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The classification problem

?

A population is assumed to be
partitioned in c groups or classes.
Let Ω = {ω1, . . . , ωc} denote the set
of classes.
Each instance is described by

A feature vector x ∈ Rp;
A class label y ∈ Ω.

Problem: given a learning set
L = {(x1, y1), . . . , (xn, yn)}, predict
the class label of a new instance
described by x.
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What can we expect from belief functions?

Problems with “weak” information:
Non exhaustive learning sets;
Learning and test data drawn from different distributions;
Partially labeled data (imperfect class information for
training data), etc.

Information fusion: combination of classifiers or clusterers
trained using different data sets or different learning
algorithms (ensemble methods).
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Main belief function approaches

1 Approach 1: Convert the outputs from standard classifiers
into belief functions and combine them using Dempster’s
rule or any other alternative rule (e.g., Quost al., IJAR,
2011);

2 Approach 2: Develop evidence-theoretic classifiers directly
providing belief functions as outputs:

Generalized Bayes theorem, extends the Bayesian
classifier when class densities and priors are ill-known
(Appriou, 1991; Denœux and Smets, IEEE SMC, 2008);
Distance-based approach: evidential k -NN rule (Denœux,
IEEE SMC, 1995), evidential neural network classifier
(Denœux, IEEE SMC, 2000).
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Evidential k -NN rule
Principle

Xi

di

X

Let Nk (x) ⊂ L denote the set of the k
nearest neighbors of x in L, based on
some distance measure.
Each xi ∈ Nk (x) can be considered as
a piece of evidence regarding the class
of x.
The strength of this evidence
decreases with the distance di between
x and xi .
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Evidential k -NN rule
Mass function computation

The evidence of (xi , yi) can be represented by the simple
mass function:

mi({yi}) = ϕ (di)

mi(Ω) = 1− ϕ (di) ,

where ϕ is a decreasing function from [0,+∞) to [0,1]
such that limd→+∞ ϕ(d) = 0.
The evidence of the k nearest neighbors of x is pooled
using Dempster’s rule of combination:

m =
⊕

xi∈Nk (x)

mi =
⊕

xi∈Nk (x)

{yi}1−ϕ(di )
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Evidential k -NN rule
Decision-making

Let ak be the act of assigning the object to ωk and
A = {a1, . . . ,ac} the set of acts.
Let L(ak , ω`) be the loss incurred if an object from class ω`
is assigned to ωk .
Decision rule: assign the object to the class ωk∗ such that
R(ak∗), R(ak∗) or Rbet (ak∗) is minimized.
The three rules are equivalent when L(ak , ω`) = 1 if k 6= `
or 0 otherwise.
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Evidential k -NN rule
Learning

Example of function ϕ:

ϕ(d) = α exp
(
−γd2

)
.

with α ∈ (0,1) and γ > 0.
Parameters α and γ can be fixed heuristically or learned by
minimizing an error function, e.g.:

E(α, γ) =
n∑

i=1

c∑
k=1

(p(−i)
k − uik )2

where uik = 1 if yi = ωk and 0 otherwise, and (p(−i)
k is the

pignistic probability of class ωk computed using the
leave-one-out method.
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Performance comparison (UCI database)

Sonar data
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Ionosphere data
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Test error rates as a function of k for the voting (-), evidential (:), fuzzy
(–) and distance-weighted (-.) k -NN rules.
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Partially supervised data

We now consider a learning set of the form

L = {(xi ,mi), i = 1, . . . ,n}

where
xi is the attribute vector for instance i , and
mi is a mass function representing uncertain expert
knowledge about the class yi of instance i .

Special cases:
mi ({ωk}) = 1 for all i : supervised learning;
mi (Ω) = 1 for all i : unsupervised learning;
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Evidential k -NN rule for partially supervised data

Each instance (xi ,mi) in L is an item of evidence regarding
y , whose reliability decreases with the distance di between
x and xi .
Each mass function mi is discounted to produce a
“weaker” mass function m′i :

m′i (A) = ϕ (di) mi(A), ∀A ⊂ Ω.

m′i (Ω) = 1−
∑
A⊂Ω

m′i (A).

The k mass functions are combined using Dempster’s rule:

m =
⊕

xi∈Nk (x)

m′i .
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Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive
(K-complexes), 50 % negative (delta waves), 5 experts.
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Results on EEG data
(Denoeux and Zouhal, 2001)

c = 2 classes, p = 64
For each learning instance xi , the expert opinions were
modeled as a mass function mi .
n = 200 learning patterns, 300 test patterns

k k -NN w k -NN Ev. k -NN Ev. k -NN
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27
11 0.29 0.30 0.29 0.26
13 0.31 0.30 0.31 0.26
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Evidential neural network classifier

pi
di

X

The learning set is summarized by r
prototypes.
Each prototype pi has membership
degree uik to each class ωk , with∑c

k=1 uik = 1.
Each prototype pi induces a piece of
evidence regarding the class of x,
whose reliability decreases with the
distance di between x and pi .
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Neural network architecture

…
…

…
… …

1

xj

pij

mi
uik

m

1

-1

Mass function induced by pi :

mi({ωk}) = αiuik exp(−γid2
i ),

k = 1, . . . , c.
mi(Ω) = 1− αi exp(−γid2

i )

Combination:

m =
r⊕

i=1

mi

All parameters are learnt from data
by minimizing an error function.
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Results on classical data

Vowel data
c = 11,
p = 10
n = 568

test : 462
ex.

(different
speakers)

Classifier test error rate
Multi-layer perceptron (88 units) 0.49
Radial Basis Function (528 units) 0.47
Gaussian node network (528 units) 0.45
Nearest neighbor 0.44
Linear Discriminant Analysis 0.56
Quadratic Discriminant Analysis 0.53
CART 0.56
BRUTO 0.44
MARS (degree=2) 0.42
Evidential NN (33 prototypes) 0.38
Evidential NN (44 prototypes) 0.37
Evidential NN (55 prototypes) 0.37
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Data fusion example

S1

S2

x

x’

Classifier 1

Classifier 2

m

m’

⊕ m ⊕ m’

c = 2 classes
Learning set (n = 60): x ∈ R5,x′ ∈ R3, Gaussian
distributions, conditionally independent
Test set (real operating conditions): x← x + ε,
ε ∼ N (0, σ2I).
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Results
Test error rates: x + ε, ε ∼ N (0, σ2I)
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The clustering problem

n objects described by
Attribute vectors x1, . . . ,xn
(attribute data) or
Dissimilarities (proximity data).

Goal: find a meaningful structure in
the data set, usually a partition into
c crisp or fuzzy subsets.
The language of belief functions
may allow us to extract richer
information from the data using a
more general data structure.
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Different partition concepts

Hard partition: each object belongs to one and only one
group. Group membership is expressed by binary
variables uik such that uik = 1 if object i belongs to group k
and uik = 0 otherwise.
Fuzzy partition: each object has a degree of membership
uik ∈ [0,1] to each group, with

∑c
k=1 uik = 1. The

membership degrees (ui1, . . . ,uic) define a probability
distribution over the set Ω of groups.
Credal partition: the group membership of each object is
described by a mass function mi over Ω.
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Credal partition
Example

A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 0 0 0 0 0
{ω1} 0 0 0 0.2 0
{ω2} 0 1 0 0.4 0
{ω1, ω2} 0.7 0 0 0 0
{ω3} 0 0 0.2 0.4 0
{ω1, ω3} 0 0 0.5 0 0
{ω2, ω3} 0 0 0 0 0

Ω 0.3 0 0.3 0 1

Hard and fuzzy partitions are recovered as special cases when
all mass functions are certain or Bayesian, respectively.
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Algorithms for computing a credal partition

EVCLUS (Denoeux and Masson, 2004):
Proximity (possibly non metric) data,
Multidimensional scaling approach.

Evidential c-means (ECM): (Masson and Denoeux, 2008):
Attribute data,
HCM, FCM family (alternate optimization of a cost function).

Relational Evidential c-means (RECM): (Masson and
Denoeux, 2009): ECM for proximity data.
Constrained Evidential c-means (CECM) (Antoine et al.,
2011): ECM with pairwise constraints.
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Learning a Credal Partition from proximity data

Problem: given the dissimilarity matrix D = (dij), how to
build a “reasonable” credal partition ?
We need a model that relates class membership to
dissimilarities.
Basic idea: “The more similar two objects, the more
plausible it is that they belong to the same class”.
How to formalize this idea?
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EVCLUS algorithm
Formalization

Let mi and mj be mass functions regarding the class
membership of objects oi and oj .
The plausibility of the proposition Sij : “objects oi and oj
belong to the same class” can be shown to be equal to:

pl(Sij) =
∑

A∩B 6=∅

mi(A)mj(B) = 1− Kij

where Kij = degree of conflict between mi and mj .
Problem: find M = (m1, . . . ,mn) such that larger degrees
of conflict Kij correspond to larger dissimilarities dij .
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EVCLUS algorithm
Cost function

Approach: minimize the discrepancy between the
dissimilarities dij and the degrees of conflict Kij .
Example of a cost function:

J(M) =
∑
i<j

(
Kij − dij

)2

(assuming the dij have been scaled to [0,1]).
M can be determined by minimizing J using an alternate
directions method, solving a QP problem at each step.
To reduce the complexity, focal sets are reduced to
{ωk}ck=1, ∅, and Ω.
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Butterfly example
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Protein dataset
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Plausibilities

Proximity matrix from the structural
comparison of 213 protein
sequences.
Each protein belongs to one of 4
classes of globins: hemoglobin-α
(HA), hemoglobin-β (HB), myoglobin
(M) and heterogeneous globins (G).

Non-metric dissimilarities: most relational fuzzy clustering
algorithms converge to a trivial solution.
EVCLUS recovers the true partition with only one error.

Thierry Denœux Classification and clustering using belief functions 32/ 78



Classification
Clustering

Working in very large frames

Credal partition
EVCLUS
Evidential c-means

Advantages and drawbacks

Advantages
Applicable to proximity data (not necessarily Euclidean, or
even numeric).
Robust against atypical observations (similar or dissimilar
to all other objects).
Usually performs better than relational fuzzy clustering
procedures.

Drawback: computational complexity (iterative
optimization, limited to datasets of a few thousands of
objects and less than 20 classes).
A more efficient procedure: the Evidential c-means
algorithm (Masson and Denoeux, 2008).
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Principle

Problem: generate a credal partition M = (m1, . . . ,mn)
from attribute data X = (x1, ...,xn), xi ∈ Rp.
Generalization of hard and fuzzy c-means algorithms:

Each class represented by a prototype;
Alternate optimization of a cost function with respect to the
prototypes and to the credal partition.
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Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβikd2
ik

with dik = ||xi − vk || under the constraints
∑

k uik = 1, ∀i .
Alternate optimization algorithm:

vk =

∑n
i=1 uβikxi∑n

i=1 uβik
∀k = 1, . . . , c,

uik =
d−2/(β−1)

ik∑c
`=1 d−2/(β−1)

i`

.
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ECM algorithm
Principle

v1

v2

v3

v1

v2

v3

v4

Each class ωk represented by a prototype
vk .
Each non empty set of classes Aj
represented by a prototype v̄j defined as
the center of mass of the vk for all ωk ∈ Aj .
Basic ideas:

For each non empty Aj ∈ Ω, mij = mi (Aj )
should be high if xi is close to v̄j .
The distance to the empty set is defined
as a fixed value δ.
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ECM algorithm
Objective criterion

Criterion to be minimized:

JECM(M,V ) =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ij d

2
ij +

n∑
i=1

δ2mβ
i∅,

Parameters:
α controls the specificity of mass functions;
β controls the hardness of the evidential partition;
δ controls the amount of data considered as outliers.

JECM(M,V ) can be iteratively minimized with respect to M
and V using an alternate optimization scheme.
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Butterfly dataset
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4-class data set
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4-class data set
Hard credal partition
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4-class data set
Lower approximation
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4-class data set
Upper approximation
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Brain data
Problem

(a) (b)

Magnetic resonance imaging of pathological brain, 2 sets
of parameters.
Three regions: normal tissue (Norm), ventricles +
cerebrospinal fluid (CSF/V) and pathology (Path).
Image 1 highlights CSF/V (dark), image 2 highlights
pathology (bright).
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Brain data
Results in grey level space
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Brain data
Image segmentation

(a) (b) (c)

Pathology (left); CSF and ventricles (center); normal brain
tissues (right). The lower approximations of the clusters are

represented by light grey areas, the upper approximations by
the union of light and dark grey areas.
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Determining the number of groups
Validity index

If a proper number of classes is chosen, the prototypes will
be close to the cluster centers and most of the mass will be
allocated to singletons of Ω.
On the contrary, if c is too small or too high, the mass will
be distributed to subsets with higher cardinality or to ∅.
Nonspecificity of a mass function:

N(m) ,
∑

A∈2Ω\∅

m(A) log2 |A|+ m(∅) log2 |Ω|,

Proposed validity index of a credal partition:

N∗(c) ,
1

n log2(c)

n∑
i=1

N(mi).
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Result with the 4-class dataset
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Complexity of evidential reasoning

In the worst case, representing beliefs on a finite frame of
discernment of size K requires the storage of 2K − 1
numbers, and operations on belief functions have
exponential complexity.
In classification and clustering, the frame of discernment
(set of classes) is usually of moderate size (less than 100).
Can we address more complex problems in machine
learning, involving considerably larger frames of
discernment?
Examples of such problems:

Multi-label classification (Denœux, Art. Intell., 2010);
Ensemble clustering (Masson and Denœux, IJAR, 2011).
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Belief functions on very large frames
General Approach

Outline of the approach:
1 Consider a partial ordering ≤ of the frame Ω such that

(Ω,≤) is a lattice.
2 Define the set of propositions as the set I ⊂ 2Ω of intervals

of that lattice.
3 Define m, bel and pl as functions from I to [0,1] (this is

possible because (I,⊆) has a lattice structure).

As the cardinality of I is at most proportional to |Ω|2, all the
operations of Dempster-Shafer theory can be performed in
polynomial time (instead of exponential when working in
(2Ω,⊆)).
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Multi-label classification

In some problems, learning instances may belong to
several classes at the same time.
For instance, in image retrieval, an image may belong to
several semantic classes such as “beach”, “urban”,
“mountain”, etc.
If Θ = {θ1, . . . , θc} denotes the set of classes, the class
label of an instance may be represented by a variable y
taking values in Ω = 2Θ.
Expressing partial knowledge of y in the Dempster-Shafer
framework may imply storing 22c

numbers.

c 2 3 4 5 6 7 8
22c

16 256 65536 4.3e9 1.8e19 3.4e38 1.2e77

Thierry Denœux Classification and clustering using belief functions 53/ 78



Classification
Clustering

Working in very large frames

Motivation and general approach
Multi-label classification
Ensemble clustering

Multi-label classification

The frame of discernment is Ω = 2Θ, where Θ is the set of
classes.
The natural ordering in 2Θ is ⊆, and (2Θ,⊆) is a (Boolean)
lattice.

Θ

A

B

C

The intervals of (2Θ,⊆) are
sets of subsets of Θ of the form:

[A,B] = {C ⊆ Θ|A ⊆ C ⊆ B}

for A ⊆ B ⊆ Θ.
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Example (diagnosis)

Let Θ = {a,b, c,d} be a set of faults.
Item of evidence 1→ a is surely present and {b, c} may
also be present, with confidence 0.7:

m1([{a}, {a,b, c}]) = 0.7, m1([∅Θ,Θ]) = 0.3

Item of evidence 2→ c is surely present and either faults
{a,b} (with confidence 0.8) or faults {a,d} (with
confidence 0.2) may also be present:

m2([{c}, {a,b, c}]) = 0.8, m2([{c}, {a, c,d}]) = 0.2
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Example
Combination by Dempster’s rule

[{a}, {a,b, c}] [∅Θ,Θ]
0.7 0.3

[{c}, {a,b, c}] [{a, c}, {a,b, c}] [{c}, {a,b, c}]
0.8 0.56 0.24

[{c}, {a, c,d}] [{a, c}, {a, c}] [{c}, {a, c,d}]
0.2 0.14 0.06

Based on this evidence, what is our belief that
Fault a is present: bel([{a},Θ]) = 0.56 + 0.14 = 0.70;
Fault d is not present: bel([∅Θ, {d}]) =
bel([∅Θ, {a,b, c}]) = 0.56 + 0.14 + 0.24 = 0.94.
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Multi-label classification
Imprecise labels

Let us consider a learning set of the form:

L = {(x1, [A1,B1]), . . . , (xn, [An,Bn])}

where
xi ∈ Rp is a feature vector for instance i
Ai is the set of classes that certainly apply to instance i ;
Bi is the set of classes that possibly apply to that instance.

In a multi-expert context, Ai may be the set of classes
assigned to instance i by all experts, and Bi the set of
classes assigned by some experts.
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Multi-label evidential k -NN rule
Construction of mass functions

Let Nk (x) be the set of k nearest neighbors of a new
instance x, according to some distance measure d .
Let xi ∈ Nk (x) with label [Ai ,Bi ]. This item of evidence can
be described by the following mass function in (I,⊆):

mi([Ai ,Bi ]) = ϕ (di) ,

mi([∅Θ,Θ]) = 1− ϕ (di) ,

where ϕ is a decreasing function from [0,+∞) to [0,1]
such that limd→+∞ ϕ(d) = 0.
The k mass functions are combined using Dempster’s rule:

m =
⊕

xi∈Nk (x)

mi
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Multi-label evidential k -NN rule
Decision

Let Ŷ be the predicted label set for instance x.

To decide whether to include in Ŷ each class θ ∈ Θ or not,
we compute

the degree of belief bel([{θ},Θ]) that the true label set Y
contains θ, and
the degree of belief bel([∅, {θ}]) that it does not contain θ.

We then define Ŷ as

Ŷ = {θ ∈ Θ | bel([{θ},Θ]) ≥ bel([∅, {θ}])}.

Other method: find the set of labels Ŷ with the largest
plausibility (linear programming problem).
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Example: emotions data (Trohidis et al. 2008)

Problem: Predict the emotions generated by a song.
593 songs were annotated by experts according to the
emotions they generate.
The emotions were: amazed-surprise, happy-pleased,
relaxing-calm, quiet-still, sad-lonely and angry-fearful.
Each song was described by 72 features and labeled with
one or several emotions (classes).
The dataset was split in a training set of 391 instances and
a test set of 202 instances.
Evaluation of results:

Acc =
1
n

n∑
i=1

|Yi ∩ Ŷi |
|Yi ∪ Ŷi |
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Results
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Problem statement

Clustering may be defined as the
search for a partition of a set E of n
objects.
The natural frame of discernment for
this problem is the set P(E) of
partitions of E , with size sn.
Expressing such evidence in the
Dempster-Shafer framework implies
working with sets of partitions.

n 3 4 5 6 7
sn 5 15 52 203 876
2sn 23 32768 4.5e15 1.3e61 5.0e263
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Lattice of partitions of a finite set

1/2/3

12/3 1/23 13/2

123

A partition p is said to be finer than
a partition p′ (or, equivalently p′ is
coarser than p) if the clusters of p
can be obtained by splitting those of
p′; we write p � p′.
The poset (P(E),�) is a lattice.
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Lattices of partition intervals (n = 3)

1/2/3

12/3 1/23 13/2

123

= [1/2/3,123] 

 

{1/2/3} {12/3} {13/2} {23/1} {123}

[1/2/3,12/3] [1/2/3,23/1] [13/2,123] [23/1,123][1/2/3,13/2] [12/3,123]

13 partition intervals < 25 = 32 sets of partitions.
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Ensemble clustering

Ensemble clustering aims at combining the outputs of
several clustering algorithms (“clusterers”) to form a single
clustering structure (crisp or fuzzy partition, hierarchy).
This problem can be addressed using evidential reasoning
by assuming that:

There exists a “true” partition p∗;
Each clusterer provides evidence about p∗;
The evidence from multiple clusterers can be combined to
draw plausible conclusions about p∗.

To implement this scheme, we need to manipulate
Dempster-Shafer mass functions, the focal elements of
which are sets of partitions.
This is feasible by restricting ourselves to intervals of the
lattice (P(E),�).
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Method
Mass construction and combination

Compute r partitions p1, . . . ,pr with large numbers of
clusters using, e.g., the FCM algorithm.
For each partition pk , compute a validity index αk .
The evidence from clusterer k can be represented as a
mass function {

mk ([pk ,pE ]) = αk
mk ([p0,pE ]) = 1− αk ,

where pE is the coarsest partition.
The r mass functions are combined using Dempster’s rule:

m = m1 ⊕ . . .⊕mr
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Method
Exploitation of the results

Let pij denote the partition with (n − 1) clusters, in which
objects i and j are clustered together.
The interval [pij ,pE ] is the set of all partitions in which
objects i and j are clustered together.
The degree of belief in the hypothesis that i and j belong to
the same cluster is then:

Belij = bel([pij ,pE ]) =
∑

[p
k
,pk ]⊆[pij ,pE ]

m([p
k
,pk ])

Matrix Bel = (Belij) can be considered as a new similarity
matrix and can be processed by, e.g., a hierarchical
clustering algorithm.
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Results
Individual partitions
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)

Gaussian data, 8 features, 5 clusters
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)
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Distributed clustering
Method

Here, each clusterer provides a partition pk that tends to
be coarser than the true partition pk .
The output from clusterer k can be represented as a mass
function {

mk ([p0,pk ]) = αk
mk ([p0,pE ]) = 1− αk .

As before, the mass functions are combined and
synthesized in the form of a similarity matrix.
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Distributed clustering
Consensus
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Summary

The theory of belief function has great potential for solving
challenging machine learning problems:

Classification (supervised learning);
Clustering (unsupervised learning).

Belief functions allow us to:
Learn from weak information (partially supervised learning,
imprecise and uncertain data);
Express uncertainty on the outputs of a learning system
(e.g., credal partition);
Combine the outputs from several learning systems
(ensemble classification and clustering).

Recent developments make it possible to address
problems in very large frames (multilabel classification,
clustering, preference learning, etc.).
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