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Chapter

Space-Time-Parameter PCA for
Data-Driven Modeling with
Application to Bioengineering
Florian De Vuyst, Claire Dupont and Anne-Virginie Salsac

Abstract

Principal component analysis is a recognized powerful and practical method in
statistics and data science. It can also be used in modeling as a dimensionality reduc-
tion tool to achieve low-order models of complex multiphysics or engineering sys-
tems. Model-order reduction (MOR) methodologies today are an important topic for
engineering design and analysis. Design space exploration or accelerated numerical
optimization for example are made easier by the use of reduced-order models. In this
chapter, we will talk about the use of higher-order singular value decompositions
(HOSVD) applied to spatiotemporal problems that are parameterized by a set of
design variables or physical parameters. Here we consider a data-driven reduced order
modeling based on a design of computer experiment: from high-dimensional compu-
tational results returned by high-fidelity solvers (e.g. finite element ones), the
HOSVD allows us to determine spatial, time and parameters principal components.
The dynamics of the system can then be retrieved by identifying the low-order
discrete dynamical system. As application, we will consider the dynamics of deform-
able capsules flowing into microchannels. The study of such fluid-structure interac-
tion problems is motivated by the use of microcapsules as innovative drug delivery
carriers through blood vessels.

Keywords: HOSVD, spatio-temporal parametrized problem, approximation,
reduced-order model, bioengineering, fluid-structure interaction, deformable
capsules, dynamical system, machine learning, artificial intelligence

1. Introduction

Manufactured deformable microcapsules are intended to be used as drug carriers
within the human vascular network to deliver drugs at specific targets (tumors, etc.).
In order to design reliable capsules, one can make help of numerical simulation and
high performance computing. The transportation of such capsules into microchannels
is a three-dimensional fluid-structure interaction (FSI) problem involving a fluid flow
within a confined environment and the deformation of hyperelastic membranes [1, 2].
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The behavior of the capsule depends on dimensionless parameters such as the capil-
lary number denoted by Ca and the aspect ratio a=ℓ between the capsule radius a and
the channel characteristic length ℓ. The parameter vector μ ¼ Ca, a=ℓð Þ, for which a

capsule steady shape exists, lies in a bounded domain D⊂
2. We look for the time

evolution of the capsule shape under a Lagrangian description. From an initial shape
X, we are interested in determining the capsule position x X, t, μð Þ in the microchannel

domain Ω∈
3 at time t for a parameter vector μ∈D. By denoting u the displacement

vector from the initial position, we have

x X, μ, tð Þ ¼ X þ u X, μ, tð Þ (1)

with u X, μ, 0ð Þ ¼ 0. The governing equations of the FSI problem include both
kinematics and motion equations. At the membrane, we have equilibrium of the
mechanical forces (mechanical equilibrium of the membrane and viscous stresses
from the fluid). By denoting v the vector field of velocity at the membrane, the system
of differential algebraic equations in abstract form reads

_u ¼ v, (2)

v ¼ F μ u,Xð Þ: (3)

Practically, there are different candidate computational approaches to discretize
this system of equations. First, the initial capsule membrane has to be discretized by

using a finite element triangular mesh made of nodes Xif gIi¼1. Regarding time
discretization, in [2], an explicit time scheme is used and the velocity field is determined
by the use of a boundary integral method (BIM) coupled with a finite element method
(FEM). A numerical stability condition imposes the use of small time steps. For a
given parameter μ, the time evolution of capsule dynamics on the time intervals of
interest generally requires hours of CPU time. To better understand the membrane
behavior with respect to μ, a design of computer experiment (DoCE) is done: from a
set of J parameter samples of μ j ∈D, j ¼ 1, … , J, a spatio-temporal solution is computed

for each μ j, leading to a database of shape solutions under the form of a third-order

tensor

T x ¼ x Xi, μ j, t
n

� �� �

i¼1,… ,I,j¼1,… ,J,n¼0,… ,N,
∈

3I�J� Nþ1ð Þ (4)

using a triangular finite element discretization of the membrane, a time
discretization tn ¼ nΔt (assuming that the time step is constant) and the parameter
samples μ j. Typically, for practical computations, I ¼ O 1000ð Þ, N ¼ O 10000ð Þ and

J ¼ O 100ð Þ, so that the tensor database becomes rather huge (about O 10ð Þ gigabytes).
Of course, one can only store the solutions at coarser times steps and reduce N to
O 100ð Þ but the database remains rather big even in this case.

From this data tensor, one can imagine different use cases leading to different tools:

1.Data exploration and knowledge extraction;

2.Real-time rendering of capsule dynamics for better understanding;

3.Data-driven modeling of capsule dynamics in the whole parameter domain.
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First and second items can be achieved by means of data dimensionality reduction.
This leads to a lower storage of data in memory as well as a lower numerical com-
plexity of processing and manipulation. In this chapter, we will consider a Higher
Order Singular Value Decomposition (HOSVD), which is a generalization of Principal
Analysis Component (PCA) to tensors. The third item involves a model-order
reduction (MOR) methodology. From computed data, we would like to derive a
lightweight dynamical system that reproduces the data and, even more, that is able to
accurately estimate solutions for different parameter values μ. Data-driven model-
order reduction first makes use of data-dimensionality reduction by a low-order
tensor decomposition of the solutions according to some suitable spatial, temporal and
parameter reduced bases (see [3]). In our application, this will give the truncated
decomposition (where the solutions are here seen as functions):

~x X, μ, tð Þ ¼ X þ
X

K

k¼1

X

L

ℓ¼1

X

M

m¼1

akℓmφk Xð Þψℓ μð Þωm tð Þ (5)

for some expansion coefficients akℓm and some spatial functions φk, parameter
functions ψℓ and temporal functions ωm with ωm 0ð Þ ¼ 0 ensuring x X, μ, 0ð Þ ¼ X.
The truncation ranks K, L and M are expected to be small enough (K≪ I, L≪ J and
M≪N). Discretized shape solutions returned by the Full-Order computational Model

(FOM) are stored into a third-order tensor of data T x. Let ~T x denote the truncated
tensor expansion related to (5). It reads:

~T x ¼ A0 ⊗ e
N þ

X

K

k¼1

X

L

ℓ¼1

X

M

m¼1

akℓmΦk ⊗Ψℓ ⊗wm≈T x (6)

where A0 ∈
I�J, A0

� �

ij
¼ Xi, eN ¼ 1, … , 1ð ÞT ∈

N,Φk ∈
I, Ψℓ ∈

J and wm ∈
N.

In this chapter, we will seamlessly use the functional representation or the tensor one.
From this reduced form, we will then apply a kernel-based Dynamic Mode

Decomposition (k-DMD, see [4]) to derive a dynamical system able to predict the
capsule shape evolution over time for any value of the parameter μ. This will be
developed in the next sections.

2. Higher-order singular value decomposition and truncation

2.1 Compact HOSVD

The higher-order singular value decomposition (HOSVD) of a tensor is a specific
orthogonal Tucker decomposition. The classical computation of a HOSVD was
introduced by L. R. Tucker [5] and further developed by L. De Lathauwer et al. [6].
Robust computations or improvements have been since proposed [6–8]. For a tensor
T of order d, the idea is to compute the singular value decomposition of each factor- k
flattening T kð Þ of a tensor T , i.e. a “matricisation” of the tensor where the rows of the

matrix are related to the k-th dimension.
In our case, we consider a third-order tensor and successive spatial, parameter and

temporal flattening to find the singular vectors. The spatial tensor flattening

T Xð Þ ∈
I� J:Nð Þ of the tensor T x � A0 ⊗ eN

� �

is
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T Xð Þ

� �

ip
¼ x Xi, μ j, t

n
� �

�Xi, p ¼ jþ n� 1ð ÞJ (7)

(meaning that the μ and t dimensions are stacked in columns in the matrix). The
SVD of T Xð Þ provides rx nonzero singular values with rx corresponding singular

orthonormal vectors Φk, k ¼ 1, … , rx. Similarly the parameter flattening leads to a
rank rμ with rμ modes Ψℓ, ℓ ¼ 1, … , rμ and the time flattening a rank rt with rt modes

wm, m ¼ 1, … , rt. The tuple rX, rμ, rt
� �

is the multilinear rank of T x. Then tensor T x

can be written as

T x ¼ A0 ⊗ e
N þ

X

rX

k¼1

X

rμ

ℓ¼1

X

rt

m¼1

akℓmΦk ⊗Ψℓ ⊗wm: (8)

2.2 Approximation

Among the applications, HOSVD can be used to define a low-order approximation
of tensors. The so-called truncated HOSVD [9–11] consists in truncating the
expansion (8) at a given multilinear rank K,L,Mð Þ, K ≤ rX, L≤ rμ, M≤ rt, leading to
(6). Let mlrank Tð Þ denote the multilinear rank of the tensor T . It has been shown that
the approximation (6) returns a quasi-optimal solution of the nonlinear non-convex
least-square problem

min
~T

1

2
∥T x � ~T ∥2F (9)

(here ∥:∥F is the Frobenius norm for tensors) subject to mlrank ~T

� �

¼ K,L,Mð Þ.

The truncation ranks can be determined a priori according to the classical relative
information content (RIC) of the SVD theory.

Eq. (6) can already be used as a compressed representation of the data, allowing
for a lower storage complexity and a simpler manipulation, with low information loss
if the RIC is high.

3. Reduced-order modeling of capsule dynamics

Eq. (6) provides a summarization of the family of spatio-temporal capsule shape
solutions in the time interval t0, tN

� �

. Unfortunately, this algebraic model has no

predictability capability for time t> tN. To derive a predictable time-dependent model
from the data tensor T x, one has to derive a differential system that approximates the
FSI system of Eqs. (2) and (3). The HOSVD reduction can thus be valued in the
context of model-order reduction.

Consider of parameter vector of interest μ∈D. The capsule position approximate
solution (5) can be rewritten as

~x X, μ, tð Þ ¼ X þ
X

K

k¼1

aμ,k tð Þφk Xð Þ (10)

with
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aμ,k tð Þ ¼
X

L

ℓ¼1

X

M

m¼1

akℓmψℓ μð Þωm tð Þ: (11)

Let aμ tð Þ be the vector-valued function

aμ tð Þ ¼ aμ,1 tð Þ, … , aμ,K tð Þ
� �T

∈
K : (12)

We would like to derive a differential system of unknowns aμ tð Þ. Since
x X, μ, 0ð Þ ¼ X, we have the natural initial condition aμ 0ð Þ ¼ 0. Practically, from
expansion (8), we can compute coefficients aμ,k tð Þ at discrete times tn, and have thus
access to the list of coefficient vectors

a
n
μ
¼ aμ tnð Þ, n ¼ 0, … ,N: (13)

A dynamical reduced-order model consists in determining (or approximating) a

Lipschitz continuous mapping Fμ : 
K ! 

K such that

a
0
μ
¼ 0, a

nþ1
μ

≈Fμ a
n
μ

� �

∀n∈0, … ,N � 1 (14)

from the data an
μ

n oN

n¼0
. We get a low-order discrete dynamical system. Note that,

here, we do not search for parameters of a model, but for the equations of the model
themselves. Since the problem of finding such a mapping is infinite dimensional, one
has to restrict the search to a mapping in a (suitable) finite dimensional functional
space.

4. Koopman theory and dynamic mode decomposition

4.1 Koopman operator for discrete dynamical systems

Koopman theory is a powerful mathematical framework that re-expresses a gen-
eral nonlinear discrete dynamical system as the knowledge of a linear (infinite
dimensional) operator, the so-called Koopman operator or compositional operator.
Today it is commonly used in machine learning and data-driven model-order reduc-
tion methodologies [4, 12]. Let us assume a discrete dynamical system in the form

a
nþ1 ¼ F a

nð Þ, n∈ (15)

for a Lipschitz continuous mapping F from 
d to 

d. Let g be a function of a

Banach space X, g : d ! . So we have g anþ1ð Þ ¼ g ∘Fð Þ anð Þ. The Koopman operator
related to F is defined as

Kg ¼ g ∘F ∀g∈X: (16)

Then we have

g a
nþ1

� �

¼ Kgð Þ a
nð Þ: (17)
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The knowledge of K includes the knowledge of F. Indeed, by taking the particular
observables gi að Þ ¼ a � ei, i ¼ 1, … , d where ei is the i-th vector of the canonical basis

of d, we retrieve anþ1ð Þi ¼ Fi a
nð Þ, i.e. the i-th equation of (15). Of course, the linear

Koopman operator acts on an infinite-dimensional functional space, so it is impossible
to determine it exactly. However, one can search for an approximate Koopman

operator ~K that acts on an approximate finite-dimensional space ~X ⊂X.
The concept of (nonlinear) observables is to have a sufficiently large set of

independent nonlinear functions of the state vector and measurements of them in
order to identify the mapping F. A natural question of interest is what are the best
observables to choose. There is no absolute answer to this question, and the choice
may depend on the underlying Physics. Without any a priori knowledge on the
system of equations, one can use basis functions of a universal approximators like
polynomials, Fourier or kernel-based functions for example.

4.2 Dynamic mode decomposition

The simplest choice of observables is the linear functions gi að Þ ¼ a � ei, i ¼ 1, … , d.
It leads to the search of a finite-dimensional approximation A of T from the full
state vector data. The matrix A can be searched as the solution of the least square
minimization problem

min
A∈Md ð Þ

1

2
∥Y � AX∥2F (18)

where X ¼ a0,a1, … ,aN�1
� �

and Y ¼ a1, a2, … , aN
� �

. Assuming N ≥ d, the solution

is given by A ¼ YXT XXT
� ��1

. The least square problem (18) can be eventually
regularized for better conditioning by a Tykhonov regularization term [13, 14]. This
practical approach of Koopman operator approximation is referred to as the dynamic
mode decomposition (DMD) [4, 12]. This provides a linear dynamical model

a
nþ1 ¼ Aan (19)

starting from a given initial condition a0. The solution of (19) which is an ¼ An
a0

is bounded for any initial condition a0 as soon as ρ Að Þ≤ 1.

5. Kernel-based identification of dynamical systems

In the case of a strongly linear dynamical system, the linear model (19) can be not
accurate enough. We have to include suitable nonlinear observables in the data and
the model. In this section, observables are selected from kernel-based approximations
[15]. Then we use the variant kernel-DMD (k-DMD, [4]) approach to identify F.

A real-valued function k on 
d � 

d is called a positive definite kernel function if it
is symmetric and if the following property holds:

∀m∈
⋆, ∀ zif gmi¼1 ∈ 

d
� �m

, ∀ αif gmi¼1 ∈
m,

X

m

i¼1

X

m

j¼1

αiα j k zi, z j

� �

≥0: (20)
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In other words, the square matrix K ¼ k zi, z j

� �� �

i¼1,… ,m,j¼1,… ,m
is positive semi-

definite. A standard kernel function is for example the Gaussian one

k z, z0ð Þ ¼ exp �
1

2

∥z � z0∥2

σ2

� 	

(21)

for a given parameter σ >0.

5.1 Kernel-based interpolation

Kernel functions can be used for interpolation in spaces of arbitrary dimension. Let

g : d !  be a continuous function and assume that we know the values of g zið Þ at
particular points zi, i ¼ 1, … ,m. Then one can define an interpolator Ig of g defined as

Ig zð Þ ¼
X

m

j¼1

α jk z, z j

� �

(22)

where the coefficient vector α ¼ α1, … , αmð ÞT is determined such that the interpo-
lation property

Ig zið Þ ¼ g zið Þ ∀i∈ 1, … ,mf g: (23)

holds. The interpolation conditions clearly lead to the solution of the symmetric
linear square system of size m

Kα ¼ b (24)

where b ¼ g z1ð Þ, … , g zmð Þð ÞTÞ. Assuming that K is positive definite, then Eq. (24)
has a unique solution. Let

ki zð Þ ¼ k z, zið Þ, i ¼ 1, … ,m (25)

and V ¼ span k1, … , kmð Þ. Considering any function ~g∈V, it is easy to check that
~g ¼ I~g. One can derive the interpolation error

∥g � Ig∥L∞ ¼ ∥g � ~g þ ~g � Ig∥L∞

¼ ∥g � ~g þ I~g � Ig∥L∞

≤∥g � ~g∥L∞ þ ∣kI ∣k ∥g � ~g∥L∞

(26)

so that

∥g � Ig∥L∞ ≤ 1þjkI jkð Þ inf
~g∈V

∥g � ~g∥L∞ : (27)

The interpolation error is controlled by the best approximation error multiplied by
a stability constant depending on the norm of the interpolation operator.

5.2 Use of kernel features and k-DMD

Let us go back to the parameterized dynamical system of interest (14) and consider

a point cloud a jð Þ


 �m

j¼1
of sample states in the admissible reduced state space X ⊂

K .

The functions
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k j að Þ ¼ k a,a jð Þ

� �

(28)

can be seen as features and thus be used as suitable nonlinear observables to
approximate the Koopman operator. From any known full state vector an

μ
at time tn,

we build the vector of observables

κ a
n
μ

� �

¼ k1 a
n
μ

� �

, k2 a
n
μ

� �

, … , km a
n
μ

� �� �T
: (29)

By definition of the Koopman operator, we have ki anþ1
μ

� �

¼ ki ∘Fð Þ an
μ

� �

¼

Kkið Þ an
μ

� �

. Then we look for a finite-dimensional approximation Aμ of the Koopman

operator K in the sense

κ a
nþ1
μ

� �

≈Aμ κ a
n
μ

� �

∀n∈ 0, … ,N � 1f g (30)

The matrix Aμ is searched as the minimum of the least square problem

min
A∈MMm ð Þ

1

2
∥Yμ � AXμ∥

2
F (31)

where the entry and output data matrices are now Xμ ¼

κ a0
μ

� �

, κ a1
μ

� �

, … , κ aN�1
μ

� �h i

and Yμ ¼ κ a1
μ

� �

, κ a2
μ

� �

, … , κ aN
μ

� �h i

. We get the

dynamical system κ anþ1
μ

� �

¼ Aμ κ an
μ

� �

with a specified initial condition κ a0
μ

� �

.

Let us emphasize that the computational variables are now the κ an
μ

� �

. But we still

need the full state variables an to determine the displacements or the capsule shapes.
The full state can be retrieved for example by interpolation: taking gi að Þ ¼ a � ei, we get

aμ

� �nþ1

i
≈Igi a

nþ1
μ

� �

¼
X

m

j¼1

α j

� �

i
ki a

nþ1
μ

� �

(32)

with interpolation coefficients vectors α j


 �m

j¼1
such that

a ið Þ ¼
X

m

j¼1

α jk j a ið Þ

� �

∀i∈ 1, … ,mf g (33)

(linear system of dimension m� K). The coefficient vectors α j can be computed
once for all.

5.3 Including the full state vector and the constants into the features

The k-DMD approach can be improved by including the full-state vector aμ itself
into the input feature vector. Moreover, if the kernel functions are not able to per-
fectly reproduce the constant ones, for accuracy reasons it is justified to add the
constants into the features. Considering the augmented vector η aμ

� �

of observables
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η aμ

� �

¼

aμ

κ aμ

� �

1

2

6

4

3

7

5
∈

Kþmþ1, (34)

we look for a dynamical system in the form

a
nþ1
μ

¼ Aμ η a
n
μ

� �

≈Fμ a
n
μ

� �

(35)

with a constant rectangular matrix Aμ of size K � K þmþ 1ð Þ to identify. The
first advantage is that the output vector is the full state itself. The second one is
the number of elements of Aμ which is less than m2 as soon as K K þmþ 1ð Þ≤m2.
In this case, there are less coefficients to identify. The input and output matrices
now are

Xμ ¼ η a
0
μ

� �

, η a
1
μ

� �

, … , η a
N�1
μ

� �h i

, Yμ ¼ a
1
μ
,a2

μ
, … ,aN

μ

h i

: (36)

Assuming N ≥ K þmð Þ, the rectangular matrix Aμ solution of the least square
problem

min
A∈MK,Kþmþ1 ð Þ

1

2
∥Yμ � AXμ∥

2
F (37)

is computed as Aμ ¼ YμX
T
μ

XμX
T
μ

� ��1
.

5.4 Summary and whole algorithm

We give a summary of the model-order reduction algorithm:

1.Input data: third-order tensor T x (4) made of capsule shape solutions of size
3I � J � N þ 1ð Þ.

2.HOSVD + truncated approximation: compute (8) and get the truncated
approximation with the truncated multilinear ranks K,L,Mð Þ:

~T x ¼ A0 ⊗ e
N þ

X

K

k¼1

X

L

ℓ¼1

X

M

m¼1

akℓmΦk ⊗Ψℓ ⊗wm (38)

3. Online stage: choose a parameter vector μ. From (13), compute the data
coefficients aμ tnð Þ ¼ an

μ
(see Eq. (13)) from (11). Choose a kernel function k :, :ð Þ,

choose m and the centers a jð Þ, j ¼ 1, … ,m. Assemble the observables η an
μ

� �

and

assemble the matrices Xμ and Yμ (Eq. (36)). Compute the k-DMD matrix Aμ ¼

YμX
T
μ

XμX
T
μ

� ��1
. Get the reduced-order dynamical system (35) with a0

μ
¼ 0 as

initial value.
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6. Numerical results for capsule dynamics

The algorithm is applied to a problem of a deformable capsule flowing into a
square-based microchannel (typical for microfluidic channels created by soft lithog-
raphy) with a mean inflow velocity V [1, 2]. Related works and variant ROM
approaches on this topic can be found in [14, 16]. The capsule dynamics is simulated
by the full-order fluid–structure interaction solver Cite [1]. The fluid solver is based
on the solution of the Stokes equations and a nonlinear Neo-Hookean law is used for
the membrane. The initial capsule is spherical, corresponding to the shape at rest. The
sphere is discretized with a finite element mesh made of I ¼ 2562 vertices.

6.1 Study for a particular parameter couple Ca, a=ℓð Þ

The objective of this subsection being to illustrate the methods on an example and
show how to apply them, we only consider the snapshot FOM solutions for
Ca, a=ℓð Þ ¼ 0:1, 0:9ð Þ for the sake of simplicity and brevity. Figure 1 shows both
membrane shapes and positions in the channel at different instants.

At each time tn ¼ nΔt, where the time step is equal to Δt ¼ 0:04, a snapshot is
saved and stored in the database. Note that all time quantities are non-
dimensionalized by the factor ℓ=V. The resulting generated data matrix is used as the
entry matrix for the ROM learning process. Then a truncated SVD is applied to get the

spatial POD modes. In Figure 2, the four first eigenmodes Φk are plotted (more
precisely this is a superposition of each mode onto the original spherical shape for a
better visualization and understanding of their influence). Based on, the graphics
k↦1� RIC kð Þ plotted in log scale in Figure 3, we decide to use a truncation rank K

equal to K ¼ 10, returning a relative information content of about 1� 3:5� 10�5.
Then a reduced-order dynamical system for the capsule time evolution is searched.

In this example, we compare two models: the first one is the affine approximation
(denoted by ROM-A)

a
nþ1
μ

¼ Aμa
n
μ
þ bμ (39)

with the matrix A and the vector b to identify. It is equivalent to consider the

vector of features η að Þ ¼ a, 1ð ÞT. The second nonlinear model is built from the

observable vector η að Þ ¼ a, κ að Þ, 1ð ÞT with the recurrent time scheme

a
nþ1
μ

¼ Aμη a
n
μ

� �

(40)

Figure 1.
Example of a microcapsule dynamics within a square-base channel for (Ca, a=ℓ) = (0.1, 0.90). Shapes and
locations of the initially spherical capsule are shown at t ¼ 0 (in transparency), 0.4, 2.8, 5.2, 7.6.
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Figure 2.
SVD: Four first spatial principal components computed by the HOSVD. Each mode has been added on the initial
spherical shape and amplified by a factor 2 for better visualization. Higher-order modes show oscillations at the
rear of the capsule.

Figure 3.
SVD: Plot of k↦1� RIC kð Þ, where RIC kð Þ represents the relative information content at truncation rank k.
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(ROM-B). For ROM-B, the Gaussian kernel function (21) is used. The standard
deviation parameter σ in (21) is chosen as σ ¼ max n∥a

n
μ
∥ ¼ ∥aNþ1

μ
∥2. In both cases

ROM-A and ROM-B, the determination of the matrix Aμ by minimization of the least
square problem (37) leads to a very small residual. In Figure 4, the logarithm of the
relative time residual

n↦ log 10 ∥anþ1
μ

� Aμη a
n
μ

� �

∥2=∥anþ1
μ

∥2
� �

(41)

is plotted for each ROM model. One can observe values between 10�14 and 10�8.
The residual for ROM-B appears to be slightly smaller than that of ROM-A thanks to
the added nonlinear terms. A surprising result is that the affine ROM-A model returns
rather accurate results whereas the fluid–structure interaction problem is intrinsically
nonlinear. In order to study the stability of the model ROM-A, in Figure 5 we plot the
complex eigenvalues of the square matrix Aμ. We observe that all the eigenvalues have
a modulus less or equal to one. One of the eigenvalues is equal to 1 exactly up to Double
Precision roundoff errors, meaning that there is a physical invariant in the system. It is
known that the capsule volume is kept constant during time, because of the
incompressibility of the fluid. For ROM-A, since anþ1

μ
¼ Aμa

n
μ
þ b and a0

μ
¼ 0, we have

a
n
μ
¼ An

μ
a
0
μ
þ
X

n�1

k¼0

Ak
μ
b ¼

X

n�1

k¼0

Ak
μ
b: (42)

The matrix Aμ is observed to be diagonalizable in ℂ. There is an invertible matrix

Pμ such that Aμ ¼ PμΛμP
�1
μ

where Λμ is the diagonal matrix of the eigenvalues. Since it

is observed that ρ Λμ

� �

¼ 1, we have

∥an
μ
∥≤Cond Pμ

� �

n∥b∥, ∀n∈, (43)

Figure 4.

Matrix identification. Log of the normalized residual n↦ log 10 ∥anþ1
μ

� Aμη an
μ

� �

∥2=∥anþ1
μ

∥2
� �

for both ROM-A

and ROM-B.
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showing that the coefficients in the PCA space grow at most linearly in time.
In Figure 6, we compare the computed capsule shapes and positions in the

channel for the computed FOM capsules obtained at different times: t ¼ 0, 0:4, 2:8,
5:2 and 7:6. What can be observed is that the ROM-B model returns very satisfactory
results where the shape solutions fully overlap the FOM ones’at the eye norm’. Finely,
we plot in Figure 7 the time evolution of the errors in the capsule 3D shape of the
ROM solutions as compared to the FOM solutions. The difference between the shapes
are quantified by εShape tð Þ, the ratio between the modified Hausdorff distance (MHD)

computed between the FOM shape SFOM tð Þ and the ROM shape SROM tð Þ and the
channel characteristic length ℓ:

εShape tð Þ ¼
MHD SFOM tð Þ,SROM tð Þð Þ

ℓ
: (44)

The modified Hausdorff distance measures the maximum value of the mean
distance between the two shapes to compare [17]. The ROM-A and ROM-B

Figure 5.
Matrix identification. Eigenvalues of the computed matrix Aμ plotted in the complex plane for the ROM-A model.
One of the eigenvalue is 1 up to round-off error.

Figure 6.
Sequence of cross-section capsule shapes and positions in the microchannel from the initial spherical shape shown in
light green at the beginning of the channel: Comparison of the FOM solutions (gray dots) and of the solutions
computed from the dynamical k-DMD reduced-order model (dark green solid line) at the same instants as in
Figure 1: t ¼ 0, 0:4, 2:8, 5:2, 7:6.
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models return very accurate solutions with maximum 0.1% error. It is also
observed that the ROM-B models is slightly more accurate than the affine
approximation.

6.2 HOSVDon thewhole data tensor and errormeasurements on thewhole database

Now the consider the whole database made of 55 samples in the parameter domain.
In Figure 8 we plot the location of the 55 chosen samples in the plane Ca, a=ℓð Þ. The
design zone of interest corresponds to capsule shapes that can reach a steady state
after a certain time.

A SVD is first performed on the μ-flattening of the data tensor T x. In Figure 9, we
plot the four first parameter (normalized) eigenmodes in the parameter domain.

Figure 7.
(a) Comparison of the time evolution of the shape error between the affine DMD model (ROM-A with K ¼ 10)
and the kernel-based one (ROM-B with K ¼ 10, M ¼ 5). One can observe a maximum error less than 0.1% in
both cases. (b) Sensitivity analysis of the parameter σ (∥aNþ1∥2 ¼ 667:14.)
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These modes give an idea on the dependency of the capsule shapes with respect to the
parameters. To complete the analysis, we show in Figure 10 the spectrum of the
singular values for the μ-flattening matrix. One can observe a rather fast decay of the
singular values especially for the ten first modes.

Figure 9.
HOSVD: The first four parameter eigenmodes in the parameter domain, computed from the μ-flattening of the
data cube.

Figure 8.
Samples of the design of experiment in the parameter space Ca, a=ℓð Þ. The zone of interest corresponds to capsule
shapes that reach a steady state after a certain time.
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Next, we perform the SVD of the time t-flattening matrix of T x. The SVD
provides us temporal eigenmodes. In Figure 11, the four first temporal eigenmodes
ωm, m ¼ 1, … , 4 are plotted. The first one appears to be the linear function while the
others add details especially in the transient zone of the capsule dynamics. The
spectrum of the singular values again shows a fast decay especially for the six first
modes.

To conclude this section, we have tested the accuracy of both ROM-A and ROM-B
on the whole database. For each sample, we have derived a ROM model, i.e. a low-
order dynamical system formulated in the PCA space. Then we have compared the
ROM solution to the FOM solution by calculating εShape between the two capsule

shapes. In Figure 12, the heat maps of εShape are plotted for ROM-A and ROM-B. One

can observe a uniform accuracy over the whole parameter domain, with errors less
than 0.1%, thus showing the efficiency of the approach. Reported computational
speedups are between 5000 and 10,000 using ROM models. A computer with two
Intel Xeon GOLD 6130 CPU (2.1 Ghz) has been used for the numerical tests.

Figure 10.
Spectrum of the singular values of the μ-flattening matrix.

Figure 11.
HOSVD. Left: First four temporal eigenmodes computed from the SVD decomposition of the t-flattening data
tensor. Right: Spectrum of the singular values.
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7. Discussion

Having shown how to apply the affine DMD and k-DMDmodels and the very high
precision in prediction that they offer, we now would like to provide some further
comments and remarks on model order reduction and DMD-type approaches.

7.1 Kolmogorov n-width

The method is efficient if the spectrum of singular values decays rapidly, leading to
a small truncation rank K. If the spectrum decays slowly, there are two possible
reasons for that: either the entropy (variety) of information in the data is high, or the
solutions do not live in a linear space but rather on a nonlinear manifold. To fix the
problem, one can proceed by performing a preliminary clustering of the data, scan-
ning the parameter dimension. One can either use standard clustering techniques such
as K-means, or a multidimensional scaling (MDS) approach. Then for each cluster,
one can consider again a HOSVD and reduced-order approach suitable for each
element of the cluster.

7.2 Selection of the kernel functions and kernel interpolation points

As already mentioned, the choice of the kernel function depends on the
applications, on the behavior of solutions and/or on the underlying Physics.
Without any a priori information, one can use universal approximation kernels like
the Gaussian one. The accuracy of the results will also strongly depends on the

choice of the kernel interpolation points a jð Þ. The sampling a jð Þ


 �m

j¼1
has to correctly

fill in the admissible space, or at least the state-space trajectory of interest. There are
different possible strategies. A first candidate is the use of a clustering approach
applied to the state-space data. The points a jð Þ are then the centroids of each cluster.

But one can consider more sophisticated approaches like a greedy iterative approach
that controls the interpolation error on the data. At each iteration an interpolation
point a jð Þ is added at the location of worst interpolation error, considering all the

sample solutions.

Figure 12.
Heat maps of the modified Hausdorff distance between the FOM solutions and the ROM ones at dimensionless time
Vt=ℓ ¼ 10. Left: ROM-A, right: ROM-B. Errors are less than 0.1%.
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7.3 Interpretation in terms of a recurrent neural network

Let us remark that the approach can be reinterpreted as a (supervized) two-layer
recurrent artificial neural network (RNN) (Figure 13) [18]. The first layer consists in
generating the features ki aμ

� �

. The second layer is a linear matrix–vector multiplica-
tion using the matrix Aμ.

8. Conclusions

In this chapter, the higher-order singular value decomposition has been proved to
be a flexible and valuable tool in the data-driven reduced-order modeling of
solutions of space–time-parameter problems, which are today at the heart of many
industrial applications. The methodology has been tested on a problem of fluid–
structure interaction of a deformable microcapsule flowing into a microchannel.
Stokes equations have been used in the fluid whereas a nonlinear hypereleastic law has
been used for the membrane. Different shape solutions computed by the full-order
model have been stored into a third-order tensor. First, HOSVD allows us to
compute spatial, temporal and parameter principal components and at the same
time to compress the data. We get a low-order representation of the solutions with a
shared spatial reduced basis. Spatial principal components are observed to provide
suitable details in the shape solutions. The modes are arranged in decreasing order of
importance according to the relative information content criterion. Next, additional
ingredients such as kernel approximation and kernel-based dynamic mode decompo-
sition are used to determine a reduced-order dynamical system for any parameter
vector in the admissible parameter domain. The resulting low-dynamical system can
be seen as an encoded recurrent neural network set into the PCA space. The approach
allows us to explore the different shape solutions and visualize their evolution in the
channel in real time.

Figure 13.
Interpretation of the method as a recurrent neural network (RNN) in the PCA space.
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Nomenclature

SVD Singular value decomposition
HOSVD Higher-order singular value decomposition
PCA Principal component analysis
MOR Model order reduction
FOM Full order model
ROM Reduced order model
FSI Fluid–structure interaction
DoCE Design of computer experiment
POD Proper orthogonal decomposition
RIC Relative information content
DMD Dynamic mode decomposition
k-DMD Kernel-based dynamic mode decomposition
MHD Modified Hausdorff distance
RNN Recurrent neural network
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