Statistical Analysis of Uncertain Data in the Belief Function Framework

Thierry Denœux¹

¹Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599)

IUKM 2011 Hangzhou, October 28, 2011

Outline

- Motivation and background
 - Motivation
 - Background on belief functions
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Partially supervised LDA
 - Model and algorithm
 - Experimental results

Introductory example

- Let us consider a population in which some disease is present in proportion θ .
- n patients have been selected at random from that population. Let $x_i = 1$ if patient i has the disease, $x_i = 0$ otherwise. Each x_i is a realization of $X_i \sim \mathcal{B}(\theta)$.
- We assume that the x_i's are not observed directly. For each patient i, a physician gives a degree of plausibility pl_i(1) that patient i has the disease and a degree of plausibility pl_i(0) that patient i does not have the disease.
- The observations are uncertain data of the form pl_1, \ldots, pl_n .
- How to estimate θ ?

Aleatory vs. epistemic uncertainty

- In the previous example, uncertainty has two distinct origins:
 - Before a patient has been drawn at random from the population, uncertainty is due to the variability of the variable of interest in the population. This is aleatory uncertainty.
 - After the random experiment has been performed, uncertainty is due to lack of knowledge of the state of each particular patient. This is epistemic uncertainty.
- Epistemic uncertainty can be reduced by carrying out further investigations. Aleatory uncertainty cannot.

Approach

- In this talk, we will consider statistical estimation problems in which both kinds of uncertainty are present: it will be assumed that each data item x
 - has been generated at random from a population (aleatory uncertainty), but
 - it is ill-known because of imperfect measurement or perception (epistemic uncertainty).
- The proposed model treats these two kinds of uncertainty separately:
 - Aleatory uncertainty will be represented by a parametric statistical model;
 - Epistemic uncertainty will be represented using belief functions.

5/57

Real world applications

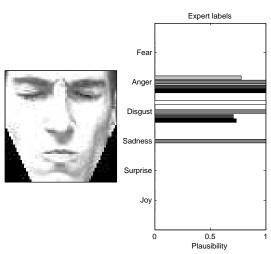
Uncertain data arise in many applications (but epistemic uncertainty is usually neglected). It may be due to:

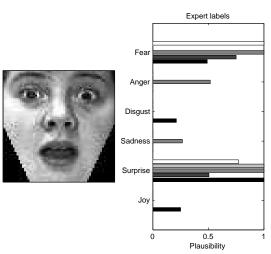
- Limitations of the underlying measuring equipment (unreliable sensors, indirect measurements), e.g.: biological sensor for toxicity measurement in water.
- Use of imputation, interpolation or extrapolation techniques, e.g.: clustering of moving objects whose position is measured asynchronously by a sensor network,
- Partial or uncertain responses in surveys or subjective data annotation, e.g.: sensory analysis experiments, data labeling by experts, etc.

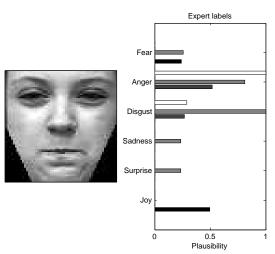
Data labeling example Recognition of facial expressions

Recognition of facial expressions Experiment

- To achieve good performances in such tasks (object classification in images or videos), we need a large number of labeled images.
- However, ground truth is usually not available or difficult to determine with high precision and reliability: it is necessary to have the images subjectively annotated (labeled) by humans.
- How to account for uncertainty in such subjective annotations?
- Experiment:
 - Images were labeled by 5 subjects;
 - For each image, subjects were asked to give a degree of plausibility for each of the 6 basic expressions.







Model

- Complete data: $\mathbf{x} = \{(\mathbf{w}_i, z_i)\}_{i=1}^n$ with
 - **w**_i: feature vector for image *i* (pixel gray levels)
 - z_i : class of image i (one the six expressions).
- The feature vectors w_i are perfectly observed but class labels are only partially known through subjective evaluations.
- How to learn a decision rule from such data?

General approach

- **①** Postulate a parametric statistical model $p_{\mathbf{x}}(\mathbf{x}; \theta)$ for the complete data;
- Represent epistemic data uncertainty using belief functions (observed data);
- Sestimate θ by minimizing the conflict between the model and the observed data using an extension of the EM algorithm: the evidential EM (E²M) algorithm.

Outline

- Motivation and background
 - Motivation
 - Background on belief functions
- - Model and problem statement
 - Evidential EM algorithm
- - Model and algorithm

Theory of belief functions

- A formal framework for representing and reasoning with uncertain information.
- Introduced by Dempster (1968) and Shafer (1976), further developed by Smets in the 1980's and 1990's.
- Also known as Dempster-Shafer theory, Evidence theory or Transferable Belief Model.
- Many applications in statistics, artificial intelligence, pattern recognition, machine learning, information fusion, etc.

Background on belief functions

Mass function Generation

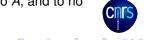
- Let X be a variable taking values in a finite domain Ω, called the frame of discernment.
- We collect a piece of evidence (information) about X.
- This piece of evidence has different interpretations $\theta_1, \ldots, \theta_r$ with corresponding subjective probabilities p_1, \ldots, p_r .
- If interpretation θ_i holds, we only know that $X \in A_i$ for some $A_i \subseteq \Omega$, and nothing more. Let $A_i = \Gamma(\theta_i)$.
- The probability that the evidence means exactly that $X \in A$ is $m(A) = \sum_{\{i \mid A_i = A\}} p_i$.

Mass function Definition

• A mass function m on Ω , defined as a function $2^{\Omega} \to [0, 1]$, such that $m(\emptyset) = 0$ and

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- Any subset A of Ω such that m(A) > 0 is called a focal set of m.
- m(A) represents
 - The probability that the evidence means exactly that $X \in A$, or
 - The amount of belief committed exactly to A, and to no more specific proposition.



- A murder has been committed. There are three suspects: $\Omega = \{ Peter, John, Mary \}.$
- A witness saw the murderer going away, but he is short-sighted and he only saw that it was a man. We know that the witness is drunk 20 % of the time.
- Two interpretations:
 - \bullet θ_1 = the witness was not drunk, $p_1 = 0.8$;
 - 2 θ_2 = the witness was drunk, $p_2 = 0.2$.
- We have $\Gamma(\theta_1) = \{Peter, John\}$ and $\Gamma(\theta_2) = \Omega$, hence

$$m(\{Peter, John\}) = 0.8, \quad m(\Omega) = 0.2$$

Belief and plausibility functions

The total degree of support for A is

$$Bel(A) = P(\{\theta \in \Theta | \Gamma(\theta) \subseteq A\} = \sum_{B \subseteq A} m(B).$$

Function $Bel: 2^\Omega \to [0,1]$ is called a belief function. It is a completely monotone capacity.

 The plausibility of A is the degree to which the evidence does not contradict A. It is defined as

$$PI(A) = 1 - BeI(\overline{A}) = \sum_{B \cap A \neq \emptyset} m(B)$$

Comprègne

• Function $pl: \omega \to Pl(\{\omega\})$ is called the contour function.

Special cases

- If all focal sets of m are singletons, then m is said to be Bayesian: it is equivalent to a probability distribution, and Bel = Pl is a probability measure.
- If the focal sets of m are nested, then PI is a possibility measure, i.e.,

$$PI(A \cup B) = \max(PI(A), PI(B)), \quad \forall A, B \subseteq \Omega,$$

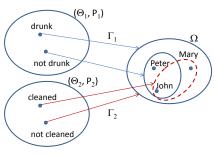
Bel is the dual necessity measure, and the contour function *pl* is then the associated possibility distribution.

Background on belief functions

Dempster's rule Murder example continued

- The first item of evidence gave us: $m_1(\{Peter, John\}) = 0.8, m_1(\Omega) = 0.2.$
- New piece of evidence: a blond hair has been found.
- There is a probability 0.6 that the room has been cleaned before the crime: $m_2(\{John, Mary\}) = 0.6$, $m_2(\Omega) = 0.4$.
- How to combine these two pieces of evidence?

Dempster's rule Justification



- If $\theta_1 \in \Theta_1$ and $\theta_2 \in \Theta_2$ both hold, then $X \in \Gamma_1(\theta_1) \cap \Gamma_2(\theta_2)$.
- If the two pieces of evidence are independent, then this happens with probability $P_1(\{\theta_1\})P_2(\{\theta_2\})$.
- If $\Gamma_1(\theta_1) \cap \Gamma_2(\theta_2) = \emptyset$, we know that the pair of interpretations (θ_1, θ_2) is impossible.
- The joint probability distribution on Θ₁ × Θ₂ must be conditioned, eliminating such pairs.

Background on belief functions

Dempster's rule

$$(m_1 \oplus m_2)(A) = \frac{1}{1-K} \sum_{B \cap C=A} m_1(B) m_2(C), \quad \forall A \neq \emptyset,$$

where

$$K = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

is the degree of conflict between m_1 and m_2 .

Background on belief functions

Dempster's rule

Combination with a Bayesian mass function

- Let m_1 be an arbitrary mass function and let m_2 be a Bayesian mass function with corresponding probability distribution p_2 .
- The combined mass function m_{12} is Bayesian. Its corresponding probability distribution is:

$$p_{12}(\omega) = \frac{pl_1(\omega)p_2(\omega)}{1-K} \quad \forall \omega \in \Omega$$

with

$$K = 1 - \sum_{\omega' \in \Omega} p l_1(\omega') p_2(\omega').$$

Cognitive independence

- Let X and Y be two variables defined on Ω_X and Ω_Y , and let m^{XY} be a joint mass function on $\Omega_X \times \Omega_Y$.
- The marginal mass function on Ω_X is defined as

$$m^{XY\downarrow X}(A) = \sum_{\{C\downarrow\Omega_X=A\}} m^{XY}(C), \quad \forall A\subseteq\Omega_X,$$

where $C \downarrow \Omega_X$ = the projection of $C \subseteq \Omega_X \times \Omega_Y$ on Ω_X .

 X and Y are said to be cognitively independent with respect to m^{XY} if:

$$PI^{XY}(A \times B) = PI^{X}(A)PI^{Y}(B), \quad \forall A \subseteq \Omega_{X}, \forall B \subseteq \Omega_{Y}.$$

 Interpretation: new evidence on one variable does not affect our beliefs in the other variable.

Model and problem statement

Outline

- - Motivation

 - Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
- - Model and algorithm

Model

- Let X be a (discrete) random vector taking values in Ω_X, with probability mass function p_X(·; θ) depending on an unknown parameter θ ∈ Θ.
- Let x be a realization of X (complete data).
- We assume that x is only partially observed, and partial knowledge of x is described by a mass function m on Ω_X ("observed" data).
- Problem: estimate θ .

Likelihood function (reminder)

 Given a parametric model p_X(·; θ) and an observation x, the likelihood function is the mapping from Θ to [0, 1] defined as

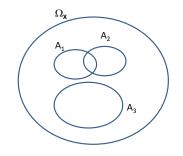
$$\theta \to L(\theta; \mathbf{x}) = \mathbf{p}_{\mathbf{X}}(\mathbf{x}; \theta).$$

- It measures the "likelihood" or plausibility of each possible value of the parameter, after the data has been observed.
- If we observe that $\mathbf{x} \in A$, then the likelihood function is:

$$L(\theta; A) = \mathbb{P}_{\mathbf{X}}(A; \theta) = \sum_{\mathbf{x} \in A} \rho_{\mathbf{X}}(\mathbf{x}; \theta).$$

Model and problem statement

Generalized Likelihood function Definition



- Assume that m has focal sets. A_1, \ldots, A_r
- If we new that $\mathbf{x} \in A_i$, the likelihood would be

$$L(\theta; A_i) = \mathbb{P}_{\mathbf{X}}(A_i; \theta) = \sum_{\mathbf{x} \in A_i} \rho_{\mathbf{X}}(\mathbf{x}; \theta).$$

 Taking the expectation with respect to *m*:

$$L(\theta; m) = \sum_{i=1}^{r} m(A_i) L(\theta; A_i)$$

Model and problem statement

Generalized Likelihood function Interpretation

• It can be checked that $L(\theta; m)$ can be written as:

$$L(\theta; m) = \sum_{\mathbf{x} \in \Omega_{\mathbf{X}}} p_{\mathbf{X}}(\mathbf{x}; \theta) pl(\mathbf{x}) = 1 - K,$$

where K is the degree of conflict between $p_{\mathbf{X}}(\cdot; \theta)$ and m.

• Consequently, maximizing $L(\theta; m)$ with respect to θ amounts to minimizing the conflict between the parametric model and the uncertain observations.

Generalized Likelihood function Case of fuzzy data

• We can also write $L(\theta; m)$ as:

$$L(\boldsymbol{\theta}; m) = \sum_{\mathbf{x} \in \Omega_{\mathbf{X}}} p_{\mathbf{X}}(\mathbf{x}; \boldsymbol{\theta}) p l(\mathbf{x}) = \mathbb{E}_{\boldsymbol{\theta}} \left[p l(\mathbf{X}) \right]$$

- If m is consonant, pl may be interpreted as the membership function of a fuzzy subset of Ω_X: it can be seen as fuzzy data.
- $L(\theta; m)$ is then the probability of the fuzzy data, according to the definition given by Zadeh (1968).

Independence assumptions

- Let us assume that $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{np}$, where each \mathbf{x}_i is a realization from a p-dimensional random vector \mathbf{X}_i .
- Independence assumptions:
 - **1** Stochastic independence of X_1, \ldots, X_n :

$$p_{\mathbf{X}}(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i=1}^{n} p_{\mathbf{X}_i}(\mathbf{x}_i; \boldsymbol{\theta}), \quad \forall \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Omega_{\mathbf{X}}$$

2 Cognitive independence of $\mathbf{x}_1, \dots, \mathbf{x}_n$ with respect to m:

$$pl(\mathbf{x}) = \prod_{i=1}^{n} pl_i(\mathbf{x}_i), \quad \forall \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Omega_{\mathbf{X}}.$$

Under these assumptions:

$$\log L(\theta; m) = \sum_{i=1}^{n} \log \mathbb{E}_{\theta} \left[pl_i(\mathbf{X}_i) \right].$$

Evidential EM algorithm

Outline

- Motivation and background
 - Motivation
 - Background on belief functions
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Partially supervised LDA
 - Model and algorithm
 - Experimental results

Description

 The generalized log-likelihood function log L(θ; m) can be maximized using an iterative algorithm composed of two steps:

E-step: Compute the expectation of $\log L(\theta; \mathbf{x})$ with respect to $m \oplus p_{\mathbf{X}}(\cdot; \theta^{(q)})$:

$$Q(\theta, \theta^{(q)}) = \frac{\sum_{\mathbf{x} \in \Omega_X} \log(L(\theta; \mathbf{x})) p_{\mathbf{X}}(\mathbf{x}; \theta^{(q)}) p l(\mathbf{x})}{\sum_{\mathbf{x} \in \Omega_X} p_{\mathbf{X}}(\mathbf{x}; \theta^{(q)}) p l(\mathbf{x})}.$$

M-step: Maximize $Q(\theta, \theta^{(q)})$ with respect to θ .

• E- and M-steps are iterated until the increase of $\log L(\theta; m)$ becomes smaller than some threshold.

Properties

- When m is categorical: m(A) = 1 for some $A \subseteq \Omega$, then the previous algorithm reduces to the EM algorithm \rightarrow evidential EM (E²M) algorithm.
- ② Monotonicity: any sequence $L(\theta^{(q)}; m)$ for $q = 0, 1, 2, \ldots$ of generalized likelihood values obtained using the E²M algorithm is non decreasing, i.e., it verifies

$$L(\theta^{(q+1)}; m) \ge L(\theta^{(q)}; m), \quad \forall q.$$

The algorithm only uses the contour function pl, which drastically reduces the complexity of calculations.

Outline

- Motivation and background
 - Motivation
 - Background on belief functions
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Partially supervised LDA
 - Model and algorithm
 - Experimental results

Model and data

- Let us assume that the complete data $\mathbf{x} = (x_1, \dots, x_n)$ is a realization from an i.i.d. sample X_1, \dots, X_n from $\mathcal{B}(\theta)$ with $\theta \in [0, 1]$.
- We only have partial information about the x_i 's in the form: pl_1, \ldots, pl_n , where $pl_i(x)$ is the plausibility that $X_i = x$, $x \in \{0, 1\}$.
- Under the cognitive independence assumption:

$$\log L(\theta; pl_1, \dots, pl_n) = \sum_{i=1}^n \log \mathbb{E}_{\theta} \left[pl_i(X_i) \right]$$
$$= \sum_{i=1}^n \log \left[(1-\theta)pl_i(0) + \theta pl_i(1) \right]$$

E- and M-steps

Complete data log-likelihood:

$$\log L(\theta, \mathbf{x}) = n \log(1 - \theta) + \log \left(\frac{\theta}{1 - \theta}\right) \sum_{i=1}^{n} x_i.$$

E-step: compute

$$Q(\theta, \theta^{(q)}) = n \log(1-\theta) + \log\left(\frac{\theta}{1-\theta}\right) \sum_{i=1}^{n} \xi_i^{(q)}, \text{ with}$$

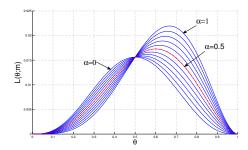
$$\xi_i^{(q)} = \mathbb{E}_{\theta^{(q)}}[X_i|pl_i] = \frac{\theta^{(q)}pl_i(1)}{(1-\theta^{(q)})pl_i(0) + \theta^{(q)}pl_i(1)}.$$

M-step:

$$\theta^{(q+1)} = \frac{1}{n} \sum_{i=1}^{n} \xi_i^{(q)}.$$

Numerical example

i	1	2	3	4	5	6
$pl_i(0)$	1	1	1	α	0	0
$pl_i(1)$	0	0	0	$1-\alpha$	1	1



$$\alpha = 0.5$$

q	$\theta^{(q)}$	$L(\theta^{(q)}; pl)$
0	0.3000	6.6150
1	0.5500	16.8455
2	0.5917	17.2676
3	0.5986	17.2797
4	0.5998	17.2800
5	0.6000	17.2800

$$\widehat{\theta} = 0.6$$

Model and algorithm

Outline

- Motivation and background
 - Motivation
 - Background on belief functions
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Partially supervised LDA
 - Model and algorithm
 - Experimental results

Model and algorithm

Object classification Problem statement

- We consider a population of objects partitioned in g classes.
- Each object is described by d continuous features $\mathbf{W} = (W^1, \dots, W^d)$ and a class variable Z.
- The goal of discriminant analysis is to learn a decision rule that classifies any object from its feature vector, based on a learning set.

Object classification Learning tasks

Classically, different learning tasks are considered:

```
Supervised learning: \mathcal{L}_s = \{(\mathbf{w}_i, z_i)\}_{i=1}^n; Unsupervised learning: \mathcal{L}_{ns} = \{\mathbf{w}_i\}_{i=1}^n; Semi-supervised learning: \mathcal{L}_{ss} = \{(\mathbf{w}_i, z_i)\}_{i=1}^{n_s} \cup \{\mathbf{w}_i\}_{i=n_s}^n
```

Here, we consider partially supervised learning:

$$\mathcal{L}_{ps} = \{(\mathbf{w}_i, m_i)\}_{i=1}^n,$$

where m_i is a mass function representing partial information about the class of object i.

 This problem can be solved using the E²M algorithm using a suitable parametric model. Model and algorithm

Linear discriminant analysis

- Generative model:
 - Complete data: $\mathbf{x} = \{(\mathbf{w}_i, z_i)\}_{i=1}^n$, assumed to be a realization of an iid random sample $\mathbf{X} = \{(\mathbf{W}_i, Z_i)\}_{i=1}^n$;
 - Given $Z_i = k$, \mathbf{W}_i is multivariate normal with mean μ_k and common variance matrix Σ .
 - The proportion of class k in the population is π_k .
 - Parameter vector: $\theta = (\{\pi_k\}_{k=1}^g, \{\mu_k\}_{k=1}^g, \Sigma).$
- The Bayes rule is approximated by assigning each object to the class k* that maximizes the estimated posterior probability

$$p(Z = k | \mathbf{w}; \widehat{\boldsymbol{\theta}}) = \frac{\phi(\mathbf{w}; \widehat{\boldsymbol{\mu}}_k, \widehat{\boldsymbol{\Sigma}}) \widehat{\pi}_k}{\sum_{\ell} \phi(\mathbf{w}; \widehat{\boldsymbol{\mu}}_\ell, \widehat{\boldsymbol{\Sigma}}) \widehat{\pi}_{\ell}},$$

where $\widehat{\theta}$ is the MLE of θ .

Observed-data likelihood

 In partially supervised learning, the observed-data log-likelihood has the following expression:

$$\log L(\boldsymbol{\theta}; \mathcal{L}_{ps}) = \sum_{i,k}^{n} p l_{ik} \log (\pi_k \phi(\mathbf{w}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)),$$

where pl_{ik} is the plausibility that object i belongs to class k.

Supervised learning is recovered as a special case when:

$$pl_{ik} = z_{ik} = \begin{cases} 1 & \text{if object } i \text{ belongs to class } k; \\ 0 & \text{otherwise.} \end{cases}$$

• Unsupervised learning is recovered when $pl_{ik} = 1$ for all iand k.

E²M algorithm

E-step: Using $p_{\mathbf{X}}(\cdot; \boldsymbol{\theta}^{(q)}) \oplus m$, compute

$$t_{ik}^{(q)} = \mathbb{E}(Z_{ik}|m; \theta^{(q)}) = \frac{\pi_k^{(q)} p l_{ik} \phi(\mathbf{w}_i; \boldsymbol{\mu}_k^{(q)}, \boldsymbol{\Sigma}^{(q)})}{\sum_{\ell} \pi_k^{(q)} p l_{i\ell} \phi(\mathbf{w}_i; \boldsymbol{\mu}_\ell^{(q)}, \boldsymbol{\Sigma}^{(q)})}$$

M-step: Update parameter estimates

$$\pi_k^{(q+1)} = \frac{1}{n} \sum_{i=1}^n t_{ik}^{(q)}, \qquad \mu_k^{(q+1)} = \frac{\sum_{i=1}^n t_{ik}^{(q)} \mathbf{w}_i}{\sum_{i=1}^n t_{ik}^{(q)}}.$$

$$\Sigma^{(q+1)} = \frac{1}{n} \sum_{i,k} t_{ik}^{(q)} (\mathbf{w}_i - \mu_k^{(q+1)}) (\mathbf{w}_i - \mu_k^{(q+1)})'$$

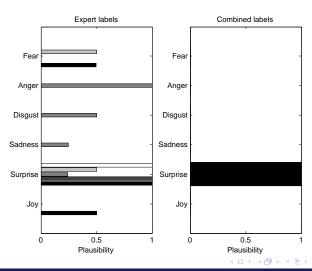
Outline

- Motivation and background
 - Motivation
 - Background on belief functions
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Partially supervised LDA
 - Model and algorithm
 - Experimental results

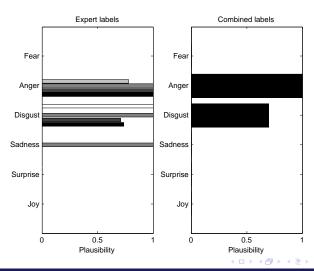
Face recognition problem Experimental settings

- 216 images of 60×70 pixels, 36 in each class.
- One half for training, the rest for testing.
- A reduced number of features was extracted using Principal component analysis (PCA).
- Each training image was labeled by 5 subjects who gave degrees of plausibility for each image and each class.
- The plausibilities were combined using Dempster's rule (after some discounting to avoid total conflict).

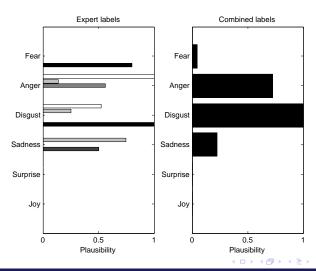
Combined labels Example 1



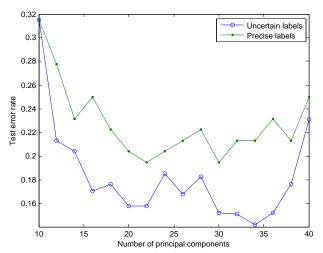
Combined labels Example 2



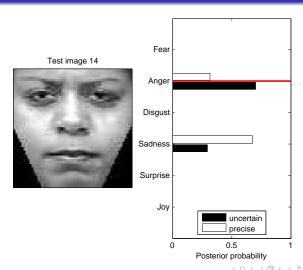
Combined labels Example 3



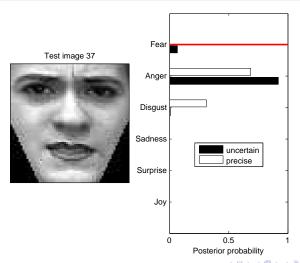
Results



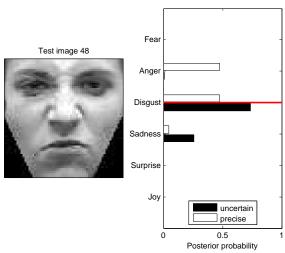
Results Example 1



Results Example 2



Results Example 3



Summary

- The formalism of belief functions provides a very general setting for representing uncertain, ill-known data.
- Maximizing the proposed generalized likelihood criterion amounts to minimizing the conflict between the data and the parametric model.
- This can be achieved using an iterative algorithm (evidential EM algorithm) that reduces to the standard EM algorithm in special cases.
- In classification, the method makes it possible to handle uncertainty on class labels (partially supervised learning).
 Uncertainty on attributes can be handled as well.

Research challenges/Ongoing work

- The E²M algorithm can be applied to any problem involving a parametric statistical model and epistemic uncertainty on observations, e.g.:
 - Independent factor analysis (Cherfi et al., 2011);
 - Clustering of fuzzy data using Gaussian mixture models (Quost and Denoeux, 2010);
 - Hidden Markov models (ongoing).
- Some open problems:
 - How to elicit subjective evaluations in the Dempster-Shafer framework?
 - When observations become uncertain or imprecise, this uncertainty should be reflected in the parameter estimates.
 How to do it in the proposed framework?

References

T. Denœux.

Maximum likelihood estimation from fuzzy data using the EM algorithm. *Fuzzy Sets and Systems*, 183:72-91, 2011.

T. Denœux.

Maximum likelihood estimation from Uncertain Data in the Belief Function Framework. *IEEE Trans. Knowledge and Data Engineering*, to appear, 2011.

http://www.hds.utc.fr/~tdenoeux

