
jsupp m1ð Þj:jsupp m2ð Þj is of significantly higher magnitude than N:2N .

We can also reformulate Eq. (15) with focal points in the light of Theorem 1 and obtain a hybrid approach:
m1 �m2ð Þ yð Þ ¼
1
K :

P
s2^S
s�y

q1 sð Þ : q2 sð Þ : l^S;� s; yð Þ if y2^S

0 otherwise

8><
>: ð16Þ
where ^S � supp m12ð Þ and P ¼ 2X. Eq. (16) can be exploited in less than O N:2N
� �

with the EMT using the fact that
^ supp m1ð Þ [ supp m2ð Þð Þ � supp m12ð Þ. If support elements are not known, one can use the fact that
^ supp m1ð Þ [ supp m2ð Þð Þ ¼ ^ ^supp m1ð Þ [ ^supp m2ð Þð Þ.
4.2. Generalized decompositions of evidence

Some useful fusion rules for belief sources apply only to the conjunctive decomposition of evidence [7]. Such is the case
for the Cautious conjunctive rule [7], which is used when these sources are not independent. Yet, this decomposition can
only be computed for mass functionsm such that X 2 supp mð Þ. Here, we propose a generalization of this decomposition that
works for any mass function m such that

S
supp mð Þ 2 supp mð Þ. This generalization is given by Definition 5. A similar defi-

nition can be given for its dual, namely the disjunctive decomposition, for any mass function such that
T
supp mð Þ 2 supp mð Þ.

4.2.1. Generalization
For any mass function m such that X 2 supp mð Þ, the conjunctive decomposition is defined as.
ð17Þ

where each Aw is a generalized simple mass function6, defined as
8A � X; 8B#X; Aw Bð Þ ¼
1�w Að Þ if B ¼ A

w Að Þ if B ¼ X

0 otherwise

8><
>:
and w is the conjunctive weight function, i.e. the inverse of the multiplicative Möbius transform of q in 2X;�
� �

, i.e.

w Að Þ ¼ Q
B#X
B�A

q Bð Þ �1ð ÞjBj�jAjþ1

, where q is the commonality function associated to m, i.e. the zeta transform of m in 2X;�
� �

.

In parallel, the Möbius inversion theorem linking q and w gives us
8y 2 2X; q yð Þ ¼
X
x�y

m yð Þ ¼
Y
x�y

w yð Þ�1
; ð18Þ
which implies that w Xð Þ ¼ q Xð Þ�1 ¼ m Xð Þ�1, hence m Xð Þ – 0. Even if we take the multiplicative Möbius transform of q
instead of its inverse, we must have m Xð Þ – 0 so that the Möbius inversion theorem can apply, as explained in Section 3.5.
Thus, in order to apply combination rules that are only defined on the conjunctive decomposition, such as the Cautious con-
ely the term mass function in this article for the sake of simplicity. Actually, Aw is a generalized simple basic belief assignment (GSBBA) (See
urate terminology).



junctive rule, it was argued [20] that one should only use mass functionsm satisfyingm Xð Þ – 0. In practice, this is often done
artificially, by discounting, i.e. multiplying all masses by some factor a 2 0;1ð Þ and assigning the complement to 1 to m Xð Þ.

Nevertheless, assigning a mass to X is not ideal: when fusing by conjunction two mass functions that have different focal
elements but X among them, it appears that no hypothesis (i.e. no focal element) is discarded in the resulting mass function.
It contains the focal elements of the two original mass functions, as well as their pair-wise intersections. This means that
hypotheses can only accumulate, making the number of focal elements (and so the number of focal points) explode in vast
domains when many fusions of belief sources occur. Therefore, it is preferable to only assign masses to actual tangible
hypotheses, instead of always considering that all hypotheses are possible even if unlikely. It is more stable, more accurate
and allows for more use cases.

It turns out that it is possible to avoid the constraint m Xð Þ– 0 simply by using as weight function w the inverse of the

multiplicative Möbius transform of q in # supp mð Þ;�ð Þ instead of 2X;�
� �

(See Section 3.5). But, how to reflect this in the

conjunctive decomposition? Notice that Eq. (17) is in fact equivalent to:
8y#C; q yð Þ ¼

Q
x–C

w xð Þ if y ¼ C

q Cð Þ : Q
x–C
x�y

w xð Þ�1 otherwise

8>><
>>: ; ð19Þ
where C ¼ X, which means that all images of q are determined by Eq. (18), except for the one on C which exploits the fact
that the product of all weights is normalized to 1, due to Eqs. (18) and (13). Now, C can be something else, as long as the
conjunctive combination of simple mass functions as in Eq. (17) leads to this form, which implies that C both is less than
or equal to the element replacing X in each simple mass function, while not being less than A (to satisfy the first line in
Eq. (19)), and is a maximal element of the domain on which w is defined (to satisfy q Cð Þ ¼ w Cð Þ�1, imposed by Eq. (18)).
In addition, since the second line of this equation is only valid when y is less than C, we get that Cmust be above all elements
of supp mð Þ for the conjunctive decomposition to account for all non-zero q images defining m. Combining this with the fact
that w must be computed in # supp mð Þ;�ð Þ, we get that C ¼ S

supp mð Þ and C 2 supp mð Þ, which is in accordance with the
other aforementioned conditions. This leads us to Definition 5.

Definition 5. For any mass function m such that
S
supp mð Þ 2 supp mð Þ, we define our generalized conjunctive decompo-

sition as

where C ¼ S
supp mð Þ and
8A � C; 8B#C; Aw
C Bð Þ ¼

1�wC Að Þ if B ¼ A
wC Að Þ if B ¼ C

0 otherwise

8><
>:
and wC Að Þ ¼ Q
B#C
B�A

q Bð Þ �1ð ÞjBj�jAjþ1

.

If X 2 supp mð Þ, then Definition 5 yields the classic conjunctive decomposition. This generalized decomposition is unique,
as the classic one, due to the fact that wC is tied to q by the Möbius inversion theorem.

4.2.2. When supp mð Þ has no maximum
Similar to what was proposed in the past, it is possible to discount m and assign the complement to 1 to any element

between
S
supp mð Þ and X, if

S
supp mð Þ is not already in supp mð Þ. We argue that

S
supp mð Þ should be chosen since it is

the superset that supports the least hypotheses outside supp mð Þ and so the one that biases m the least.
Furthermore, thanks to Theorem 1 and Corollary 1, we can even state the following Corollary 2 about the resulting

decomposition weights of such a discounting procedure.

Corollary 2. For any mass function m such that
S
supp mð Þ R supp mð Þ, discounting it and assigning the complement to X gives

the same decomposition weights as discounting it and assigning the complement to
S
supp mð Þ.
Proof. See Appendix A.6. h
4.2.3. Fusion of generalized decompositions
Given Corollary 2, for two mass functions m1 and m2 such that neither supp m1ð Þ nor supp m2ð Þ has a maximum andS
supp m1ð Þ ¼ S

supp m2ð Þ, discounting them and assigning the complement to X gives the same decomposition weights



as discounting them and assigning the complement to
S
supp m1ð Þ. Consequently, any fusion operator defined on decompo-

sition weights produces the same results in our generalized decomposition as in the classic decomposition, except that the
mass normally added to X is added to

S
supp m1ð Þ instead, which does not give credit to more hypotheses than needed and is

more stable. In addition, this allows for new interesting cases when
S
supp m1ð Þ– S

supp m2ð Þ.
In this case, before applying any fusion operator, it is necessary to define a common domain for the resulting conjunctive

decomposition. For combination rules based on the conjunction of two belief sources (i.e. both sources are considered reli-
able), such as Dempster’s rule, the Cautious conjunctive rule, etc, domains must be intersected and evidence projected on
this intersection. This common domain is simply 2C , where C ¼ S

supp m1ð Þ \S
supp m2ð Þ. Then, concerning the projection

of evidence on 2C , this consists in adding masses defined outside 2C to their intersection with this domain. Fortunately, this
is already what the commonality function q does. Indeed, the projection of any mass functionm onto 2C is obtained by trans-
ferring, i.e. adding, the mass on all elements B#X to the mass of B \ C. This projection, noted m#C , is itself a mass function
since, by construction, it is as nonnegative asm and the sum of its images remains unchanged. Notice that the zeta transform

of m#C in 2C ;�
� �

is equal to q on 2C since B � A is equivalent to B \ A ¼ A and since for any element A#C, we have

A \ B \ Cð Þ ¼ A \ B. Thus, we can use the commonality functions q1 and q2, which are respectively the zeta transforms of

m1 in 2T1 ;�
� �

and m2 in 2T2 ;�
� �

, where T1 � S
supp m1ð Þ and T2 � S

supp m2ð Þ. Then, it only remains to check that

q1 Cð Þ – 0 and q2 Cð Þ – 0, which is equivalent to verifying that C 2# supp m1ð Þ and C 2# supp m2ð Þ. The aforementioned dis-
counting must be employed7 on any commonality function that does not verify this condition. Now, we can finally fuse m1

and m2 by applying any conjunctive fusion operator to the weight functions wC
1 and wC

2 associated to respectively q1 and q2

in 2C ;�
� �

. If Theorem 1 is used to compute wC
1 and wC

2, notice that the focal points of wC
1 are the pair-wise intersections

C \ s1, where s1 2 ^supp m1ð Þ, and the ones of wC
2 are the pair-wise intersections C \ s2, where s2 2 ^supp m2ð Þ.

The weight functions wC
1 and wC

2 correspond to m1#C and m2#C , which are mass functions. Therefore, any fusion operator
defined in the classic conjunctive decomposition, such as the Cautious conjunctive rule, is valid in this generalization, as if
we had X ¼ C, and so can be applied to the weights of wC

1 and wC
2 (except the ones on C, in the same way that it is not applied

to the weights on X in the classic decomposition).

Example 20. Consider X ¼ a; b; c; df g and let m1 be a mass function such that m1 a; bf gð Þ ¼ 0:2; m1 b; cf gð Þ ¼ 0:2 and
m1 af gð Þ ¼ 0:6. We have

S
supp m1ð Þ ¼ a; b; cf g and ^supp m1ð Þ ¼ supp m1ð Þ [ bf g;£f g. Also, let m2 be a mass function such

that m2 b; cf gð Þ ¼ 0:3; m2 c; df gð Þ ¼ 0:1 and m2 cf gð Þ ¼ 0:6. We have
S
supp m2ð Þ ¼ b; c; df g and ^supp m2ð Þ ¼ supp m2ð Þ.

Suppose we want to fuse m1 and m2 with the Cautious conjunctive rule. We pose C ¼ S
supp m1ð Þ \S

supp m2ð Þ ¼ b; cf g. We
already have C 2# supp m1ð Þ and C 2# supp m2ð Þ, so no discounting needed. We even have C 2 supp m1ð Þ and C 2 supp m2ð Þ,
which means that the focal points of wC

1 are 2C \ ^supp m1ð Þ ¼ b; cf g; bf g;£f g and that the ones of wC
2 are

2C \ ^supp m2ð Þ ¼ b; cf g; cf gf g. Moreover, we have q1 b; cf gð Þ ¼ 0:2; q1 bf gð Þ ¼ 0:4 and q1 £ð Þ ¼ 1, where q1 is the common-
ality function associated to m1, and q2 b; cf gð Þ ¼ 0:3 and q2 cf gð Þ ¼ 1, where q2 is the commonality function associated to m2.
We get:

wC
1 b; cf gð Þ ¼ q1 b; cf gð Þ�1 ¼ 5; wC

1 bf gð Þ ¼ q1 bf gð Þ : wC
1 b; cf gð Þ� 	�1 ¼ 0:5; wC

1 £ð Þ ¼ q1 £ð Þ : wC
1 b; cf gð Þ : wC

1 bf gð Þ� 	�1 ¼ 0:4 and

wC
2 b; cf gð Þ ¼ q2 b; cf gð Þ�1 ¼ 1

0:3 ; w
C
2 cf gð Þ ¼ q2 cf gð Þ : wC

2 b; cf gð Þ� 	�1 ¼ 0:3.
Then, using the minimum operator8 ^ of the Cautious conjunctive rule, we obtain:

	 wC
12 bf gð Þ ¼ wC

1 bf gð Þ ^wC
2 bf gð Þ ¼ 0:5 ^ 1 ¼ 0:5

	 wC
12 cf gð Þ ¼ wC

1 cf gð Þ ^wC
2 cf gð Þ ¼ 1 ^ 0:3 ¼ 0:3

	 wC
12 £ð Þ ¼ wC

1 £ð Þ ^wC
2 £ð Þ ¼ 0:4 ^ 1 ¼ 0:4

which means that wC
12 b; cf gð Þ ¼ wC

12 bf gð Þ : wC
12 cf gð Þ : wC

12 £ð Þ� 	�1 ¼ 1
0:06. Then, let us compute the associated commonality

function q12 : q12 b; cf gð Þ ¼ wC
12 b; cf gð Þ�1 ¼ 0:06; q12 bf gð Þ ¼ wC

12 bf gð Þ : wC
12 b; cf gð Þ� 	�1 ¼ 0:12; q12 cf gð Þ ¼ wC

12 cf gð Þ :�
wC

12 b; cf gð Þ��1 ¼ 0:2 and q12 £ð Þ ¼ wC
12 £ð Þ : wC

12 bf gð Þ : wC
12 cf gð Þ : wC

12 b; cf gð Þ� 	�1 ¼ 1.
Finally, the associated mass function m12 is: m12 b; cf gð Þ ¼ q12 b; cf gð Þ ¼ 0:06; m12 bf gð Þ ¼ q12 bf gð Þ �m12 b; cf gð Þ ¼ 0:06;

m12 cf gð Þ ¼ q12 cf gð Þ �m12 b; cf gð Þ ¼ 0:14 and m12 £ð Þ ¼ q12 £ð Þ �m12 bf gð Þ �m12 cf gð Þ �m12 b; cf gð Þ ¼ 0:74; where

m12 xð Þ ¼ 0 for all x R 2 b;cf g. Since these results are here the same as if we had employed the conjunctive fusion rule, it is

easy to see that they are correct. Indeed, computing the conjunctive fusion of m1 and m2 directly in 2X produces the same
resulting mass function m12.
7 Small but necessary approximation in order to apply the fusion operator.
8 In fact, as all couples of numbers involve 1 and another number less than 1, the conjunctive rule would have given the same result here.



4.3. Better understanding the conjunctive and disjunctive decompositions

A better understanding of the conjunctive or disjunctive decomposition of evidence can be exploited to propose e.g. new
fusion rules using Definition 5 or new approximation methods based on supp w� 1ð Þ instead of supp mð Þ, where m is a mass
function and w is the weight function associated to it. For this, it is interesting to study how each piece of evidence in the
conjunctive or disjunctive decomposition impacts the mass function. Until now, the only exact way to do this computation in

the general case was using the FMT, which is O N:2N
� �

, and this provided no insight on the internal workings of these mod-

ifications. Here, given Theorem 3, we propose new formulas (Proposition 1) describing the propagation of these updates. We
will focus on the conjunctive decomposition, but a similar method exists for its dual, namely the disjunctive decomposition.
Once focal points have been computed for the original weight function w, the complexity of our method ranges from O 1ð Þ to
O N:j^supp w� 1ð Þjð Þ for each image of focal point modified in w, depending on its relation with respect to other focal points.

Proposition 1. Let w0 be equal to w everywhere on 2X n Xf g, except for the image of some x 2 ^supp w� 1ð Þ n Xf g. Also, let
m0 and q0 be the functions corresponding to w0 so that they satisfy Eq. (10) in place of respectively m and q. Then, we have:
8y 2 2X; q0 yð Þ ¼
q yð Þ if x � y
w0 xð Þ
w xð Þ :q yð Þ otherwise

(
ð20Þ
and
m0 yð Þ ¼
0 if y R ^ S
w0 xð Þ
w xð Þ :m yð Þ þ 1� w0 xð Þ

w xð Þ

h i
:m#x yð Þ if x � y

w0 xð Þ
w xð Þ :m yð Þ otherwise

8>><
>>: ð21Þ
where ^S � supp w� 1ð Þ [ Xf g and m#x : 2
x ! 0;1½ � is the mass function resulting from the projection of m onto # x, i.e. the

Möbius transform of q in 2x;�� �
.

Proof. See Appendix A.7. h
Example 21. Let us take back Example 18, i.e. X ¼ a; b; cf g and m is a mass function such that
m Xð Þ ¼ 0:1; m a; bf gð Þ ¼ 0:1; m b; cf gð Þ ¼ 0:2 and m af gð Þ ¼ 0:6. We have supp mð Þ ¼ X; a; bf g; b; cf g; af gf g and ^supp mð Þ ¼
supp mð Þ [ bf g;£f g. We also have its commonality function q such that q Xð Þ ¼ 0:1; q a; bf gð Þ ¼
0:2; q b; cf gð Þ ¼ 0:3; q af gð Þ ¼ 0:8; q bf gð Þ ¼ 0:4 and q £ð Þ ¼ 1. Finally, its conjunctive weight function w is defined by
w Xð Þ ¼ 10; w a; bf gð Þ ¼ 0:5; w b; cf gð Þ ¼ 1

3 ; w af gð Þ ¼ 0:25; w bf gð Þ ¼ 1:5 and w £ð Þ ¼ 1:6.
Now, suppose that we would like to see how changingw bf gð Þ from 1.5 to 1, i.e. removing bf g from supp w� 1ð Þ, affectsm.

Then, Eq. (21) tells us that only m bf gð Þ and m £ð Þ are impacted by more than just a renormalization factor. Let us start by

computing m# bf g, where # bf g ¼ 2 bf g : m# bf g bf gð Þ ¼ q bf gð Þ ¼ 0:4 and m# bf g £ð Þ ¼ q £ð Þ �m# bf g bf gð Þ ¼ 0:6. Now, we can
update m to provide m0:

	 m0 bf gð Þ ¼ w0 bf gð Þ
w bf gð Þ :m bf gð Þ þ 1� w0 bf gð Þ

w bf gð Þ

h i
:m# bf g bf gð Þ ¼ 0þ 1� 1

1:5

� 	 � 0:4 ¼ 2
15

	 m0 £ð Þ ¼ w0 bf gð Þ
w bf gð Þ :m £ð Þ þ 1� w0 bf gð Þ

w bf gð Þ

h i
:m# bf g £ð Þ ¼ 0þ 1� 1

1:5

� 	 � 0:6 ¼ 3
15

All other focal points p simply have their image through m0 renormalized:
m0 pð Þ ¼ w0 bf gð Þ
w bf gð Þ :m pð Þ ¼ 1

1:5
:m pð Þ
which gives m0 Xð Þ ¼ m0 a; bf gð Þ ¼ 1
15 ; m

0 b; cf gð Þ ¼ 2
15 and m0 af gð Þ ¼ 6

15. Note that the sum of the images of m0 is indeed equal
to 1.
Example 22. Still using m; q and w from Example 18, suppose now that we would like to see how changing w a; bf gð Þ from
0.5 to 1, i.e. removing a; bf g from supp w� 1ð Þ, affects m. Then, Eq. (21) tells us that only m a; bf gð Þ;m af gð Þ;m bf gð Þ and m £ð Þ
are impacted by more than just a renormalization factor. Let us start by computing m# a;bf g, where # a; bf g ¼ 2 a;bf g:

	 m# a;bf g a; bf gð Þ ¼ q a; bf gð Þ ¼ 0:2
	 m# a;bf g af gð Þ ¼ q af gð Þ �m# a;bf g a; bf gð Þ ¼ 0:6
	 m# a;bf g bf gð Þ ¼ q bf gð Þ �m# a;bf g a; bf gð Þ ¼ 0:2



	 m# a;bf g £ð Þ ¼ q £ð Þ �m# a;bf g a; bf gð Þ �m# a;bf g af gð Þ �m# a;bf g bf gð Þ ¼ 0

Now, we can update m to provide m0:

	 m0 a; bf gð Þ ¼ w0 a;bf gð Þ
w a;bf gð Þ :m a; bf gð Þ þ 1� w0 a;bf gð Þ

w a;bf gð Þ

h i
:m# a;bf g a; bf gð Þ ¼ 1

0:5 � 0:1þ 1� 1
0:5

� 	 � 0:2 ¼ 0

	 m0 af gð Þ ¼ w0 a;bf gð Þ
w a;bf gð Þ :m af gð Þ þ 1� w0 a;bf gð Þ

w a;bf gð Þ

h i
:m# a;bf g af gð Þ ¼ 1

0:5 � 0:6þ 1� 1
0:5

� 	 � 0:6 ¼ 0:6

	 m0 bf gð Þ ¼ w0 a;bf gð Þ
w a;bf gð Þ :m bf gð Þ þ 1� w0 a;bf gð Þ

w a;bf gð Þ

h i
:m# a;bf g bf gð Þ ¼ 0þ 1� 1

0:5

� 	 � 0:2 ¼ �0:2

	 m0 £ð Þ ¼ w0 a;bf gð Þ
w a;bf gð Þ :m £ð Þ þ 1� w0 a;bf gð Þ

w a;bf gð Þ

h i
:m# a;bf g £ð Þ ¼ 0þ 1� 1

0:5

� 	 � 0 ¼ 0

All other focal points p simply have their image through m0 renormalized:
m0 pð Þ ¼ w0 bf gð Þ
w bf gð Þ :m pð Þ ¼ 1

0:5
:m pð Þ
which gives m0 Xð Þ ¼ 0:2 and m0 b; cf gð Þ ¼ 0:4. Notice that the sum of the images of m0 is indeed equal to 1, but we have a
negative mass m0 bf gð Þ. This is expected as it is known (see [20]) that the conjunctive decomposition is composed of what
are called Simple Support Functions (SSF) (corresponding to elements of supp w� 1ð Þ with an image in 0;1ð Þ) and Inverse
Simple Support Functions (ISSF) (corresponding to elements of supp w� 1ð Þ with an image in 1;þ1ð Þ). Fusing all SSFs
and ISSFs of one decomposition with the conjunctive rule gives the original mass function. SSFs correspond to mass func-
tions, while ISSFs correspond to the decombination of mass functions, i.e. they are equivalent to mass functions with some
negative value (if mass functions were allowed to have negative values). We had on bf g a balance between positive mass
values corresponding to w a; bf gð Þ and w b; cf gð Þ and a negative one corresponding to w bf gð Þ, which we shifted towards
the negatives by removing the positive mass corresponding to w a; bf gð Þ. So, it just appears that changing SSFs from a decom-
position that contains ISSFs is not always permitted in DST.
5. Conclusions and perspectives

In this paper, we proposed an exact simplification of the zeta and Möbius transforms, for any function in any incidence
algebra or on any partially ordered set. From this, we introduced the notion of focal point and discovered interesting prop-
erties when applied to the zeta and Möbius transforms. Then, we applied our theorems to DST in order to allow for both
exactitude and computational efficiency in vast domain for most transformations between representations of belief and
for their fusion. We also proposed a generalization of the conjunctive decomposition of evidence and provided formulas
uncovering the influence of each decomposition weight on the corresponding mass function. These last two applications
demonstrate the potential of our approach for the proof of new theoretical results and may themselves be exploited to pro-
pose new discounting methods and fusion operators in DST.

To go further in practice, we need to present algorithms, data structures and experimental setups comparing execution
times and memory usage between the EMT, the FMT and naïve approches using focal points. Hence, we plan to issue a prac-
tical follow-up article in the near future, alongside a complete open-source implementation for DST.

In a more general way, our theoretical results can be both useful as a way to significantly reduce the complexity of any
algorithm involving the zeta and Möbius transforms (e.g. with our EMT [5], which is defined in any distributive lattice) and
as tools to better understand them.
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Appendix A. Proofs

A.1. Lemma 1



partitions P according to S so that all elements of each part have the
same lower closure in S, we have that all elements x of a part X in P= S;6ð Þ share the same image
gS xð Þ ¼ P

s2S
s6x

f sð Þ ¼ P
s2supp fð Þ

s6x

f sð Þ þ P
s2Snsupp fð Þ

s6x

f sð Þ ¼ g xð Þ þ 0 ¼ g Xð Þ. Therefore, it is possible to group the terms of the Möbius

inversion formula (Eq. (2)) by parts of the level partition of any set S � supp fð Þ, i.e. for any y 2 P:

Proof. For any set S � supp fð Þ, given the fact that P= S;6ð Þ
f yð Þ ¼ P
x6y

g xð Þ:lP;6 x; yð Þ ¼ P
X2P= S;6ð Þ
y2"X

P
z2X
z6y

g zð Þ : lP;6 z; yð Þ

¼ P
X2P= S;6ð Þ
y2"X

g Xð Þ: P
z2X
z6y

lP;6 z; yð Þ ¼ P
X2P= S;6ð Þ
y2"X

g Xð Þ : gS;6;P X; yð Þ
Moreover, if there is a part Z 2 P= S;6ð Þ such that #
SZ ¼ £, i.e. such that for all z 2 Z there is no element s 2 supp fð Þ verifying

s 6 z, then the image g Zð Þ of this part is necessarily 0. Hence Eq. (6). h
A.2. Lemma 2

Proof. For all y 2 P, let us consider some m 2 min Xð Þ such that m < y. We can rewrite gS;6;P X; yð Þ in the following form:
gS;6;P X; yð Þ ¼ P
z2X
z6y

lP;6 z; yð Þ ¼ P
z2X
z6y
zR"m

lP;6 z; yð Þ þ P
z2X

m6z6y

lP;6 z; yð Þ

¼ P
z2X
z6y
zR"m

lP;6 z; yð Þ þ P
m6z6y

lP;6 z; yð Þ � P
zRX

m6z6y

lP;6 z; yð Þ
which reduces to: X

gS;6;P X; yð Þ ¼ �m X; yð Þ �

zRX
m6z6y

lP;6 z; yð Þ ð22Þ
where �m X; yð Þ ¼ P
z2X
z6y
zR"m

lP;6 z; yð Þ, since Eq. (3) gives us
P

m6z6y
lP;6 z; yð Þ ¼ 0. Now, let us determine from which parts the ele-

ments of z R X =m 6 z 6 yf g are. First, any of these elements belongs to a part Z from P= S;6ð Þ n Xf g. Then, any element z

of these Z parts satisfies m 6 z. So, we have # m# # z, which implies that #
SX# #

SZ by definition of a level partition. More pre-
cisely, we get #

SX � #
S Z, since Z – X. Thus, the only parts Z 2 P= S;6ð Þ that need to be considered in the sum of Eq. (22) satisfy

#
SX � #

S Z.
From this, without any hypothesis on the level partition, we can show that g can be written in a recursive form, but not

without �, which can only be computed from l. However, if we consider that every part Z 2 P= S;6ð Þ satisfying
#
SX# #

SZ has a
minimum, then we can get rid of �. Indeed, if X has a minimum, then every element of X is greater than m, i.e.
�m;6 X; yð Þ ¼ P

z2X
z6y
zR"m

lP;6 z; yð Þ ¼ 0. The same goes for the rest of the recursion, hence the need for the parts #
SX �#

S Z to each have

a minimum too.

Moreover, these conditions mean that their respective lower closures in S all have a supremum, since the supremum is by
definition the least upper bound. Thus, we get that the only parts Z 2 P= S;6ð Þ that need to be considered in the sum of Eq. (22)

satisfy
W#

S X <
W#

S Z, where
W#

S X ¼ m ¼ V
X and

W#
S Z ¼ V

Z. So, we have:
gS;6;P X; yð Þ ¼ � P
zRX

m6z6y

lP;6 z; yð Þ ¼ � P
Z2P= S;6ð Þ
m<^Z6y

P
z2Z

m6z6y

lP;6 z; yð Þ

¼ � P
Z2P= S;6ð Þ
^X<^Z6y

P
z2Z
z6y

lP;6 z; yð Þ ¼ � P
Z2P= S;6ð Þ
^X<^Z6y

gS;6;P Z; yð Þ
In addition, we know fromDefinition 2 that if y 2 min Xð Þ, i.e. y ¼ V
X if X has aminimum, thenwe have gS;6;P X; yð Þ ¼ 1. h



A.3. Theorem 2

Proof. For the sake of clarity, we will use the alias S ¼ supp fð Þ in the following. Let G be the set made of the minimal
elements of each part of the partition G defining g, i.e. G ¼ [

X2G
min Xð Þ. We will assume that _G is an upper subsemilattice of P.

Let us now find the elements of supp fð Þ with G.

(i) It is obvious that min Pð Þ#G. (ii) For any elements y 2 P and s 2 supp fð Þ such that y < s and #
Ss# n #

Sy#



 


 ¼ 1, we have

g sð Þ ¼ g xð Þ þ f sð Þ– g xð Þ, for any element x 2 P where y 6 x < s. Therefore, there exists a part X 2 G such that s 2 min Xð Þ, i.e.
s 2 G. (iii) For any elements y 2 G and s 2 supp fð Þ such that y < s and #

Ss# n #
Sy#




 


 ¼ n, where n P 2, there exists an element

s0 2 supp fð Þ such that s0 < s and s0iy. Thus, there is an element y0 ¼ y _ s0 where y0 6 s and #
Ss# n #

Sy
0




 


 6 n� 1. If y0 – s and

#
Ss# n #

Sy
0




 


 P 2, then there is an element s00 2 supp fð Þ such that s00 < s and s00i y0, which means that there is an element

y00 ¼ y0 _ s00 verifying both #
Ss# n #

Sy
00




 


 6 n� 2 and y00 6 s. This upward recursion will ultimately end either because the

number of elements in the difference of lower closures in S reaches 1 (which means that s 2 G, given (ii)) or because it has
generated s with the supremum of two lower elements.

Furthermore, from what we demonstrated up to this point, either the aforementionned element s0 2 supp fð Þ is in G (by (i)

or (ii)) or there exists an element x 2 G such that x < s0 verifying #
Ss

0 n #
Sx#




 


 P 2, which means that there exists an element

~s 2 supp fð Þ such that s



< s0 and s


i x. And again, either ~s 2 G or there exists an element x0 2 G such that x0 < s



verifying

#
S s


# n #

Sx
0




 


 P 2. Noticing that #
S s


#




 


 < #
Ss

0



 


 < #

Ss#



 


, we know that this downward recursion will ultimately end with an

element _s 2 supp fð Þ that is in G since the lower closure in S decreases and will eventually contain only one element of S.
Therefore, either s0 is in G or it can be found by computing successive suprema as in (iii), starting with the supremum
between _s and another element of G. The same goes for s00 and any other elements eventually encountered in the upward
recursion of (iii). Hence, all these elements can be used with y to find s again through successive suprema. So, we get that all
elements of supp fð Þ are in the join-closure of G, i.e. _G.

We can be even more precise than this by noticing that the supremum of two minimal elements of P associated with 0
through g cannot be an element of supp fð Þ that is not already in G. Indeed, for any elementm 2 min Pð Þ, we have g mð Þ ¼ f mð Þ.
So, if g mð Þ ¼ 0, then f mð Þ ¼ 0, i.e. m R supp fð Þ. Yet, each supremum in (iii) involves at least one element of supp fð Þ, i.e. one
element that is not both a minimal element and an element with null image through g. This means that the supremum of
two elements of M, where M ¼ min Pð Þ \ supp gð Þ, if not already in G, is either not in supp fð Þ or the supremum of another set
of elements, where at least one is in G nM. Thus, we would like to avoid computing any supremum of the form

W
A, where

A#M, in our join-closure. Let Y be the set made of every supremum x _ a, where x 2 G nM and a 2 M. Notice that the
elements of _ Y [ G nMð Þ are of the form

W
X [ Að Þ, where £ � X#G nM and A#M. Therefore, _ Y [ G nMð Þ contains all the

elements of _G, except the ones that are exclusively of the form
W
A, where A#M. Consequently, we have

supp fð Þ# _ Y [ G nMð Þ, which means, by definition of a closure operator, that _supp fð Þ# _ Y [ G nMð Þ# _G. h
A.4. Corollary 1

Proof. Let G� be the partition of P w.r.t. the images of g such that G� ¼ P= supp fð Þ;6ð Þ, and let G� ¼ [
X2G� min Xð Þ. We have

G� ¼ _supp fð Þ [min Pð Þ, since min Pð Þ contains the minimal elements of the only part of P= supp fð Þ;6ð Þ that is not in " supp fð Þ, if
it even exists. Adapting Theorem 2 to the multiplicative Möbius transform, we also have
_supp h� 1ð Þ# _G� ¼ _ supp fð Þ [min Pð Þð Þ, which means that _ supp h� 1ð Þ [min Pð Þð Þ# _ supp fð Þ [min Pð Þð Þ. The same
reasoning can be applied to the partition G�

h ¼ P= supp h�1ð Þ;6ð Þ, leading to _ supp fð Þ [min Pð Þð Þ# _ supp h� 1ð Þ [min Pð Þð Þ.
Therefore, combining all inequalities, we get that _ supp fð Þ [min Pð Þð Þ ¼ _ supp h� 1ð Þ [min Pð Þð Þ. Finally, by Property 4, we
have _supp fð Þ ¼ _ supp h� 1ð Þ [min Pð Þð Þ. h
A.5. Theorem 3

Proof. In formal terms, the condition on h0 translates for any y 2 P to:



h0 yð Þ ¼ h0 yð Þ if y ¼ x

h yð Þ otherwise

(

By Eq. (10), we have that for any y 2 P, g0 yð Þ ¼ Q
z6y

h0 zð Þ.We observe that h0 xð Þ appears in the product of g0 yð Þ only if x 6 y.

Since all other images of h0 are equal to the ones of h, we get Eq. (11). Then, Corollary 1 gives us
_supp fð Þ ¼ _ supp h� 1ð Þ [min Pð Þð Þ and _supp f 0

� � ¼ _ supp h0 � 1
� � [min Pð Þ� �

. Moreover, notice that

supp h0 � 1
� �

# supp h� 1ð Þ [ xf g. We get _ supp h0 � 1
� � [min Pð Þ� �

# _ supp h� 1ð Þ [min Pð Þ [ xf gð Þ, which implies that
_supp f 0

� �
# _ supp fð Þ [ xf gð Þ. Consequently, we know that any upper subsemilattice _S of P such that _S � supp fð Þ [ xf g

can be used in Eq. (9) of Theorem 1 for both f and f 0. So, we get for any y 2 P:
f 0 yð Þ ¼ P
s2_S
s6y

g0 sð Þ : gS;6;P s; yð Þ

¼ P
s2_S
x6s6y

g sð Þ: h0 xð Þ
h xð Þ : gS;6;P s; yð Þ þ P

s2_S
s6y
sR"x

g sð Þ : gS;6;P s; yð Þ

¼ h0 xð Þ
h xð Þ :

P
s2_S
x6s6y

g sð Þ : gS;6;P s; yð Þ þ f yð Þ � P
s2_S
x6s6y

g sð Þ : gS;6;P s; yð Þ

¼ f yð Þ þ h0 xð Þ
h xð Þ � 1

h i
:
P
s2_S
x6s6y

g sð Þ : gS;6;P s; yð Þ
Besides, for any s; y 2 P where x 6 s < y, we have p = s < pf g ¼ p = x 6 s < pf g and so:
gS;6;P s; yð Þ ¼ �
X
p2_S
s<p6y

gS;6;P p; yð Þ ¼ �
X
p2"x
p2_S
s<p6y

gS;6;P p; yð Þ ¼ gS;6;"x s; yð Þ;
where " x is the upper closure of x in P. Therefore, the expression
P
s2_S
x6s6y

g sð Þ : gS;6;P s; yð Þ is in fact the Möbius transform of g in

" x;6ð Þ. h
A.6. Corollary 2
Proof. For any mass function m such that C 2 supp mð Þ, where C ¼ S
supp mð Þ, Corollary 1 implies that

^supp mð Þ n Cf g ¼ ^supp wC � 1
� � n Cf g, where wC is the inverse of the multiplicative Möbius transform of q in # C;�ð Þ and

q is the zeta transform of m in # T;�ð Þ, where T � C. In particular, suppose C – X and let w0 be the inverse of the

multiplicative Möbius transform of q0 in 2X;�
� �

, where q0 corresponds to m0 and m0 is equal to m everywhere, except that

m0 Cð Þ ¼ 0 and m0 Xð Þ ¼ m Cð Þ. We have ^supp w0 � 1ð Þ n Xf g ¼ ^supp m0ð Þ n Xf g ¼ ^supp mð Þ n Cf g ¼ ^supp wC � 1
� � n Cf g.

Furthermore, q0 Xð Þ ¼ q Cð Þ and for any element y#C, we have q0 yð Þ ¼ q yð Þ, which implies that for any element

s 2 ^supp wC � 1
� � n Cf g, we have q0 yð Þ ¼ q yð Þ. This means that wC Cð Þ ¼ q Cð Þ�1 ¼ w0 Xð Þ and that by Theorem 1, for any

element y � C, we havewC yð Þ ¼ Q
s2^S
s�y

q sð Þ�gS;�;#a s; yð Þ ¼ Q
s2^S0
s�y

q0 sð Þ�gS0 ;�;P
s; yð Þ ¼ w0 yð Þ, where S ¼ supp wC � 1

� �
and S0 ¼ S n Cf g [ Xf g

and gS;�;#C C; yð Þ ¼ gS0 ;�;P X; yð Þ, since C and X have the same relations with respect to the elements in ^supp wC � 1
� � n Cf g and

so the same role in the recursion giving g in Eq. (8). h
A.7. Proposition 1
Proof. Let w0 be equal to w everywhere on 2X, except for the image of some x 2 ^supp w� 1ð Þ n Xf g. Also, letm0 and q0 be the

functions corresponding tow0 so that they satisfy Eq. (10) in place of respectivelym and q. For any element y 2 2X, Theorem 3
gives us:
q0 yð Þ ¼
w xð Þ
w0 xð Þ : q yð Þ if x � y

q yð Þ otherwise

(

and



m0 yð Þ ¼
0 if y R ^ S

m yð Þ þ w xð Þ
w0 xð Þ � 1
h i

: m#x yð Þ if x � y

m yð Þ otherwise

8>><
>>: ; ð23Þ
where ^S � supp mð Þ and m#x :# x ! R is the Möbius transform of q in # x;�ð Þ. However, in DST, we have to respect a normal-
ization constraint on m0 and w0 that is imposed by Eqs. (13) and (18). Obviously, looking at the normalized product, we see
that the only way to normalize w0 without changing any other image of 2X n Xf g through w is by changing the one on X.
More precisely, the normalized equivalent w0 of w0 must satisfy w0 Xð Þ ¼ w xð Þ

w0 xð Þ :w Xð Þ. So, taking back Eq. (23), but this time

updating m0 to get its normalized equivalent m0 with x ¼ X, which implies that # x ¼# X ¼ 2X, we have for any y 2 2X:
m0 yð Þ ¼ m0 yð Þ þ w0 Xð Þ
w0 Xð Þ � 1

� �
:m0 yð Þ ¼ w0 Xð Þ

w0 Xð Þ :m
0 yð Þ ¼ w0 xð Þ : w0 Xð Þ

w xð Þ : w Xð Þ :m0 yð Þ ¼ w0 xð Þ
w xð Þ :m

0 yð Þ
Discarding m0 as it is not a mass function (does not satisfy Eq. (13)), we consider directly m0 as the result of the modifi-
cation of one image in the conjunctive decomposition. Hence Eqs. (20) and (21) with ^S � supp mð Þ. In addition, since 2X has a
maximum X, we have ^supp mð Þ ¼ ^supp w� 1ð Þ [ Xf g by Corollary 1.

Finally, remark that m#x is a mass function, since it is the Möbius transform, in a reduced subset, of q, which corresponds
to the mass function m. It is the same projection process as the one producing m#C in Section 4.2.3. h
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