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Introduction

Suez Environnement is one of the leading companies of the Water Distribution, Waste
Water Treatment and Waste Promotion Industry in France. Via some internal audit, the
group’s Waste Promotion Technical Direction noticed that the waste incineration process
monitoring was most of the time not complying with the simplest rules. For example, it
quite often happened that the percentage of oxygen in the oven was maintained around
5%, whereas good combustion requires a minimum of 6% O,. Further analysis showed
that the value of some key measures was actually slowly drifting, so slowly that no-one
noticed the change, and, after some time, habit made the wrongest things sound normal
to the operators. The result of the assessment was alarming.

The control and command desk most of the time displayed many data (up to five
thousands!), but no analysis or synthesis of these measurements was shown on screen.
No reference data were shown either, apart from the fact that an alarm was set on some
of the variables in case they went beyond some upper or lower threshold. A posteriori
analysis was performed on the basis of weekly reports, allowing the detection of some
malfunctioning. However, most of these problems were detected too late, and sometimes
lead to further problems that may have been avoided, had their origin been detected
earlier.

Hence, the Technical Direction decided to take some action on the issue. An attempt
in building a thermodynamic model of the installations failed in predicting the outcomes,
due to the uncertainty and imprecision of the involved data. It was thus decided to sub-
mit the case to the group’s research department, the Centre International de Recherche sur
I'Eau et I’Environnement (International Centre of Research on Water and Environnement).
They, in turn, submitted the problem to Thierry Denceux, professor at the Université de
Technologie de Compiegne (Compiegne University of Technology). It was agreed that the
problem would be the subject of an MSc thesis, which would lead to a PhD thesis if
necessary. It is in this context that the present work was undertaken.

The project aims at the production of a tool establishing a permanent reference on
the process key points, and continuously evaluating the process performances, in terms
of safety, productivity, and standards compliance. The problem may thus be seen as
a classification task, in which the normal, —or desired— state of the system needs to be
differentiated from the different types of faults. Nevertheless, the latter are too numerous
and varied to allow the building of a training set of data, while the normal state of the
process is very well represented in a waste incineration plant database. Therefore, the
problem turns out to be a one-class classification task. Moreover, as already mentioned,
the problem involves a lot of uncertainty.

The objectives of the project were thus specified as follows. The theoretical problem
would be solved in such a way that the uncertainty attached to classification decisions
would be available to the end user, and a functional prototype would be delivered at the
end. It was however decided that the PhD project would only be concerned with the
regulation of the oven-and-boiler subunit, to allow the study to fit in the allocated time.
This does not constitute an important restriction. The roles of the oven and boiler are
indeed determinant for the rest of the installation, and keeping this part of the process
under control ensures the stability of the whole system.

Because of its ability to handle imprecision and uncertainties, the belief function
theory, and more particularly Smet’s Transferable Belief Model [126, 120], seemed to be an
ideal framework in which to solve the problem. A feasibility study showed that the data
have particularly complex correlations. This study concluded that models underlying



2 INTRODUCTION

the hypothesis of linear correlation, such as standard Principal Component Analysis,
widely used as a basis for process monitoring in the chemical industry, would not work
efficiently. It was thus decided that kernel-based models, which act as though the data
had undergone a prior transformation that makes them linearly correlated, would be
better adapted.

From a theoretical point of view, this constitutes an interesting problem. In effect,
the multi-class classification problem, for which data of several classes are available for
training, have already been tackled in different ways in the Transferable Belief Model
[38, 37, 36, 56, 138]. On the other hand, the one-class or novelty detection task had not
yet been studied in this framework. Let us consider a system that can only be in two
possible situations: the reference state wy, or a situation w; including all other possible
states. The problem under consideration is the assessment of the hypothesis that the
system is in state wy when the only available information about the system is a sample of
observations xi, . . ., Xn of some variables, representative of the system state, conditioned
on wy. It underlies two different subproblems, which will be studied in this PhD thesis.

The first subproblem is to express the available knowledge in terms of belief func-
tions. First, a novelty measure T, whose value will be small in the region of space
containing the data xy, ..., x,, and larger as the distance to this region increases, needs to
be built as a function of xi, ..., x,. This may be done using a one-class classifier. Then,
a methodology allowing us to express our belief about the realization of a new sample
drawn from the same distribution as T needs to be established, i.e., we need to be able
to predict what the next observation of T will be. We suggest two possible approaches
to this problem. The first approach is based on Hacking’s frequency principle [55, 117],
which equates the degree of belief of an event to its probability, when the latter is known.
The second method is based on a weak form of Hacking’s principle, which states that
the pignistic probability of an event should be equal to its long run frequency, when the
latter is known.

As we only dispose of data collected when the system was in a given state, the
obtained belief function expresses our belief in future values of T, knowing the system
is in this particular state. From this, we need to infer our belief in the present system
state, knowing the value of the studied statistic. This constitutes the second subproblem.
We propose three different solutions: the first is based on the GBT, and the other two are
based on the notion of cognitive inequality, introduced in this report, and which may be
seen as the belief function theory equivalent of the stochastic inequality.

This report is structured in three main parts, divided in six chapters. The first part
of the work consisted in solving the problem of constructing a belief function from raw
data, and will be presented in Part I. The basics of the transferable belief model will
tirst be introduced in Chapter 1, and different methodologies for the building of belief
functions from data will be detailed in Chapter 2. Then, the issue of novelty detection
with belief functions had to be tackled, and this is what Part II is about. Chapter 3 is a
review of existing one-class classification techniques, and the new solution developed in
the TBM framework is presented in Chapter 4. Finally, a prototype had to be developed.
It is depicted in Part III. The adopted solution is described in Chapter 5, and results are
shown in Chapter 6. General conclusion and perspectives conclude the report.
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Belief functions
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The Transferable Belief Model (TBM)
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Summary

In this chapter, the main notions pertaining to the belief function theory, —and more
particularly to Smet’s Transferable Belief Model- will be introduced. We will start with
the case of discrete belief functions. Basic definitions will first be recalled. Mechanisms
for the handling and updating of beliefs will then be described. Lastly, the decision
making process will be explained.

After that, the belief functions on R will be presented. The distinction between discrete
and continuous belief functions on the real line will be established. Then, the mechanisms
for the handling and revision of belief functions on R will be clarified. A partial order
on belief functions will be introduced, and the decision making process will be described
for belief functions on IR.

Résumé

Dans ce chapitre, les notions principales de la théorie des fonctions de croyance, —et,
en particulier, du modéle des croyances transférables de Smets—, sont abordées. Tout
d’abord, le cas des fonctions de croyance discrétes est présenté. Les définitions de bases
sont rappelées, et les mécanismes de modification et mise a jour des fonctions de croy-
ances sont décrits en détails. Finalement, le procédé de prise de décision est introduit.
Dans un second temps, les fonctions de croyance sur R sont présentées. La distinction
entre fonctions de croyance discrétes et continues dans R est établie. Les mécanismes de
manipulation et de mise a jour des fonctions de croyance sur R sont clarifiés. Un ordre
partiel sur les fonctions de croyance est introduit, et le procédé de prise de décision est
décrit pour les fonctions de croyance sur R.
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1.1 Introduction

The necessity of handling imprecisions and uncertainties of data lead to the development
of several mathematical theories, such as the theory of possibilities, the imprecise prob-
ability theory, and the belief function theory. The latter, sometimes also called evidence
theory or Dempster-Shafer theory, was introduced by Dempster in the late 1960’s [30, 31,
32, 33, 34, 35], and further developed by Shafer in [113] (1976). Several interpretations of
this framework have been introduced since then, amongst which the Transferable Belief
Model (TBM) and Kohlas” hints theory [65].

The TBM, a subjectivist interpretation of the evidence theory introduced by Smets
[126, 120], establishes an interesting framework for the resolution of problems of diagnos-
tic [119], pattern recognition [38, 37, 36, 56, 138] and information fusion [48, 85]. Itis a two
level model. Information is handled at the credal level, where beliefs can be represented,
updated and combined. Decisions are made at the pignistic level, from Latin “pignus”, to
bet.

In this chapter, the main notions pertaining to the TBM will be introduced. The
concepts that will be used throughout this thesis will be especially emphasized.

1.2 Discrete Case

1.2.1 Belief Representation
Basic belief assignment and equivalent functions

Considering a given question (variable) O and a set of possible answers (values) (),
termed frame of discernment, we would like to model the belief of an agent Ag in the fact
that the answer to question O is in (). However, the agent may not be able to distinguish
amongst single answers, and may need to allocate part of his belief to arbitrary subsets
of ). A formal definition of this is given in the TBM.

Definition 1. (Basic belief assignment) Let QO = {w;, ..., wxk} be a finite set, and let O be
a variable taking values in Q). Given some evidential corpus EC, the knowledge held by a given
agent Ag at a given time over the actual value of variable O can be modeled by a so-called basic
belief assignment (bba) m defined as a mapping from 2 into [0, 1] such that:
Yy m(A)=1. (1.1)
ACO

Each mass m®(A) is interpreted as the part of the agent’s belief allocated to the
hypothesis that O takes some value in A [113, 126]. The subsets A € () such that
m(A) > 0 are called focal sets of m.

Where there is no ambiguity, m will be shortened .

There exists a number of equivalent representation of 1, including the belief, plausi-
bility, commonality, and implicability functions defined, respectively, as:

bel(A)= Y m(B), (1.2)
@#BCA
pl(A)= ) m(B), (1.3)
BNA£D
q(A) =} m(B), (14)
BDA
and
b(A) =) m(B), (15)
BCA

forall A C Q.
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Interpretation: The quantity bel(A) (belief in A) can be interpreted as the degree of
belief that can be allocated to a subset A, and is strictly ascertained by the available
evidence.

The plausibility of A, on the other hand, measures the quantity of information that is
not in contradiction with A. In other words, it is the maximum degree of belief that could
be allocated to A upon the collection of additional information.

The commonality of A is the sum of masses allocated to supersets of A, and may be
interpreted as the a measure of ignorance when the answer to question O is known to
belong to A [118].

Finally, the implicability of A is the sum of masses allocated to subsets of A.

Each of these functions is in one to one correspondence with the others. The belief
and plausibility functions are the most commonly used in the formalization of problems,
as their interpretation is easy. The implicability and commonality functions play an
important role in calculations, and often make the mathematics of the TBM simpler.
By misuse of language, any of them may sometimes be designated by the term “belief
function”.

Special cases

A belief function is said to be normal if the empty set is not a focal set, subnormal if it
is. Only normal belief functions are considered in Dempster’s and Shafer’s work, but
the TBM allows subnormal belief functions as well. The mass assigned to the empty set
may actually play an important part, and can be seen as the mass of belief granted to the
hypothesis that the truth does not lie in (2, hence carrying the idea that the chosen model
might not fit reality with enough precision.

However, as normality is imposed in many interpretations of the evidence theory —
and especially in Dempster’s work, from which the TBM directly follows—, it is important
that the normalization operation be defined here:

Definition 2. (Normalization) Let m be a subnormal bba. Normalization transforms it into a
normal bba m* defined as:

w(A) = 1 gy A F O

m* (@) = 0.

(1.6)

Through this transformation, the value of m(®) is spread onto the other subsets of (),
leading to a -sometimes important- loss of information.

The mass allocated to (), i.e., the part of belief shared between all possible answers,
represents ignorance. Consequently, if the entire mass of belief is assigned to (), the
corresponding bba is said to be vacuous. Conversely, when () is not a focal set, the mass
function is termed categorical, as it leaves no place for ignorance.

Finally, a bba is called simple if it has at most two focal sets, including (), and categorical
if it is simple and dogmatic, i.e., the entire mass is set onto one focal set only and that focal
set is not (), reflecting the fact that the agent has no doubt where the truth lies.

The different types of bba are represented in Figure 1.1.

Link to other theories

When the focal sets are nested, m is said to be consonant, and the associated plausibility
function is a possibility measure: it verifies p/(A U B) = max(pl(A), pl(B)) forall A,B C
Q). The corresponding belief function is the dual necessity measure.

When the focal sets are all singletons, m is termed Bayesian and pl = bel = P is a
probability distribution. A Bayesian belief function is maximally precise.
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Figure 1.1: Different types of bba
Different types of bba: from (a) to (d): vacuous, simple, categorical, arbitrary bba

Representations of a consonant and a Bayesian bba are given in Figure 1.2. Shaded
areas indicate a non empty mass on the covered elements while white indicates a mass

m = 0.
®lo
N ©
A AN
(a) (b)

o= )

Figure 1.2: Consonant and bayesian bba
Different types of bba: (a) consonant bba, (f): bayesian bba

From the above, it is easy to see that belief function theory includes both possibility
and probability theories. The relationship between the different confidence measures is
better represented on a graph (see Figure 1.3).

Matrix representation

A mass function may be represented by a vector m of length 210 containing, in a pre-
defined order, the value of the mass assigned to each subset of (2. Any order could be
used, but one particular order proved extremely efficient in compacting mathematical
expressions, and that is the so-called binary order.

Write the elements of () on a unique line L in no particular order, and then represent
each subset A of () by a binary number composed of ones on the positions corresponding
to the positions on L of the elements of () that are included in A, and zeros elsewhere.
Sort the obtained binary numbers increasingly, and you will get a binary ordering of the
subsets of (). This means that, if ) is e.g. {a,b,c}, then the empty set (@) is coded by
’000", {a, b} will be denoted by "011” and {a, c} by "101".

The i element of vector m will indifferently be denoted m; or m(A), where A equals,
e.g. {a,c} if i = 6. Note that the binary code of A is i — 1. Functions bel, pl, g and b may
similarly be represented by vectors, respectively denoted bel, pl, q, and b. (see Table
1.1).
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/

N

Confidence measures,
monotonuous: A C B = g(A) < g(B)

Plausibility
measure:
subadditive
Probability
measures:
aaditive Possibility
measure
Belief
measures:
superadditive .
P . certainty
Necessity
measure

\

Figure 1.3: Relationship between confidence measures

Vector .

line no. | DIMATY

(deci- code of set A m(A) f(A) *

mal) set A
1 000 % m (D) £(2)
2 001 {a} m({a}) | f({a})
3 010 {b} m({b}) | f({b})
4 011 {a,b} m({a,b}) | £f({a,b})
5 100 {c} m({c}) | f({c})
6 101 {a,c} m({ac}) | £f({a,})
7 110 {b,c} m({b,c}) | £({b,c})
8 111 Q={abc} | m(Q) f(Q))

Table 1.1: Binary representation of the subsets of a frame of discernement ()
and associated matrix representation of a belief function on Q).(* f may be one of bel, pl, q, b.)
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The Least Commitment Principle (LCP)

The LCP plays a role similar to the principle of maximum entropy in Bayesian Probability
Theory.

Definition 3. (The Least Commitment Principle (LCP)) It dictates that, in a set of belief
function compatible with the available information, the least informative should always be chosen.

This principle reflects a cautious attitude. It conveys the idea that no more credit
should ever be given to an hypothesis than is strictly accounted for by available evidence,
nor should any hypothesis be ruled out without sufficient information.

In order to allow the possibility to pick up the least informative BF, a partial order
should be defined.

Ordering

It is sometimes important to be able to compare the precision of two different belief
functions. Several measures have been introduced in order to quantify the precision of an
arbitrary belief function, the quantity of information it carries, or its degree of uncertainty.
Both ordinal and quantitative methods can be used; however, we will restrict ourselves to
ordinal approaches. The reader is referred to [115, 64, 92] for a description of quantitative
approaches.

Several partial orderings, generalizing set inclusion, have been proposed for the com-
parison of belief functions [134, 44]. The pl-, g- and s- orderings will be defined in the
sequel.

It is obvious to see that the least precise of all belief functions is the vacuous bba. On
the contrary, the most precise belief function would be a categorical bba focusing on a
singleton. The intuitive deductions are that,

e the more precise a belief function, the smaller the subsets of () its focal sets are;

e there are several, (possibly maximally) equally precise belief functions for a given
frame of discernment ().

Let A and B be two non empty subsets of () such that A C B. Let m4 and mp be
to categorical bba such that m4(A) = 1 and mg(B) = 1, and let pl4 and plp be the
corresponding plausibility functions. They are defined as

(1 ifCNA#0Q,
pla(C) = { 0  otherwise; (1.7)
and ] L
1 ifCNB#Q,
pls(C) = { 0  otherwise. (1.8)

Now,as A C B,CNA # @ = CNB # @. Consequently, pl4(C) < plg(C), VC C (), and
m 4 may be said to be pl-more informative than mp. This will be denoted

nma Epl mg. (19)

This leads to the following general definition of the pl-ordering for ordinary belief
functions. Let pl; and pl, be two plausibility functions on ().

Definition 4. (pl-ordering) plS} is pl-less committed than plS® iff:

pitt(A) < plsl(A), VACQ. (1.10)
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Moreover, the same two bba m 4 and mp also yield:

1 ifADC,
94(C) = { 0 otherwise; (L11)
and
1 ifB2C,
95(C) = { 0 otherwise. (1.12)

As A D Cimplies B D C,VC C Q), then g4(C) < g3(C), VC C Q), and m 4 may be said to
be g-more informative than mp, denoted ms E; mp.
The general definition of the g-ordering is:

Definition 5. (q-ordering) g5 is g-less committed than q%* iff:
7'(A) < q2'(A), VACO (113)

However, the pl- and g- partial orderings are not equivalent in general, and cannot
be compared (neither of them implies the other). Nevertheless, these two orderings are
equivalent in the special case of consonant belief functions: if 7; and m, are consonant,
then

nq Eq My <= M1 Epl My < pll({QJ}) < plz({éd}), Yw € Q). (114)

A stronger partial order may be defined through the notion of specialization that will
be defined in the next section (Section 1.2.2). If m; is a specialization of my, then it is
more informative: in effect, we will see that it means that m; may be obtained from m,
by transferring the masses 1, (C) onto subsets of C, for all C C Q). This order is termed
s-ordering, and implies both the g- and pl-orderings:

my Sy my
C p
my Ls my = { my Cymy (1.15)
Properties
Vm, m'
mQOm' T, mOm’
_p 7
m@m' Ty mOn, (L16)
mQOm' T, mOn,
and

mg Ly mo,
me L4, mq, (1.17)
m@ ES mQ/

where mg denotes a bba of maximal conflict (my (@) = 1) and mq is the vacuous belief
function.

The interpretation of these and other ordering relations is discussed in [44] from a
set-theoretical perspective, and in [46] from the point of view of the TBM.

1.2.2 Handling and Revision of Beliefs
Specialization and Generalization

We will see that most operations for the handling and revision of beliefs may be simply
expressed in terms of mass transfer from one subset of () to another, hence the name
Transferable Belief Model. In fact, these operations all derive from two types of operations,
namely specialization and generalization.
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The operation of specialization consists in transferring the mass allocated to each focal
element A onto a series of subsets B of A. It constitutes a refinement of the available
information (the belief allocated to a subset A C () is transferred onto subsets of A) or
an addition of new information (part of the belief assigned to () may be transferred onto
subsets of (), thus reducing the part of ignorance).

Definition 6. (Specialization) A mass function my is a specialization of my if there exists a
stochastic matrix S of dimensions 2/?1 x 219! such that S(A, B) = 0 for all A ¢ B, and

mp; =S -m;, (1.18)
or equivalently,
my(A) = ) S(A, B)my(B). (1.19)
BCO

S is an upper-triangular matrix whose element S(A, B) represents the part of the mass
m; (B) that will be transferred onto A C B.

The opposite of a specialization is a generalization. The operation of generalization
consists in transferring the mass assigned to each subset B of () onto a series of subsets A
of () that include B.

Definition 7. (Generalization) m; is a generalization of my if there exist a stochastic matrix
G of dimensions 2!?1 x 219l such that G(A,B) = 0 forall B¢ A, and

m; =G -my, (1.20)

G is a lower-triangular matrix whose element G(A, B) represents the part of the mass
m; (B) which is transferred onto A D B.

Conditioning and ballooning extension When a given hypothesis H C () is ascer-
tained, the beliefs are altered to reflect the new state of knowledge. Masses associated to
subsets B, B C (), are transferred onto subsets H N B.

Definition 8. (Conditioning) Consequently, the mass of belief on () conditioned to H is:

m?H](A)= Y. m(B), VACQ (1.21)
BNH=A

The dual operation is termed ballooning extention.

Definition 9. (Ballooning extention) Let m*[H]| be the bba on Q) conditioned with respect
to H C Q). Assume we now learn H finally does not necessarily hold and all previous states of
knowledge have been lost. Masses associated with any non-empty set A of () are then transferred
onto B= AUH: o
m[H](A)ifB=AUH

0 otherwise. (1.22)

l)19(8) = {
The ballooning extension operation only allows finding the least committed bba whose
conditioning on H will lead back to m}[H]. Hence, some information might be lost in the
process of successive conditioning and “deconditioning” operations, and the original bba
m cannot always be recovered.

Remark 1. The conditioning operation is a particular form of specialization, and the ballooning
extension is a form of generalization.

Remark 2. Let m be a bba on Q). A specialization matrix S,, whose elements are defined as
follows:
Sm(A,B) =m[B](A), YA,BCQ (1.23)

is termed Dempsterian specialization matrix associated with m.
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Combination

In order to decide how to combine two pieces of information, it is important to know
whether they were induced by common evidence or not. In effect, if two sources of
information come to the same conclusion from different pieces of evidence, then the two
results should reinforce one another. However, if they use the same evidence, then this
two conclusions should not reinforce each other. Two such pieces of information are said
not to be distinct.

Conjunctive and Disjunctive combination The most common combination rules are
the conjunctive and disjunctive combination rules. Both rules require the two sources of
information to be distinct.

Given two distinct pieces of evidence m; and m;, given by two different sources, the
conjunctive combination M ®s of my1 and m5 can be defined as follows:

Definition 10.
ml@z(A) = ) m(B)my(C), VACQ. (1.24)
BNC=A
This operation corresponds to a very intuitive rule: if two different, equally reliable,
witnesses provide two different testimonies that do not entirely contradict each other,
then the natural way to built a conclusion is to cross-check the two declarations and
to keep only the hypotheses that comply with both testimonies, i.e., it corresponds to
a logical “AND”. It should be used when all sources of information are known to be
reliable.

Remark 3. The conjunctive combination of a mass my with a mass my is a Dempsterian special-
ization. It generalizes the conditioning operation.

Remark 4. The mass allocated to the empty set by the conjunctive combination of two (normal)
bbas may be seen as the degree of conflict (or contradiction) between the two sources of informa-
tions the bbas originated from.

Definition 11. Dempster’s rule of combination is defined as the conjunctive combination of
two normal bba followed by normalization.

Example 1. (The murderer) Consider a variant of the Peter, Paul and Mary saga introduced
by Smets [120]. The outline of the saga reads as follows. “Big Boss has decided that Mr. Jones
must be murdered by one of the three people present in his waiting room and whose
names are Peter, Paul and Mary.” Suppose now that you know nothing about the way the killer
was selected, that Mary and Peter smoke but Paul does not, and that two persons witnessed the
murder through the window, but did not had time to intervene. Witness-1 says the murderer was
smoking. Witness-2 says the killer was a woman. If you rely equally on both of them, you will
conclude the murderer is Peter.

What happens if none of the witnesses is 100% certain of what he/she said ? Suppose
now that Witness-1 (denoted W1) is 80% sure the murderer was smoking, and Witness-2 (W2)
is only 50% sure the killer was a woman. The belief functions associated with each witness are
represented in table 1.2, together with their conjunctive combination.

Property 1. The conjunctive combination rule is associative and commutative; its neutral element
is the vacuous belief function.

Property 2.
1,@,(A) = n(A)g2(4), VACO (1.25)

Now, recall that the application of the conjunctive combination rule requires the two
sources of information to be distinct. In [121], Smets attempted to clarify this notion.
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Suspect my | my | e,
* 0 0 0
Peter 0 0 0
Paul 0 0 0
Peter or Paul 0 0 0
Mary 0 |05 0.5
Peter or Mary 08| 0 0.4
Paul or Mary 0] 0 0
Peter, Paul or Mary | 0.2 | 0.5 0.1

Table 1.2: The conjunctive combination rule : the three suspects’ saga.
(* Not Peter, nor Paul nor Mary)

Distinctness can be formally defined as follows.

Suppose you first obtain some information I; about a particular variable O taking
values in () and build a belief function m; on the actual value of O. You then obtain
some additional information I, and consequently update your belief m; into my, via a
specialization matrix Sy».

Now suppose you obtain the same pieces of information in the reverse order, i.e., you
tirst get information I, build a belief function m,, then get information I; and update
your knowledge into my; via a specialization matrix Sy;.

If your two sources of information are equally reliable, you would want my = my,
i.e., the order in which you get the two sources of information should not matter. It is
said that if m1» = my; implies that S1» only depends upon I, and Sy; only derives from
I, —in other words, Si» can entirely be defined from m; and Sj; from m;—, then m; and
my are distinct. In this case, S1» and Sy; are, respectively, the Dempsterian specialization
matrices S;,, and Sy, .

In practice, m; and my are termed distinct if they come from completely different,
independent (in the sense that they cannot influence each other), sources of information.

If (at least) one of the sources might be unreliable, it is better to carry out a disjunctive
combination:

Definition 12. (Disjunctive rule)

ml@z(A) = ) m(B)my(C),YA C Q. (1.26)
BUC=A

This operation corresponds to a more cautious attitude than that of the conjunctive
combination rule. Knowing that :

e two different but not totally conflicting pieces of evidence were provided by two
sources of information;

e one of the sources of information might not be reliable but we do not know which;

none of the possibilities suggested by the two pieces of evidence may be ruled out. The
natural deduction is that the truth is represented either by one of the pieces of evidence,
either by the other, either by both (this is equivalent to a logical “OR”). It is an operation
in which the mass of belief respectively allocated to two subsets A, B C () by m; and m»
is transferred onto A U B. The disjunctive combination of a mass m; with a mass m; is a
particular form of generalization.

Example 2. (The murderer (continued)) Reconsider the murder case described in example 1
under the hypotheses that both the witnesses are sure of what they are saying, but one of them
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might be lying. The murderer might then be either Peter or Mary. Now, if the witnesses are
not sure of what they are saying and you are not sure they are telling the truth anyway, then,
supposing Witness-1 (denoted W1) says he/she is 80% sure the murderer was smoking, and
Witness-2 (W2) says he/she is only 50% sure the killer was a woman, the belief function associated
with each witness is represented in table 1.3, together with their conjunctive and disjunctive
combinations.

Suspect my | my | e, | o),

* 0 0 0 0
Peter 0 0 0 0
Paul 0 0 0 0
Peter or Paul 0 0 0 0
Mary 0 |05] 05 0

Peter or Mary 08| 0 0.4 0.4
Paul or Mary 0 0 0 0

Peter, Paul or Mary | 0.2 | 0.5 | 0.1 0.6

Table 1.3: The disjunctive and conjunctive combination rules : the three suspects’ saga.
(* Not Peter, nor Paul nor Mary)

Property 3. The disjunctive combination rule is commutative and associative; it neutral element
is mg, such that mg(0) = 1.

Note that the use of the disjunctive combination also requires m; and m; to be distinct.
A definition of the term “distinct”, similar to that given for the conjunctive combination
rule, could also be given for the disjunctive rule of combination.

Operations on a product space

From now on, we will work on the product space X x (). X is a random variable (r.v.)
varying over X, assumed to be representative of the state of a system at a given time.
Q = {wy,...,wk} is a finite set describing all possible states of the system. The w; are
termed classes, and they are mutually exclusive. Variable O takes values in (.

Definition 13. (Marginalization)
Let m**? denote a bba defined on the Cartesian product X x Q of the two variables X and
O. The marginal bba m* > on Q) is defined, for all B C Q) as:

m YRy = Y m* Y (A), (1.27)
{Ac(xxq)|alo=B}

where A denotes the projection of A onto Q:
A =foecQlFxc X, (x,0)c A}. (1.28)
The marginalization on X may be defined symmetrically.

Definition 14. (Vacuous Extension) The inverse operation is the vacuous extension. Let m
be a bba on Q). Its vacuous extension on X x () is defined as:

m®(B) if A= B x X for some B C Q

0 otherwise. (1.29)

mIXx0(A) = {
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X X
mx) mxLe
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Figure 1.4: Marginalization and vacuous extension operations

We have already seen in the case of bba on a simple frame (as opposed to product
space frame) that, when a given hypothesis H C () is ascertained, the beliefs are altered
to reflect the new state of knowledge. In fact, the conditioning operation consists in
combining masses conjunctively with a categorical bba m$} supporting hypothesis H C
Q. In other words, knowing m®*%, and knowing that the hypothesis H C Q holds,
conditioning with respect to H consists in seeking the marginal bba m* on X that takes
all the available information into account. It may be found through a series of operations
that have already been defined:

o first, m$} should be vacuously extended over X x () so as to get a belief function

mgTQXX on Q) x X that may be combined with m@*%;

Q1OxX QxXx

e second, m and m should be combined conjunctively;

QxXx
Xxﬂ@mgT X

e the resulting belief function m can then be marginalized on &'.

Definition 15. (Conditioning)
The mass of belief on X knowing that hypothesis H C () holds, i.e., m$}(H) = 1, is:

mX[H] _ (mXxQ@mgTXXQ>lX/ (1.30)

or, equivalently, the mass of belief allocated to S C X knowing that hypothesis H C () holds, is:

m*[H|(S) = Y m**(B). (1.31)
BCXxQ | Proj(BN(Hx X)|Q)=S

where Proj(C | Q) denotes the projection of a subset C of X x Q) on Q).

Now let m* [H] be the bba on X' conditioned with respect to H C Q). Assume we now
learn H finally does not necessarily hold and all previous states of knowledge have been
lost. We have m*[H], and would like to find the least committed bba m® [H]M(**?) on
X x Q) reflecting the available information. This procedure, opposite of the conditioning
operation, is termed ballooning extension process [116], and yields to:
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Definition 16. (Ballooning Extension)

mX [H]TX*Q) (A) = { gn:t[}ir]z(usizel:f A= (SxH)U(X x H), 1.32)

Masses associated with any non-empty set S of X’ before the ballooning extension are
then transferred onto (S x H) U (X x H) during this operation.

Note again that some information might be lost in the process of successive condition-
ing and “deconditioning” operations, and the original bba cannot always be recovered.

X9 S mY[0 € H S
T

Q

Conditioning
mX[H]M>8 m*[0 € H] S

<=

Ballooning extension (de-conditioning)

Figure 1.5: Conditionning and ballooning extension

The Generalized Bayes’ Theorem

The Generalized Bayes” Theorem (GBT) was introduced by Smets [116]. It generalizes
Bayes’ theorem in that, whenever the belief functions are Bayesian, and we also have
a Bayesian prior on the classes, the two theorems are exactly equivalent. However, the
power of the GBT lies in the fact that it does not require any prior knowledge on Q) (for
instance, no prior class probabilities).

Let us suppose we know all the conditional bbas m*[wy], k = 0,...,K, we have no
prior knowledge on (), and we observe x, C X. From that, we would like to derive our
belief in the fact that the system is in a particular state w;, knowing the value of statistic
X. In other words, we seek m[x,]. The GBT allows us to find the answer in three steps
(See No. 1 to 3 of Figure 1.6 for an illustration).

1. We shall first calculate the ballooning extension of each of the functions m* [wy],
that is to say, “de-condition” them in order to obtain a belief on X’ x Q.

2. The obtained bbas m* [wy]|T** are distinct, as the original m® [w)] were distinct.
Hence, the m® [wy|T**? can be combined by applying the conjunctive combination
rule: this will be the second step. We now have a global and un-conditioned belief
function on X x Q).

3. Conditioning with respect to x, returns the belief function we need, namely m[x.].
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The GBT may then be defined as follows:

Definition 17. (GBT)
P[] = (@im™ w12 [x.]. (1.33)

It may be shown that:

- Xw X
m®x,] = OF Ty . (1.34)

where AY denotes a simple bba such that m(A) = 1 —w and m(Q)) = w. In particu-

lar, @plx[wk](x*) is a simple bba for which m({w;}) = 1 — pl¥[wi](x.) and m(Q) =
pIY Jwi] (x.).

Equation (1.34) [40] allows an easy interpretation of the GBT: the less x, is plausible
under wy, the more weight is assigned to {wy} when x, occurs.

The equivalent formulation in terms of plausibility functions sometimes makes cal-

culations simpler:

plx](A) =1- T (1 - pl¥wi(xs), YACQ. (1.35)

wr€A

Discounting

A mass of belief m?[EC] has been defined as the belief held by an agent over the actual
value of a variable O given an evidential corpus EC, i.e. conditionally to EC. The reliability
of the source . providing the evidential corpus EC may sometimes be assessed, and
m?[EC] should be updated accordingly.

If the source .7 is perfectly reliable, then the beliefs need not be updated. If, on the
contrary, the source .7 is not reliable at all, then the mass m[EC] should be reduced to
the vacuous belief function, representing total ignorance.

Finally, if the source .7 is only partially reliable, then mass m[EC] should be altered
in such a way that the updated values of the mass are proportional to the reliability of ..

Let us consider a frame of discernment R = {R, NR} whose two elements respec-
tively stand for Reliable and Non-Reliable. Let us consider a mass m”~ on R of the form

mR({R}) =1 -«

mR(R) = a, (1.36)

representing the reliability of source ..
m® and m”® may be combined to reflect the new state of knowledge.

e They first need to be expressed in a common frame, that is to say, the product space.
e They can then be conjunctively combined.

e The obtained belief function should finally be marginalized so that the beliefs on
the value of O into ) can be identified.

The resulting belief function, denoted *m may be expressed as follows [113, 116]:

Definition 18. (Discounting)

10
m = (ORI R@OMRIR) (1.37)
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Figure 1.6: The three steps of the GBT
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where « is called the discounting rate.
It may be shown that a simpler expression of *m is the following:

“m(A) = (1-a)m?(A), VAeQ,

‘mAQ) = (1 —a)m?(Q) +a. (1.38)

This operation amounts to transferring part of the mass allocated to the focal elements
onto (), thus accounting for partial ignorance.
Yet another way of writing this operation is:

m = (1—a)m?+ami, (1.39)

where m{} represents the vacuous belief function on Q.

It is also possible that the source .#” is known to be reliable in a given context and less
reliable in some other contexts. For example, a temperature sensor might be reliable in
a given range of temperature values and less reliable (or totally unreliable) outside this
range. In this case, it is possible to perform contextual discounting, as described in [86, 87].

1.2.3 Decision Making

Once all pieces of information have been collected and all beliefs have been modeled,
updated and combined, time comes when a decision should be made. Making a decision
consists in choosing a singleton according to a given rule.

Pignistic Probabilities

According to DeGroot (1970) [27], decisions will only be coherent if the underlying un-
certainties can be described by a probability distribution defined on 2. Therefore, the
belief function gathering the available knowledge on the possible value of O should first
be transformed into a so-called pignistic probability (BetP*), on the singletons of (). Then,
the elected singleton is the one that maximizes BetP.

Definition 19. (Pignistic probability) The pignistic transformation may be defined as follows
(See [126, 124] for a justification):

m*(A)

BetP* (w) = A

Nw e Q. (1.40)
ACQ:weA

Example 3. (The murderer (continued)) Consider the Peter, Paul and Mary saga described
in exemple 1 for the last time. The pignistic probability associated with the disjunctive and
conjunctive combination of the two testimonies read:

Isopignistic belief function

The pignistic transform is not bijective. In effect, it often happens that several belief
functions lead to the same pignistic probability, while, in contrast, a given belief function
can only lead to a specific pignistic probability. The set of bba sharing the same pignistic
probability is called a set of isopignistic belief functions. Amongst isopignistic belief
functions, and in the absence of additional information, the least committed one should
always be chosen as a result of the LCP.

Dubois, Prade and Smets [45] demonstrated that the g-least committed mass function
associated with a given pignistic probability distribution BetP is unique and consonant.
It may be recovered from BetP as follows:

pl({w}) = Y min(P, P,), Vie{1,...,n}, (1.41)
j=1
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Suspect my | my | may, | M o), Bei,‘Pl@2 Bei,‘Pl@2

o 0 0 0 0 - -

Peter 0 0 0 0 0.233 0.4

Paul 0 0 0 0 0.033 0.2
Peter or Paul 0 0 0 0 - -

Mary 0 |05 0.5 0 0.733 0.4
Peter or Mary 081 0 0.4 0.4 - -
Paul or Mary 0|0 0 0 - -
Peter, Paul or Mary | 0.2 | 0.5 0.1 0.6 - -

Table 1.4: Pignistic probability associated with the disjunctive and conjunctive combination
rules.
The three suspect’s saga. (* Not Peter, nor Paul nor Mary)

where
e P; = BetP({w;}),

° anlelzlez...ZIPn.

1.3 Continuous Case

1.3.1 Continuous Domain

The above described tools may be extended to the case where the frame of discernment
A is continuous, typically A C R.
Let Z, g) be a set of closed intervals such that:

Tip = {[x,y] ;a <x <y <B}. (1.42)

Z|_co, 400 1 denoted Z. Note that the infinities are included. The focal elements of a
mass of belief m¥ defined on a continuous domain X are elements of I[,X,m, x,p € RU
{—o00, +00}. They are assumed to be closed intervals, so that belief functions are additive
ie.

VA, Ay ... An € I[a,ﬁ] : Aj N Ag 7£ @,(j,k) S {11 o 'ln}zlj 7& k

then (1.43)

.....

An interesting representation (Figure 1.7) of the elements of Z|, g is given by points in
a two-dimensional frame represented by an isocel right-angled triangle T, g, oriented in
such a way that it looks like the upper left hand corner of a square figure. The horizontal
side of the triangle serves as abscissa, and represents the lower bound of an interval, and
the vertical side serves as ordinate, representing the upper bound of an interval. Hence,
any point in the triangle or on the triangle boundaries represents a non-empty interval of
Ziap)- The triangle associated with 7 is denoted T. An interval [x, y] is shown as a point
in Figure 1.7.

1.3.2 Types of Belief Functions Defined on R
Discrete BF on R

Under the constraint that the set of focal elements F(m) of m* is finite, the tools de-
scribed in Section 1.2 directly apply even in the case where X is continuous and X C RR.
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Figure 1.7: Triangular representation of 7, 4.

Abbam?® : X — [0,1] with the property Y/ ; m*(A;) = 1 is a discrete bba on X as
described in section 1.2. Typically, focal elements are chosen among intervals or, more
generally, Borel sets [136, 50, 135, 95]. Denoting m; = m(A;), with Yi' ;m; = 1, and
assuming A; # @ for all i, Equations (1.2)-(1.4) may be rewritten as follows:

bel(A) = Y m (1.44)
A;CA
pl(A) = Y m (1.45)
ANA#£D
and
A;DA

forall A € B(X), where B(X') denotes the Borel sigma-algebra on X

Continuous BF

A more complex generalization of the concepts of section 1.2 is given when the number
of focal elements is not finite any more. In this case, m is no longer a bba but a basic belief
density (bbd): instead of discrete masses defined on points of T, g, a continuous mass
density is defined over the area of T[a,ﬂ] [2,29,123].

A normal basic belief density m* is a density function such that:

x=p ry=p
/ / (x,y)dydx = 1. (1.47)

Normalization is of course not necessary. In order to define a subnormal bba, the
integral of m over Z|, 5 may be allowed to be less than 1, the complement being allocated
to the empty set.

The belief, plausibility, commonality and implicability functions associated with m
can be defined in the same way as in the finite case, replacing finite sums by integrals.
The following definitions hold:

bel (A // (x,y)dxdy, (1.48)
[xy]CA
// (x,y)dxdy, (1.49)

[xyINA#£D
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// (x,y)dxdy, (1.50)

[xy]2A

forall A € B(X). In particular, when A = [x,y],

bel(| / / (1, v)dodu, (1.51)
/ /max (u,v)dodu, (1.52)
= /_xoo /;oom(u,v)dvdu, (1.53)

forallx,y € Zjg o)
The domains of these integrals may be represented as the shaded areas in Figure 1.8.

from

from from a X 3

504 X o) 606 X o) I} /
/ y
“r / t°Iy 4

v : 4

bel pl q

Figure 1.8: Domains of integration for bel, pl and q.

Moreover, m may be recovered from bel or g through:

_ %%el([x,y]) _ 9*q([x,y])
m(x,y) = = dxay - oxoy '

(1.54)

provided these derivatives exist. This recovery process does not lead to any loss of
information.

All other concepts described in Section 1.2 remain valid except that masses become
densities and sums are replaced with integrals. However, the associated mathematics
sometimes become much more complex than in the discrete case.

Special cases

e A vacuous bbd on a continuous domain X = [, f] is a bbd for which m(X) = 1;

e A categorical bbd is such that m™ (a,b) = 6(x —a,y —b), for [a,b] € T}, 5 and [a, b] #
X (where ¢ denotes the Dirac delta function);

o A consonant bbd has nested focal elements;

e A Bayesian bbd is a bbd whose focal elements are singletons, i.e. its possible focal
elements are on the hypotenuse of triangle I|, 5. It is a probability density function.
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Extension to IR”

According to Smets [123], “The real issue underlying the possibility of extending belief functions
on R" is the existence of a finite dimensional real space, the elements of which are in one-to-one
correspondence with the focal elements.”. If all focal elements can be represented as a point
in R? for some d > 0, the theory extends directly. This can be done, e.g., when the focal
elements are convex, closed geometrical figures. However, computations become highly
complex in these cases.

Caron et al. carried out a generalization to R" for the special case of basic belief
densities induced by multivariate Gaussian probability density functions [20].

1.3.3 Belief Updating

The main operations for the updating of beliefs in the continuous case are the same as in
the discrete case. It is therefore possible to marginalize, vacuously extend, condition or
decondition a continuous belief function, to combine two continuous BF conjunctively or
disjunctively, or to apply the GBT to continuous belief functions. The reader is referred
to [123] for more details.

1.3.4 Ordering

The pl-, g- and s- ordering may be defined exactly as in the finite case, i.e.
o If pli(X) < pl(X), VX € X, then my C,; my (pl-ordering);
o if 71(X) < q2(X),VX € &, then my &, my (q-ordering);
e and if m is a specialization of m, then my T my (s-ordering).

The relative properties of the different orderings given in section 1.2.1 still hold.
Based on these orderings, the least commitment principle, a fundamental axiom of
the TBM, still applies in the continuous case, and works as in the discrete case.

1.3.5 Decision Making

As already mentioned in Paragraph 1.2.3, and according to DeGroot [27], decision mak-
ing requires the definition of a (pignistic) probability function that describes the odds in
favour of each possible hypothesis. We will now describe how this can be done in the
case of continuous belief functions.

From m to BetP

Consider a normalized bbd m* describing the belief of agent Ag over the value of a
variable X taking values in X'. Let us define a pignistic density function Betf associated
with m? and the related pignistic distribution BetF. Let us additionaly define BetP as the
pignistic probability of a given event. Then

BetP([a, b)) = /O_o_oo /yoo Wm(x,y)dydx
A

= / / ynb-xva m(x,y)dydx,
=—o00 Jy=aVx

y—Xx

(1.55)

(yAb—xVa)

=1lwhena <x=vy <b.
(y— ) /

where, by continuity, Hbo]l” =0, and
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Moreover,

Betf(a) = lim / 1 m(x,y)dydx, (1.56)
€—=0Jy=—c0 Jy=a+e Y — X

hence

BetP([a, b]) = /a " Betf(x)dx. (1.57)

Remark 5. Betting always requires normalization as no decision can be taken towards the empty
set (a decision towards the empty set would not make sense).

Remark 6. There is no bijection between m™ and Betf, i.e. different bbd may lead to the same
pignistic density function. Such bbds are said to be isopignistic.

From BetP tom

It is important to note that a probability function on a set of real numbers can be inter-
preted in two different ways.

On the one hand, it can be seen as directly representing an agent’s belief about the
values that may be taken by a variable X varying over R (or any subset of R including
the observed values). In this case, a Bayesian belief function is directly observed.

On the other hand, the collected probability function represents the way the agent
would bet about the value of variable X. In that case, the observed function is the
pignistic probability associated with the agent’s beliefs. Again, two sub-cases can be
derived:

e either the number of values that can be taken by X is finite, and the observed values
define a set of constraints over a discrete belief function on a finite domain,

e or X varies over a continuous domain and the observed values define a set of
constraints over a continuous belief function.

In both cases, the least committed belief function satisfying those constraints should be
selected as a working basis.

The solution for the discrete belief function with continuous domain has been de-
scribed in Section 1.2.3, Equation (1.40). Let us consider the case where X varies over a
continuous domain X. The pignistic transform being a many-to-one operation, the least
commitment principle again needs to be applied when m? has to be deduced from Betf.

Generally speaking, Dubois, Prade and Smets [45], demonstrated that, both in the
finite and continuous cases, the g-least committed element of a set of isopignistic be-
lief functions is a consonant belief function. This means that the focal elements of the
sought belief function are nested. The observed pignistic density hence defines a set of
constraints on m®, and an optimization problem needs to be solved, so that g% may be
maximized under those constraints (Recall that the higher g7, the least committed the
belief function). The solution cannot be described simply in the general case.

Nevertheless, Smets [123] demonstrated there exist a simple solution when Betf is a
unimodal, “bell-shaped” density. He showed that the focal sets of m are the level sets of
the density function Bet f. They are intervals [a, b] such that Bet f (a) = Betf(b). Given the
upper bound b of any such interval, the lower bound is uniquely defined by a function 7y
such that a = «(b) for all b > v. The bbd is defined by

m?¥ (a,b) = 6(b)é(a — (b)), (1.58)

with
0(b) = (v(b) — b)Betf'(b), (1.59)
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where Betf’ is the derivative of Betf and J is the Dirac delta function. As already men-
tioned, m* is consonant. Consequently, the associated plausibility function is a possibil-
ity measure. The corresponding possibility distribution 7 is given by:
—+o0
(y(t) —t)Betf'(t)dt ifx>v
(x) = pl({x}) = § “f+o (1.60)
/ (7(t) —t)Betf'(t)dt otherwise.

7

(%)

If Betf is symmetrical, then y(x) = 2v — x, and the above equation simplifies to

+o00
2(x —v)Betf(x) +2/x Betf(t)dt ifx >v

n(x) = (1.61)

2(v —x)Betf(x)+2 /_x Betf(t)dt otherwise.

Example 4. Let fy be the density function of the exponential distribution £ () with mean p > 0:

—x/u ifx >0

1.62
otherwise. ( )

L,
folx; ) = { 5

This is a unimodal density with mode v .= 0, and y(b) = 0 for all b > 0. The corresponding
q-LC distribution may be computed from (1.60). It is equal to

m(x;pu) = /+oo l1?.«3_””6115 (1.63)
7 2 .
x M
—x/p X
e T+ (1.64)

for x > 0and 7t(x) = 0 for x < 0. This function is plotted in Figure 1.9 for different values of .
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Figure 1.9: g-LC possibility distribution induced by an exponential probability density £ (u), for
three different values of y.

Example 5. Now, let fo be the density function of the normal distribution N (u,0*) with mean
u and variance 0%

folw o) = o 127'( P <—2;2(x - ]/1)2> '
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This is a symmetrical unimodal density with mode y. The corresponding q-LC distribution may
be computed from (1.61). It is equal to

7
(X u,0) = 2%137;) (xzfy)z 7

20 oy (— 1Y o (1—<I> (ﬂ)) ifx>p
e exp (— 5k +2d <%> otherwise,

(1.65)

where ® is the standard normal cumulative distribution function.
This function is plotted in Figure 1.10 for y = 0 and three different values of c.

0=0.5
0.9} ~ =1 H
- — 0=2

Figure 1.10: g-LC possibility distribution induced by a normal probability density N (y, o) for
u = 0 and three different values of ¢.

1.4 Predictive Belief Functions (previous works)

In this section, we summarize the concept of Predictive Belief Function (PBF) introduced
in [41]. The problem may be defined as follows. Let T be a random variable varying
over a domain 7. It may be discrete or continuous. Having observed the realization
of an independent and identically distributed iid random sample T = {Tj,..., T,} of
unknown distribution Pr, we would like to be able to represent an agent’s belief about
the realization of a new sample drawn from the same distribution. In other words, we
would like to be able to built a predictive belief function on the value of T.

As a toy example, consider the case where T denotes the color of a ball taken from an
urn containing balls of different colors. Having observed the colors of n balls randomly
taken from the urn with replacement, we would like to quantify our belief regarding the
color of the next ball to be drawn from the urn.

Let belt denote a belief function on 7 constructed using T. In [41], Denceux postulates
that such a belief function should satisfy the following two requirements:

P {belr(A) < Pr(A),YAE T} >1—a, (1.66)
where a € (0,1), and

VA€ Z, belr(A) - Pr(A), asn — oo, (1.67)

where —— denotes convergence in probability and .7 is 27 if 7 is finite, and 7 = B(T)
(Borel sigma-algebra generated by 7) if 7 C R.
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The introduction of these two requirements may be justified as follows. We do not
know the true distribution Pr of T, therefore our knowledge should be represented by
a belief function that is less committed (less informative) than the true distribution Py
of T. However, it is much too stringent to require that bel% < P all the time, as this
would systematically lead to the vacuous belief function. This is why it is only required
that (1.66) be true with some pre-defined probability, i.e. asymptotically, for at least a fraction
1 — « of the samples. This justifies requirement (1.66).

In addition, the precision of our knowledge on the distribution of statistic T depends
on the number of observations we dispose of. Had we observed an infinity of values of
T, we would know its true distribution. According to Hacking’s principle, belt should
thus tend toward the true distribution Pr of T as the number of observation we dispose
of tends to infinity, hence requirement (1.67).

A belief function belt satisfying requirements (1.66) and (1.67) is called a predictive
belief function (PBF) at confidence level 1 — a. Methods for constructing such belief func-
tions in the case of a discrete random variable T with discrete domain were described
by Denceux [41], based on multinomial confidence region. Combining the works of
Ferson [50], and Kriegler and Held [68] permits to built PBF for discrete random variables
with continuous domain. Finally, we introduced a way of building continuous PBF for
continuous random variables with continuous domain [6]. All these techniques will be
discussed in Chapter 2.
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Summary

In this chapter, we show how belief functions can be built from data, considering the
special case where the variable X of interest is defined from the result of a random
experiment. It is thus a random variable, with unknown probability distribution Px.
The available information is assumed to consist in past observations collected from 7 in-
dependent repetitions of the same experiment, forming an independent random sample
from Px. Based on this information, we would like to be able to represent an agent’s
belief about the realization of a new sample drawn from the same distribution. In other
words, we would like to be able to predict what the next observation will be.

In [42], a formalization of this problem was suggested, using the concept of predictive
belief function (PBF). Practical methods for building belief functions were presented for
the case where the domain X of X is discrete, based on multinomial confidence regions.
In the first section, this approach is extended to the case where X is a continuous random
variable. The extension is based on confidence bands, which play a role similar to that of
multinomial confidence regions in the discrete case.

In the second section, another approach is proposed, which may be argued to be more
in line with the the two-level (credal, pignistic) structure of the TBM. The starting point
of this method is the assumption that, if the probability distribution Px of a random
variable X is known, then the pignistic probability distribution associated with the BF
quantifying our belief regarding future values of X should be Px. As many BFs may
satisfy this property, and there is no unique least committed element in the general case,
the suggested solution selects the most committed consonant belief function amongst the
BFs less committed than those verifying this property.

Résumé

Dans ce chapitre, nous montrons comment une fonction de croyance peut étre construite
a partir de données. Nous nous attachons a résoudre le cas particulier dans lequel la
variable d’intérét, X, est définie comme le résultat d’une expérience aléatoire. Il s’agit
donc d’une variable aléatoire, de distribution de probabilité inconnue Px. On suppose
que l'information disponible consiste en une série d’observations collectées au cours
d’une série de n répétitions de la méme expérience, formant un échantillon aléatoire issu
de Px. A partir de cette information, nous montrons comment représenter les croyances
d’un agent vis a vis de futures réalisations de X issues de la méme distribution. En
d’autres termes, nous prédisons la valeur de la prochaine observation.

Dans [42], une formalisation de ce probléme est suggérée, utilisant le concept de fonction
de croyance prédictive. Des méthodes pratiques, basées sur 1'utilisation de régions de
confiance multinomiales, sont introduites pour construire de telles fonctions de croyance
dans le cas ot X est une variable aléatoire discréte.

Dans la premiere section de ce chapitre, cette approche est étendue au cas ou X est
une variable aléatoire continue. Cette extension se base sur I'utilisation de bandes de
confiance, qui jouent un réle similaire aux régions de confiance multinomiales dans le
cas discret.

Dans la seconde section, une autre approche est proposée. Cette derniere peut étre con-
sidérée étant plus en accord que la précédente avec la structure a deux niveaux (crédal,
pignistique) du modéle des croyances transtérables. Le point de départ de cette méthode
est I'hypothése suivante: si la distribution de probabilité Px d’une variable aléatoire X est
connue, alors la distribution de probabilité pignistique associée a la fonction de croyance
quantifiant nos croyances vis a vis de valeurs futures de X doit étre Px. Comme de
nombreuses fonctions de croyance satisfont cette propriété, et que 1I’élément le moins
engagé n’est pas unique dans le cas général, la solution suggérée est de choisir la fonction
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de croyance consonante la plus engagée parmi celles qui sont moins engagées que celles
qui satisfont cette propriété.
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2.1 Introduction

In the past few years, belief functions have been developed as a tool for data fusion, but
also for the management of uncertainty and various aspects of data mining or decision
making (see Chapter 1). They are a very flexible tool even when few data are available.
However, it is not always clear how to obtain belief functions or build them from raw
data.

In this chapter, we will consider the special case where the variable X of interest is
defined from the result of a random experiment. It is thus a random variable, with
unknown probability distribution Px. The available information is assumed to consist
in past observations collected from n independent repetitions of the same experiment,
forming an independent random sample from Px. Based on this information, we would
like to be able to represent an agent’s belief about the realisation of a new sample drawn
from the same distribution. In other words, we would like to be able to predict what the
next observation will be.

There are two possible ways of building such a belief function.

The first method is based on Hacking’s frequency principle [55, 117], which equates
the degree of belief of an event to its probability (long run frequency), when the latter is
known. The second method is based on a weak form of Hacking’s principle, which states
that the pignistic probability of an event should be equal to its long run frequency, when
the latter is known.

This chapter will be divided in two main sections. Each section derives a solution
corresponding to one of the above mentioned two points of view. We will thus introduce
two types of predictive belief functions. The first type will be introduced in the following
section, and the second type will be introduced later.

2.2 Type I predictive belief functions

Let us consider the first interpretation. As the probability distribution of X is unknown,
the available information is incomplete and the precision of the obtained belief function
should depend on the number of observations. In [42], a formalization of this problem
was suggested, using the concept of predictive belief function (PBF). A PBF was defined in
Section 1.4 as a belief function less committed than Px with some user-defined probabil-
ity, and converging in probability towards Px as the size of the sample tends to infinity.
Practical methods for building belief functions were presented for the case where the
domain X of X is discrete, based on multinomial confidence regions.

In this section, the above approach is extended to the case where X is a continuous
random variable. The extension is based on confidence bands, which play a role similar
to that of multinomial confidence regions in the discrete case. When a confidence band
is defined by step upper and lower bounding functions, it is known to be equivalent to
a belief function on the real line with a finite number of focal intervals. We first show
that this belief function is a predictive belief function as defined in [42]. We then consider
the generalization to continuous confidence bands. In that case, the corresponding belief
function is continuous, and we derive the expression of its basic belief density.

The section is organized as follows. First, a definition of confidence bands is given,
and the construction of confidence bands of particular interest are detailed. Then, the
solution of the problem of building a discrete PBF on a discrete domain is recalled. Next,
it is shown that the least committed belief function (LCBF) built from a step confidence
band as described by Kriegler and Held [68] is a discrete PBF on a continuous domain.
The approach is finally extended to the construction of a continuous PBF on a continuous
domain.

The results presented here were first published in [6] and [7].
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2.2.1 Confidence Bands
Definition

Let us assume that X is a random variable with cumulative distribution function (cdf) Fx.
In some cases, Fx is not precisely known, but a lower bounding function F : R — [0, 1]
and an upper bounding function F : R — [0, 1] can be specified such that F(x) < Fx(x) <

F(x) for all x € R. The convex set of probabilities compatible with these constraints,
I'x(E, F) = {P|Vx € R, F(x) < P((—o0,x]) < F(x)}, (2.1)

is called a distribution band [68].

In the special case where F and Fare step functions, then I'x(F, F)is called a probability
box*, or p-box for short [50]. A continuous distribution band can always be enclosed in a
p-box. The smallest discrete approximation is always obtained by choosing the lower and
upper bounding step functions to be right and left-continuous, respectively [50]. From
now on, only p-boxes possessing this property will be considered.

Suppose now that the available information about Fx takes the form of an iid random
sample X = (X,...,X,) with parent distribution Fx. Let F(-;X) and F(-;X) be two
functions computed from X and such that F(;;X) < F(-;X). The distribution band
Tx(E(+;X),F(-;X)) is called a confidence band at level « € (0,1) [72, page 334] iff

P {F(x;X) < Fx(x) < F(x;X), Vx e R} =1 —u, (2.2)

or, equivalently: B

IP{PX eIy (E(-;X),F(-;X))} =1-—a. (2.3)
Note that, in the above equalities, Fx and Px are fixed unknown functions, whereas
F(-;X) and F(+;X) depend on random sample X.
Kolmogorov’s Confidence Band

An entirely non-parametric confidence band on a sample’s cumulated distribution func-
tion of a statistic X can be built through Kolmogorov’s statistic D,. The value of D,
represents the supremum of the difference between the estimated and actual cdf at a
confidence level a and is defined as

Dy = sup |Sn(X; X) - Fx(X)|, (24)

where S, (+; X) is the sample cumulated distribution function defined by

0, x < X(])
Sn(;X) = ¢ k/n, Xy <x < Xy (2.5)
L, Xu<x

for all x € R, where X(l) < X(z) <...< X(n) denote the observations sorted in increasing
order.

The distribution of D, is totally independent from the reference cdf. It only depends
on the size of the set of data that was used to build the estimated cdf, and is actually
inversely proportional to the sample size n. Thus, the bigger the set of data, the more
precise the estimation of the cdf and the narrower the confidence band.

1Ferson et al. [50] actually used the term “p-box” as a synonym to “distribution band”. However,
following Kriegler and Held [68], we prefer to reserve the term “p-box” for the important case where the
bounding functions are step functions.



2.2. TypelPBF 39

The distribution of D, was computed for fixed n by Kolmogorov [67], who also
computed the asymptotic distribution of D,. Let d,, denote the (1 — a) percentile of
D, (defined as P(D,, > d,, ,) = ). Thus,

P{S,(x;X) —dpa < Fx(x) < Sp(x;X)+dpa, VX ER} =1—u0, (2.6)

which implies that S, & d,,, defines a confidence band at level 1 — « [63, page 481]. This
band may be narrowed by using the inequalities 0 < Fx(x) < 1 for all x. Hence,

F(x;X) = max(0,S,(x;X) —dnu), (2.7)

F(x;X) = min(1,S,(x;X) +dna). (2.8)
If the support of X is bounded and known to be included in [b, B], then the above bounds
can be further narrowed.

Note that S, (+; X) —as defined by (2.5)- and, consequently, both E(+; X) and F(-; X), are
right-continuous step functions. However, F(-;X) can be replaced by the left-continuous
function f/(- ; X) taking the same values everywhere except at sample points, defined as
F'(x;X) = limy_,- E(i;X). The pair (E,F') still defines a confidence band at level 1 — g,
that is to say,

P {PX € rX(E,F’)} —1-u (2.9)

Example 6. The data reported in [109] consists in the operational lives (in hours) of 20 bearings.
These are 2398, 2812, 3113, 3212, 3523, 5236, 6215, 6278, 7725, 8604, 9003, 9350, 9460, 11584,
11825, 12628, 12888, 13431, 14266, 17809. Here, the variable of interest, denoted X (the lifetime
of a bearing), has a lower bound b = 0 and no upper bound (B = o). Figure 2.1 shows the sample
cdf of this data, together with the lower and upper bounding functions defining the Kolmogorov
confidence band at level 1 — a = 0.95.

Nevertheless, Kolmogorov’s confidence bands lead to a pair of step functions, which
are obviously not the best confidence bounds that can be set around a continuous cdf.
Furthermore, Kolmogorov’s statistic is well known to be very conservative, and thus
leads to wider confidence bands than necessary.

Various authors [23, 108, 91, 73, 59, 62, 24] provide ways of building what we may
term “continuous confidence band” (i.e. confidence bands without points of discontinuity)
with good properties (for the goodness of a confidence band see [60]). The construction of
non-parametric continuous confidence bands may be based, e.g., on bootstrap prediction
[24, 4, 60].

However, when reasonable assumptions can be made about the distribution of the
data, parametric confidence bands are generally narrower and thus less conservative than
non parametric confidence bands.

Cheng and Iles” Parametric Confidence Bands

Methods for the construction of parametric continuous confidence bands were proposed
by several authors, including Kanofsky and Srinivasan [61] and Cheng and Iles [23].

Of particular interest is the solution provided by Cheng and Iles [23] for the construc-
tion of confidence bands around functions of the location-scale family of mean y and
standard deviation ¢. Their method, which will be used later to demonstrate the main
findings of this section, will briefly be recalled in the sequel.

Let us assume that X is a continuous random variable with cdf Fx(x,0), where 6 is a
vector of r unknown parameters. Cheng and Iles’ approach consists in determining lower
and upper bounds of the cdf when 6 varies in a confidence region R. This confidence
region is built from the statistics

Q(0) = (6 -0)"1(6)(6 - 0), (2.10)
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Kolmogorov confidence band
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Figure 2.1: Sample cdf S,, and Kolmogorov confidence band at level 1 — & = 0.95 for the bearings
data.

where 8 is the maximum likelihood estimate of §, and I (0) is Fisher’s information matrix.
It is known that Q(0) is asymptotically a chi-squared variable with r degrees of freedom.
In [23], Cheng and Iles apply their method in the case of a general location-scale para-
metric model of the form:

o

FX(x)zc(x_”>, (2.11)

where G is a fixed distribution function, and y and ¢ are the unknown location and scale
parameters. In that case Fisher’s information matrix is of the form

n k —k
I(u,0) = Uz( _,21 kzl ) (2.12)

where ko, k1 and k, are constants independent of ;1 and ¢. The bounds of the confidence
band may then be expressed as follows:
f(x) =G(C+h), (2.13)
E(x) =G(¢—h), (2.14)

where §{ = (x — i) /0, ji and 0 are the maximum likelihood estimates of y and ¢, and

N (koG + k1)?
h= \/nko (1+ . > (2.15)

Coefficient v is the value for which P(Q(p,0) < 7) = 1 — a. It can be approximated
by the chi-squared quantile x4(«). Cheng and Iles [23] demonstrated the application of
these formula for the cases of the normal, lognormal, extreme-value (log-Weibull) and
Weibull distributions. In the case of the normal distribution, kg = 1, k; = 0, and k, = 2.
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Example 7. This method was applied to the bearings data of examples 6 and 8 for computing
a continuous predictive belief function. As in [23], we assumed these data have a lognormal
distribution. Figure 2.2 shows the 95 % confidence band and the estimated cdf.

X x 10*

Figure 2.2: Continuous confidence band and cumulative density function estimated through
Cheng and Iles’ algorithm.

We will first describe how to build a discrete belief function from multinomial confi-
dence intervals. We will then introduce a method for building discrete PBF on IR, based
on Kolmogorov’s confidence bands, and a method to built continuous PBF on R, based
on Chend and Iles’ confidence bands.

2.2.2 Discrete predictive belief function on a discrete domain

In [41], Denceux provides a solution to the predictive belief function problem (defined in
Section 1.4) in the case of discrete random variables, based on Goodman’s simultaneous
confidence intervals, which we simply recall in this section. He suggests multinomial
confidence regions be used for the building of a belief function fulfilling requirements
(1.66) and (1.67).

Given an iid sample {x,---,x,} of a discrete random variable X taking values in
X ={C1, - ,Ck}, let Ny = 1. ¢(x;) denote the number of observations in category
k. The random vector N = (Nj, - - - , N ) has a multinomial distribution with parameters
nand p = (p1,- -+, px), with pr = P().

Additionnally, let S(N) be a random subset of the parameter space

K
k=1

S(N) is said to be a confidence region for p at confidence level (1 —«),if P(S(N) > p) >
1—a.
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Such a confidence region S(N) may be seen as defining either a set of plausible values
for the vector parameter p, either a family of probability measures, given that each value
of p specifies a unique probability measure of X.

Let P and P denote, respectively, the upper and lower envelopes of S(N) = [P;; P1] x
[Py; P3] X - -+ X [Pg; Pk]. P and P can be computed using:

P(A) = max ( Z P, 1— Z Pk> ; P(A) = min < Z P, 1 Z Pk> . (2.17)

freA CkEA freA CkEA

Denceux proved that P satisfies requirements (1.66) and (1.67) and is a predictive
belief function for X in the cases where K = 2 or K = 3. On the other hand, if K > 3,
P may not be a belief function. It is therefore necessary to look for the most committed
belief function amongst those less committed than P. Any function bel solution of

max ( ) bel* (A > = max (2k22_‘3|mX(B)) (2.18)

ACX m¥

under constraints:

Y m*(B) < P (A),VACA, (2.19)
BCA

Yy m*(A) =1, (2.20)
ACX

and m*(A) > 0,VACX, (2.21)

satisfies requirements (1.66) and (1.67), [41]. This solution is valid for any number of
cases (K > 2) with the drawback that both the numbers of variables and constraints
rapidly grow with K.

2.2.3 Discrete predictive belief functions on R

We will now address the construction of a discrete predictive belief function from a step
confidence band.

Predictive Belief Function Induced by a Kolmogorov Confidence Band The method
described in Section 2.2.1 for constructing a confidence band yields a pair of lower and
upper step functions, i.e., a p-box. The relationship between p-boxes and belief functions
has been studied by several authors [136, 50, 130]. Recently, the exact correspondence
between p-boxes with bounded support and discrete belief functions was proved by
Kriegler and Held [68], who also proposed an algorithm for the rigorous construction
of a discrete mass function m on R equivalent to a p-box.
Let the bounding step functions F and F be defined as follows :

E(xi) % < x<Xuip1 f(x;ﬁrl) x}“ < x< x]“-jrl
F(x)=4 0 X< Xy F(x)=¢ 0 x< X , (222)
1 Xsn S X 1 x:n <X

where the x,; are the points of discontinuity of F sorted in increasing order so that x,; <
X2 < ... < Xsp and the x7 are the points of discontinuity of F sorted in increasing order
sothatx] < x5 <...<xj.

The algorithm is the following.

Algorithm 1. Let:
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e index k run over the focal elements of the random set to be constructed;

index i run over x;;

index j run over x;‘ ;

px denote the cumulative probability already accounted for at step k;

the tuple {¢,m} = {(A1,m1),- -, (An, my)} denotes the set of focal elements Ay = (a, b|
of the predictive belief function with their associated basic belief assignments.

Iterate:
1. Initialize: k =1,i =1, ] = 1, and assign po = 0;
2. Construct focal element Ay = (x7, x.l;

*

3. (a) Ifj = m choose arbitrary x};, ., > xy,, thus F(x},. ;) =1,
(b) else if E(x,i) < f(x;‘+1): my = F(x4) — pr—1, px = E(x4;). Raise indices k —
k+1,i — i+ 1. Return to step 2.
(c) else if F(x.i) > F(xjq): me = F(x{\4) — pk—1, px = F(xj;). Raise indices
k — k+1,j— j+1. Return to step 2.

(d) else if F(x.;) = F(x},q): m = F(x}yq) — pe-t.

i. If F(x,) (x}k+1) = 1,stop.
ii. If E(x) (x]’fﬂ) < 1,set pp = f(x]*fﬂ). Raise indicesk — k+1,j — j+1,
i — i+ 1. Return to step 2.

=TF
=F

For each step k, x]’f < x,jsince F < F,and m; > 0since F and F are monotonly increas-
ing. The algorithm will always reach points Xy, x},_; with F(x,,) = F(x},,,) = 1 and
stop, thus returning the least-committed belief function associated with the confidence
region defined by F and F (this property is demonstrated in [68]).

The principle of this construction is illustrated in Figure 2.3. The lower and upper
bounding functions are assumed to be right and left continuous, respectively. Each
rectangle A; in this figure corresponds to a focal interval [a;,b;), with mass m(a;, b;) =
di — Cj.

Let I'x(bel) denote the set of probability measures compatible with bel, the belief
function induced by m, i.e.,

Tx(bel) = {P|bel(A) < P(A),VA € B(R)}. (2.23)

Kriegler and Held [68] proved that (F, F) and bel are two equivalent representations of a
unique family of probabilities, i.e.,

I'x(bel) = Tx(E,F). (2.24)

If bel and p! denote the corresponding belief and plausibility functions, and if P and P
denote the lower and upper envelopes of I'x(F, F), then bel = P and pl = P. In particular,
bel ((—o0,x]) = E(x) and pl((—o0,x]) = F(x) forall x € R.

Note that, although Kriegler and Held only considered the case of p-boxes with bounded
support, their algorithm and results may be applied directly to the case of p-boxes with
unbounded support.

Let us now consider the case where F and F are the lower and upper bounding

functions of Kolmogorov confidence band at level 1 — «, as defined by (2.7)-(2.8). Let

bel(;X) denote the belief function on R constructed from p-box (F,F') using Kriegler
and Held’s algorithm. The following proposition holds.
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Figure 2.3: Principle of the construction of a basic belief assignment from a p-box.

Proposition 1. bel(-;X) is a predictive belief function at level 1 — a.

Proof. We need to show that bel(-; X) satisfies requirements (1.66) and (1.67).
First, requirement (1.67) is obviously satisfied as a direct consequence of (2.9) and

(2.24): since T'x (bel (;; X)) = Tx(F,T),
P{bel(A;X) < Px(A),YA € A} =P{Px € T'x(bel(;X))} =1—a. (2.25)
Let us now consider requirement (1.66).

We know that S, (x) P, Fx(x) for all x € R, as n — oo and lim, e d;s = 0.

Consequently, F(x) N Fx(x)and T (x) N Fx(x) forall x € R, as n — oo.
Now, as a consequence of Proposition 2.24,

bel(A;X) = inf P(A), VA€ B(R). (2.26)
Pelx(f.f)

Let us show that bel(A; X) N Px(A) for all interval A:

o bel(;X)((—o0,x]) = f(x) —= Fx(x) forall x € R;

o bel(;X)((x,400)) =1—pl(;X)((—o00,x]) = 1—7(x) £, 1—Fx(x) = Px((x,+0));

o bel(X)((x,y]) = max(0, f(y) — f (x)) —= Fx(y) — Fx(x) = Px((x,y]), for all
xv,yeR, x<y;

o bel(;X)((x,y)) < bel(;X)((x,y]) only if y = x; for some sample point x;; as this
event has probability zero, bel(;X)((x,y)) = bel(-;X)((x,y]) (Where = denotes
almost sure equality) and, consequently, bel (-; X)((x,y)) L, Px((x,y));

e Similarly, bel (-; X)((—o0,y)) = bel(-;X)((—o0,y]) and, consequently,

bel(;;X)((—00,y)) == Px((—o0,y)), Yy €R; (2.27)
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e By construction, no focal element of bel(-;X) can be reduced to a point; conse-
quently:

bel(;X)([x,y]) = bel(;X)((x,y]), Vx,y e Rx <y,
bel(; X)([x, +00))) = bel(;X)((x,+)), VxeR,
bel(;X)([x,x]) = 0=Px([x,x]), VxeR.

Now, any borel set B € B can be written as B = |J;c; A, for a countable family of intervals
(Aj)ier with I € N, such that A; U A; is not an interval, for all 7,j € I. With such a
decomposition,

bel(-;X)(B) = Y_bel(X)(A;) — Y Px(A;) = Px(B), (2.28)

iel i€l
which completes the proof. O

Example 8. In order to illustrate the construction of a predictive belief function from a Kol-
mogorov confidence band, let us consider again the data of Example 6. Based on this data, we
would like to express our beliefs regarding the lifetime X of a new bearing taken randomly from
the same population. For commodity of representation, let us adopt the reasonable assumption
that X has an upper bound, which will arbitrarily be set to 30000, so that the support of X is
assumed to be [0,30000].

Focal intervals
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Figure 2.4: Focals intervals of the PBF constructed from the Kolmogorov confidence band at level
1 —a = 0.95 (bearings data).
The height of each segment representing a focal interval equals the cumulated mass allocated to
intervals whose lower and upper bounds are, respectively, smaller than the lower and upper
bounds of the considered interval.

The focal intervals of the corresponding PBF bel (-; X) are displayed in Figure 2.4. Figures 2.5
and 2.6 are examples of graphical displays that reveal different aspects of the information contained
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in the belief function bel (-; X). Figure 2.5 shows the plausibility profile function x — pl({x};X)
and the pignistic probability density function Betf computed from (1.40), which are two left-
continuous real-valued step functions with simple interpretation. Figure 2.6 shows grey level
representations of bel([x,y|; X), pl([x,y]; X) and q([x,y];X) as two-dimensional functions of

(x,y).
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Figure 2.5: Plausibility profile function (left) and pignistic probability density function (right) of
the discrete PBF constructed from the Kolmogorov confidence band
(Bearings data).

Random Set Interpretation The bba m associated with a p-box (F, F) may also be shown

to formally correspond to a random set [3]. Let F~! and F ' be the pseudo-inverses of F
and F defined, respectively, as:

Fl(a) = inf{x € R, F(x) > a}, (2.29)

F '(#) = inf{x € R, F(x) > al, (2.30)
forall @ € [0,1]. Let us consider the mapping p from [0, 1] to the set of real intervals, such

that p(a«) = (F *1(04),f71(zx)], and let us consider the uniform probability distribution
Py on [0,1]. Then p is a random set, and it is formally equivalent to m. Let F =

{(E_l(a),f_l(uc)],a € [0,1]}. Forall A € F,
m(A) = Py(p~1(A)). (2.31)

Note that the uniform probability distribution on [0,1] and the mapping p are only con-
sidered here as mathematical constructs. In the TBM, only belief functions have an
interpretation, and an underlying multi-valued mapping is not assumed. However, the
random set point of view will guide us in the following section to propose a generaliza-
tion of the above results in the case of continuous distribution bands.

2.24 Continuous predictive belief functions on R

As already mentioned, Kolmogorov’s confidence bands have the advantage of being
exact and non-parametric. However, they have a constant width, which makes them
unnecessarily broad in the tails. As a result, the equivalent belief functions may be
excessively imprecise. Narrower confidence bands can be computed using parametric
methods as shown in Section 2.2.1, but they are defined by continuous bounding func-
tions. The usual approach to continuous distribution bands is to approximate them using
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Figure 2.6: Contour plots of functions bel(-; X)([x,y]), pI(; X)([x,y]) and q(-; X)([x, y])
constructed from Kolomogorov’s confidence band
(Bearings data).
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a p-box [50]. Here, we show that this approximation can be avoided, and a continuous
predictive belief function on R can be constructed from a continuous confidence band,
thus providing an extension to the results presented in the previous section.

PBF Induced by a Continuous Confidence Band

Let I'x(F, F) be a continuous distribution band for some continuous random variable X,
and assume that the lower and upper bounding functions F and F are strictly increas-
ing. Consider the mapping p from [0,1] to the set of real intervals, such that p(a) =
[F~1 (zx),ffl (w)], where F~! and F " are the inverses of F and F, respectively. If the [0, 1]
interval is endowed with a uniform probability distribution, then mapping p defines a
random set, which corresponds to a continuous belief function bel on R as described in
Section 1.3.2. In other words, a continuous confidence band is formally equivalent to
a continuous belief function on R, which provides a continuous extension to the results
presented in [68] and recalled in Section 2.2.3. As a consequence, a continuous confidence
band constructed using, e.g., the parametric method of Cheng and Iles summarized in
Section 2.2.1, is equivalent to a continuous predictive belief function.

As we are working within the TBM, the above random set is for us a purely math-
ematical construct, and we would like to express bel directly through its bbd m(x,y),
x < y. Hence, we will show that this belief function is such that bel([x,y]) = P([x,y])
for all x < y, P being the lower envelope of the distribution band. This can be achieved
using (1.54). However, it requires a little preparation work.

Let I'x(F, f) be a continuous distribution band for some continuous r.v. X, and let P
denote its lower envelope defined as:

P(A)= inf P(A), VA e B(R). (2.32)
PETx(EF)

We want to show that P is a belief function. For that purpose, let us start with the
following lemma.

Lemma 1.
2p([x _ _
TS~ Fwsweem) - F), 239
= —fx)sy—E o F(x), (2:34)
= —fW)(x—F "o EWy)), (2.35)

where f and f are the first derivatives of F and F, respectively, and ¢ is the Dirac delta function.

Proof. By definition,

P([x,y]) = max(0,E(y) - F(x))

where H is the Heavyside function. Consequently,

W = —f(x) (H(E(y) = F(x)) + (E(y) — F(x))6(E(y) = F(x))), ~ (236)
and
PP(xyl) _ 7

ey = T () (W) ~F@)F) + £ ()o(Ely) ~Fx))+
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Now, from the property of the delta function: x¢'(x) = —d(x), Vx, we get:

(E(y) = F(x))d"(E(y) — F(x)) = =¢'(E(y) — F(x))- (2.38)

Consequently, (2.37) is equivalent to (2.33).
In order to prove that (2.34) and (2.35) can be deduced from (2.33), we shall use the
following property of the delta function: For all function g,

Z 7 Olx— xl (2.39)

where the x; are the roots of g. For fixed x, (F(y) — F(x)) is a function of y with a unique
root (F~1 o F(x)). Hence,

fE)fW)(E(y) —F(x)) = f(0)f(y) =

Equation (2.35) can be deduced from (2.33) in a similar way, by fixing y and treating
(E(y) — F(x)) as a function of x.
O

As a consequence of (1.54), Lemma 1 tells us that, if P is a belief function, the corre-
sponding bbd should be

m(x,y) = f(x)f(y)d(E(y) — F(x)). (2.40)

The following proposmon states that this is actually the case. (Additionally, it can be
checked that / / m(x;y)dxdy = 1 hence m is a bbd).

—00

Proposition 2. The lower envelope P of a continuous confidence band I'x (E, F) is a continuous
belief function with basic belief density

m(x,y) = f(x)f(y)3(E(y) —F(x)) (2.41)
= f(x)é(y—F'oF(x)), (2.42)
= f(y)é(x—F 'oF(y)), (2.43)

Proof. Let us first show that P(A) = bel(A) for all interval A. First, consider the case of a
closed interval A = [x, y].
By definition, the belief function associated with bba (2.42) is:

bel([x,y]) = / / f 1o F(u))dodu (2.44)
u=y

The integral with respect to v equals

- o = B
/v yé(v— _1OF(u))dv:{ 1, ifE OF(“)S]/@MSF
v

0, otherwise.

lay
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Consequently,

=X -

uziiloi( ) _ .
pel(l]) { / FloF(y f(u)du ifF 1o£(y) > x < F(y) > F(x), (2.47)

0, otherwise.
max(0, E(y) — F(x)) (2.48)
= P([xy]). (2.49)

By letting x tend to —oo, we get bel((—co,y]) = F(y) = P((—o0o,y]). Similarly, by
letting i tend to +o0, we get bel([x, +o0]) = 1 — F(x) = P([x, +0)). It can easily be
checked that the equality bel(A) = P(A) holds for any half-closed or open interval A.
For instance,

bel((xy) = /uuz /vv:,y f(w)s(v —F~" o F(u))dvdu (2.50)
N /uu;i f(u) ( /:7 S(o—FE "o F(ﬁ))dv> du, (2.51)

and

v=1y" . -1 _+ —=—1
/ y 5(v _ ! o F(u))dv = { 1, ifF o'F(u) <ysu<F oF(y), (2.52)
v 0, otherwise.

Consequently,

u:fflog(y)* R -
bel((x,y)) = {/ f(u)du ifF ~oE(y) = x < E(y) =2 F(x), (253)

0, - otherwise.
= max(0,E(y) — F(x)) (2.54)
= P([x,y]). (2.55)
O

It can be checked that (2.48) may be recovered from m(x, y) using (1.51). Similarly, the
expressions of pl([x,y]) and g([x, y]) can be obtained from m(x, y) using (1.52) and (1.53).
The following proposition holds.

Proposition 3. Let m be the bbd associated with a continuous distribution band (F,F). The
belief, plausibility and commonality of any real interval [x,y] are given by:

bel([x,y]) = max(0, E(y) — F(x)), (2.56)
pl([x,y]) = F(y) — E(x), (2.57)
q([x,y]) = max(0, F(x) — E(y)). (2.58)

Proof. The proof of (2.56) is given by (2.44) to (2.48). Let us prove (2.58).

q(lxy]) = /xoo/y+oom(u,v)dvdu
-/ xoof(u)l(u)du,

with oo
I(u) = / 5 (v—F"oF(u)) do. (2.59)
Y
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Now, I(u) = 1if F Yo F(u) > y,ie. ifu > ' o F(y), and 0 otherwise. Hence g([x,y]) =
0ifT o F(y) > x,i.e., if E(y) > F(x); otherwise,

e = [, Food =)~ Ely). (2:60)

The proof of (2.57) is similar. O

In addition to this formal proof, a fairly intuitive justification of expressions (2.48),
(2.57) and (2.58) may be found in Appendix B.

Remark 7. From (2.56) and (2.57), it can be checked that bel ((—oo, x]) = F(x) and pl((—o0, x]) =
F(x), forall x € R.

Finally, the expression of the pignistic probability density associated with bbd m is
given by the following proposition.

Proposition 4. Let m be the bbd associated with a continuous distribution band (F,F). The
associated pignistic probability density Betf is given by

e | O
Bet f(x) = /f o ETo R 2.61)
Proof. From (1.56), we get
Betf(x) = lins ' J(u)du, (2.62)

with

too 6 (v —F! Of(u))

—+e 0o—u

do

Jw) = F) [

_ {Flc{éz‘i)_u if F'oF(u) >x+e
0

otherwise.

The condition F~! o F(u) > x + € can be expressed as u > F ' oF(x+e), hence

Betf(x) = lim ’ ¢du
0 JF oF(xte) F 1o F(u) —u
u

= /x Ldu.

Flor(x) F 1o F(u) —u
O

The above results are valid for any continuous distribution band (F, F). When (E, F)
is a confidence band at level 1 — «, then it is easy to see, using the same line of reasoning
as in Section 2.2.3, that the corresponding belief function is a predictive belief function at
level 1 — a.

Example 9. The plausibility profile function x — pl({x}; X) obtained from the confidence band
shown in example 7 is shown in Figure 2.7, and contour plots of bel([x, y]; X), pl([x, y]; X) and
q([x, y]; X) are shown in Figure 2.8. These figures should be compared to Figures 2.1, 2.5 and 2.6,
respectively.
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Plausibility profile function
0.45 T

0.4

0.35

0.3

pI(x)

0.2

0.15

0.1

0.05

Figure 2.7: Plausibility profile function obtained from the continuous confidence band of Figure
22.

Figure 2.8: Contour plots of functions bel([x, y]; X), pl([x,y]; X) and q([x, y]; X) constructed from
Cheng and Iles’ confidence band.
(To be compared with Figure 2.6.)
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2.2.5 Conclusion

In this section, we demonstrated how to built a predictive belief function from raw data.
We first recalled Denceux’s solution for the construction of a discrete predictive belief
function with discrete domain [42], based on multinomial intervals. We then addressed
the problem of constructing predictive belief functions as defined in [42], in the case
where the random variable X is continuous. We showed that such belief functions can be
constructed from confidence bands. We demonstrated that Krigler and Held’s algorithm
for constructing a discrete BF with a finite number of interval focal sets leads to a predic-
tive belief function when applied to a Kolomogov confidence band. We then presented an
original way of building a continuous predictive basic belief density from a continuous
parametric confidence band. These belief functions are interpreted as quantifying our
belief in future realizations of X, based on a realization of a random sample from the
same distribution. An application of these results to classification is given at the end of
this chapter, and an application to novelty detection is described in Chapter 4.

The above work is based on Hacking’s frequency principle [55, 117], which equates
the degree of belief of an event to its probability, when the latter is known. As mentioned
in the introduction, we may require instead that a weaker form of Hacking’s principle
be satisfied, which states that the pignistic probability of an event should be equal to its
long run frequency, when the latter is known. This other point of view will be presented
in the next section.
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2.3 Type Il predictive belief functions

In this section, a new method for building a BF from raw data is introduced. A first
approach to this problem was presented in [42] and Section 2.2 in the cases of discrete and
continuous distributions, respectively, and a similar approach in the context of Possibility
Theory was presented in [81]. However, the TBM [126, 122] is a two-level mental model
in which the beliefs held by an agent are represented at the credal level by belief functions
[113], whereas decision making is based on probability distributions and takes place at
the pignistic level [124]. The new solution presented here is more in line with this two-level
structure of the TBM.

More precisely, the problem considered in this section can be described as follows.
Let X be a random variable with unknown probability distribution Px. We would like
to quantify the beliefs held by an agent about a future realization of X from past inde-
pendent observations Xj, ..., X;; drawn from the same distribution. In [42], it was argued
that a belief function bel(+; Xy, . . ., X,;) solution to this problem should meet requirements
(1.66) and (1.67).

In the approach presented in [42] and in Section 2.2, the above-mentioned two re-
quirements are derived from Hacking’s frequency principle [55, 117], which equates the
degree of belief of an event to its probability (long run frequency), when the latter is
known. The relevance of Hacking’s principle, however, can be questioned. For instance,
consider the result X of a coin-tossing experiment, with X € {H, T}, where H and T
stand for “Head” and “Tail”, respectively. If the coin is known to be perfectly balanced,
then Px({H}) = Px({T}) = 0.5. If asked about our opinion regarding the result of the
next toss, should we necessarily assign a degree of belief 0.5 to the event that this toss will
bring a “Head”? This requirement seems difficult to justify. However, if we are forced
to bet on the result of this random experiment, then it seems reasonable to assign equal
odds to the two elementary events.

In the TBM, degrees of chance are not equated with degrees of belief: as emphasized
above, decision making is assumed to be handled at the pignistic level, which is distin-
guished from the credal level at which beliefs are entertained [126, 124]. The pignistic
transformation converts each belief function bel into a pignistic probability distribution
BetP that is used for decision making. As a consequence, the use of Hacking’s principle
may be replaced by the weaker requirement that the pignistic probability of an event be equal
to its long run frequency, when the latter is known. Coming back to the coin example, this
requirement leads to the constraint BetP({H}) = BetP({T}) = 0.5, which defines a set of
admissible belief functions. Within this set, the Least Commitment Principle (LCP) [116]
dictates that the least committed one (i.e., the least informative) should be chosen, which
leads here to the vacuous belief function.

In the above coin-tossing example, the probability distribution of X is assumed to be
known. In this section, we consider a more realistic situation, where only partial infor-
mation is available about this distribution, in the form of a random sample Xj, ..., X,.
In that case, it is possible to construct a set P of possible probability distributions for
X defined, e.g., by a parametric confidence region. A natural extension of the line of
reasoning suggested in [42] is then to require that bel be less committed than any belief
function whose pignistic probability distribution is in P. This leads to the definition of a
set of admissible belief functions, among which the most committed can be chosen. This
is the principle of the approach presented in this section.

The rest of this section is organized as follows. First, the proposed approach will be
formalized. It will then be applied to the case of a discrete r.v., and to continuous para-
metric models. In particular, the exponential and normal distributions will be treated.
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2.3.1 Consonant Belief Function Induced by a Set of Pignistic Probabilities

In the case where the pignistic distribution is know exactly, the solution was given by
Dubois, Prade and Smets in the discrete case (see Equation (1.41) in Section 1.2.3), and by
Smets in the continuous case (see Equation (1.58) in Section 1.3.5).

What if the pignistic probability is not known exactly? Let us suppose we only
dispose of a set of realizations of a random variable drawn from the pignistic probability
distribution or density, and we would like to calculate the least-committed belief function
associated with the pignistic probability described by these observations. Our problem
then decomposes in two subproblems :

1. The set P of admissible pignistic probability distribution underlying the variables
first needs to be determined;

2. then, the associated least committed belief function should be deduced from P.
However, P does not necessarily have a unique LC element. Consequently, the
most committed element of the set of BF less committed than those in P should be
selected.

Let us assume that the pignistic probability distribution Py of an agent is only known
to belong to a set P of probability distributions and we seek to approximate the agent’s

bba my. The problem is underdetermined, as we can only say that m belongs to the set
M(P) = Bet~!(P) defined by

M(P) = {m]| Bet(m) € P}
U M(P),

PeP

where M(P) = Bet~!(P) denotes the set of bbas whose pignistic probability distribution
equals P (see Figure 2.9).

According to the LCP, mg should be approximated by a bba m* less committed than
mp, with respect to some ordering C. In general, the set M(P) does not contain a LC
element. However, we may define the admissible set M*(P) as the set of bbas dominating
(i.e., less committed than) all bbas in M (P):

M (P) ={m' |mCm',Ym € M(P)}. (2.63)

It is then natural to choose m* as the most committed element in M*(P), if this element
exists. The solution of this problem is not obvious in the general case. However, a simple
solution can be found if we restrict the search to the subset C*(P) C M*(P) of consonant
bbas less committed than all bbas in M (P), and we consider the g-ordering.

Forall P € P, let mp = Bet;}(P) be the ¢-LC isopignistic bba induced by P. It is
consonant. Let 7tp denote the corresponding possibility distribution. Bba mp is the g-
least committed bba in the set M (P) of bbas whose pignistic probability distribution is
P. Consequently, a consonant bba m belongs to C*(P) if and only if it is g-less committed
than mp, for all P € P, ie, for all mp in M(P). In other words, a consonant bba m belongs
to C*(P) if and only if

np <71, VPeP,

where 7t is the possibility distribution associated with m. It follows that the g-most
committed element in C*(P) is defined by the following possibility distribution

" (x) = sup tp(x), Vx e X. (2.64)
PeP

Possibility distribution 77* will be termed the g-most committed dominating (g-MCD)
possibility distribution associated with P. The corresponding bba will be denoted m*.



56

Chapter 2. From raw data to BF

More committed

Less committed

Credal level

Pignistic level

Figure 2.9: Definition of the g-most committed dominating (3-MCD) bba m* associated with a set
P of probability distribution.
The set M (P) contains all bbas with pignistic probability function in P. The set M*(P)
contains all bbas dominating (i.e., less committed than) all bbas in M (P). The ¢-MCD bba m* is
the g-most committed consonant bba in M*(P).

Example 10. Let us consider a frame X = {{1,¢2, &3} with three elements, and a set P =
{P, P', P"} of three probability distributions shown in Table 2.1. The corresponding q-LC pos-
sibility distributions 7t, 7', 7" computed from (1.41) are displayed in Table 2.1. Note that there
is no q-LC element among these three bbas, as 7" is not comparable to 7t and 7' through the gq-
ordering. Possibility distribution 77" computed using (2.64) is shown in the last column of Table
2.1. The corresponding bba is

m*({&1}) =035, m"({1,82}) = 0.05,

m*(X) = 0.6. (2.65)
This bba is q-less committed than all bbas whose pignistic distribution is in P = {P, P, P"}, and

it is the q-most committed among all consonant bbas in M*(P).

x | P(x) P(x) P'(x)]| m(x) n'(x) "(x)]| *(x)
¢1| 07 0.6 0.65 1 1 1 1
¢ | 02 025 0.1 0.5 0.65 0.3 0.65
¢s| 01 015 025 0.3 0.45 0.6 0.6
Table 2.1: Pignistic probabilities and corresponding g-LC isopignistic possibility distributions of
Example 10.

Remark 8. By definition, the -MCD bba m* is the q-most committed element among all con-
sonant bbas that are q-less committed than all bbas in M(P). The restriction to consonant
bbas is justified by the existence and unicity of a solution in C*(P), whereas the existence of a
g-most committed element in M*('P) is not quaranteed in general. Additionally, finding the
solution in C*('P) is computationally tractable in several cases of practical interest, as will be
shown below, and the result usually has a very simple expression. It may happen, however, that a
q-most committed element in M*(P) exists, and that it is strictly more committed than m*. This
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M'(@)

pl-less committed

Figure 2.10: Illustration of the approach introduced in [42]:
m® is the pl-most committed bba in the set M°(P) of bbas that are less committed than all
probability measures in P. This approach does not distinguish between the pignistic and credal
levels (compare with Figure 2.9).

is the case, in particular, when function qu.. defined by

Gmax(A) = maxqp(A), VACX (2.66)
peP

is a commonality function, qp being the commonality function associated with mp. In that case,
the corresponding bba M.y is obviously the g-most committed element in M*(P). This is the
case in Example 10: as shown in Table 2.2, quax = max(q,q’,q") is a commonality function, and
the corresponding bba M,y is strictly q-more committed than m*.

A {61} {8} {&,&} {%&%} {818} {6 &) X
0.5

q(A) 1 . 0.5 0.3 0.3 03 03
7 (A) 1 065 065 045 045 045 045
7" (A) 1 03 0.3 0.6 0.6 03 03
7" (A) 1 065 065 06 0.6 06 0.6
gmax(A) 1 065 065 06 0.6 045 045
Muax(A) 02 0 0.2 0 0.15 0 0.45

Table 2.2: Calculation of g4y for the data of Example 10.
In that case, gmqx is @ commonality function, and the corresponding bba 11,4y is strictly g-more
committed than m*, as gmax (A) < q*(A) for A = {&»,&3} and for A = X.

Remark 9. The approach presented here is different from that introduced in [42] and 2.2, in
which we searched for the pl-most committed bba m°, in the set M°(P) of bbas that are less
committed than all probability measures in P (see Figure 2.10). In that alternative approach,
the solution is obtained as the lower envelope P of P, when it is a belief function. This is the case,
in particular, when P is a p-box (see Section 2.2), or when it is constructed from a multinomial
confidence region with K < 3 [42]. Different heuristics were introduced in [42] for constructing
a belief function less committed than P when P is not a belief function. As will be shown below,
the approach adopted here usually yields a simpler result as it produces consonant belief functions.
Additionally, it may be argued to be more in line with the two-level structure of the TBM, as it
does not directly compare probabilities at the pignistic level with belief functions at the credal level.

2.3.2 Application to a Sample of a Discrete Random Variable

In this section, we consider the application of the methodology described in Section 2.3.1
to the construction of a predictive belief function based on an independent and identically
distributed (iid) sample Xj, ..., X, from a discrete variable X defined on a finite domain
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X. We first show that a set P of possible probability distributions of X can be constructed
using multinomial simultaneous confidence intervals. An algorithm for finding the g-
MCD possibility distribution 7t* induced by P is then presented.

2.3.3 Construction of P

As before (see Section 2.2.2), let X be a discrete r.v. on a finite domain X = {&,..., ¢k},
with unknown probability distribution Px. Given an iid random sample Xj, ..., X, from
Py, let Ny = }_I"; 1# (X;) denote the number of observations in category ¢i. The random
vector N = (Nj,..., Ng) has a multinomial distribution with parameters n and p =
(p1,- -+, px), with pr = Px ({8 }).

Of particular interest are simultaneous confidence intervals, i.e., regions defined as a
Cartesian product of intervals:

S(N) = [p1, p{] x ... x [pk, Pk, (2.67)

which have easy interpretation. Such asymptotic confidence regions were proposed by
Quesenberry and Hurst [98], and Goodman [53]. Goodman’s intervals are defined as:

- a+2nk—vAk

Py = 200 +2) (2.68)
b a+2m+ /A
Pe = 2(n+a) (2.69)

where a is the quantile of order 1 — a /K of the chi-square distribution with one degree of
freedom (for K > 2), and

A =a (a + W) . (2.70)

When K = 2, a should be defined as the quantile of order 1 — & of the chi-square distri-
bution with one degree of freedom. Note that p, and p;” both converge in probability
towards pyasn — +oo, fork =1,...,K.

As remarked in [42, 81], S(N) can be seen as defining a family P of probability
measures. Such a family, obtained by bounding the probability of each singleton, is called
a set of probability intervals in [26]. Each vector p of probabilities corresponds to a possible
probability measure IP for X.

Example 11. The data analyzed in [98] and [53] describe the frequency of ten modes of failure as
recorded in a study of 870 machines that failed. These data are shown in Table 2.3, together with
the corresponding Goodman confidence intervals at confidence level 1 — o = 0.90.

Mode ¢ 1 2 3 4 5 6 7 8 9 10

g 5 11 19 30 58 67 92 118 173 297
ni/n 0.0057 0.013 0.022 0.035 0.067 0.077 0.106 0.136 0.199 0.341
Pr 0.002 0.006 0.012 0.022 0.048 0.057 0.082 0.109 0.166 0.301

p,‘f 0.017 0.027 0.039 0.054 0.092 0.104 0.136 0.168 0.236 0.384

Table 2.3: Goodman simultaneous confidence intervals for the data of Example 11, at confidence
level 1 — &« = 0.90.
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2.3.4 Determination of the g-MCD Possibility Distribution

Following the approach outlined in the previous section, assume that P is interpreted as
a set of pignistic probabilities. For each Betp in P, the g-LC isopignistic belief function is
defined by (1.41). Consequently, the -MCD possibility distribution 77* defined by (1.41)
can be obtained by solving the following maximization problems:

K

T = max Z min(py, pr) (2.71)
/=1
under the constraints
p, <pe<p;, £=1,...,K (2.72)
K
2 pe =1 (2.73)
/=1

Note that this problem is similar to the one addressed in [81] for a different probability-
posssibility transformation. We may first notice that the solution has a simple upper
bound 77} defined by

K
7T} = min (1, Z min(p;’, pj)) , (2.74)
(=1
which can be used as an approximation.
The exact solution to optimization problem (2.71)-(2.73) may be found by reasoning
as follows.
First observe that (2.71) can be written as

T = max (Z pe+ Skpk) , (2.75)

l Egk

where S = {¢ € {1,...,K} | ps > pi} is the set of indices of probabilities p; at least equal
to px, |Sk| is its cardinality , and Sy is the complement of S;. For fixed S;, the objective
function in (2.75) is linear and it may be maximized using a standard linear programming
algorithm. An approach for solving problem (2.71)-(2.73) is thus to enumerate all possible
sets Sy compatible with constraints (2.72), and for each Si solve the following linear
programming problem LP(Sy):

ée?k

max (Z pe+ Skpk) (2.76)

under constraints (2.72), (2.73) and
pe > pr, VL E St (2.77)

pe < pr, YVLES. (2.78)

If problem LP(Sy) is feasible, let 77/ (Si) denote its solution of the above problem. Then
7ty is the maximum of 77 (Sy) for all S such that the problem LP(Sy) is feasible.

To enumerate all possible sets Si, we may observe that indices ¢ such that p, > p;"
surely belong to S, whereas indices ¢ such that p; < p, cannot belong to Si. All other
indices may be included in S or not. Formally, let

Si={ktu{te{1,....K}|p, = pi} (2.79)

IF={¢e{l,....K}|p/ <p;} (2.80)
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and
Pi=A{1,...,K}\ (S UL). (2.81)

Then, all possible sets S are of the form S, = 5; U A for A C P[.
The proposed algorithm may be summarized as follows:

1. Initialize 7t} = 0.
2. Compute S/, I} and P using (2.79)-(2.81).
3. Forall A C P;:

(a) Let S = S{ U A.
(b) If constraints (2.72)-(2.73) and (2.77)-(2.78) are feasible, then
i. Compute 7} (Sx) = maxp Yres, Pet |Sk|pr under constraints (2.72)-(2.73)
and (2.77)-(2.78) using a linear programming procedure.
il. 7y = max(mj, 7t (Sk)).
(c) End if.

4. End For.

Example 12. Let us come back to the data of Example 11 reported in Table 2.3. The values of 7},
for k = 1,...,10 are shown in Table 2.4, together with the approximations 71, computed using
(2.74). The g-LC possibility distribution 7t computed from the sample frequencies ny/n is also
shown in Table 2.4. This possibility distribution is more committed than 7v* as it does not take
into account sampling uncertainty. Detailed calculations for k = 7 are presented below.

Mode ¢ 1 2 3 4 5 6 7 8 9 10
Ny 5 11 19 30 58 67 92 118 173 297
ng/n 0.0057 0.013 0.022 0.035 0.067 0.077 0.106 0.136 0.199 0.341
Tk 0.058 0.120 0.193 0.282 0475 0.526 0.641 0.731 0.858 1
T 0.171 0258 0.353 0.462 0.688 0.735 0.804 0.867 0.935 1
T 0.171 0.258 0.353 0462 0.688 0.747 0.875 0.973 1 1

Table 2.4: Possibility distributions computed for the failure mode data of Example 12:
g-LC possibility distribution computed from the sample frequencies (77), g-MCD possibility
distribution computed from the multinomial confidence intervals shown in Table 2.3 (7t*), and
approximation computed using (2.74) (7).

Detailed calculation fork = 7:

Let us consider the calculation of rts. We know that S} = {7,9,10}, I} = {1,2,3,4} and
Py = {5,6,8}. Using the algorithm described in Section 2.3.4, we have to solve a distinct linear
optimization problem for each of the 23 = 8 subsets A of P;. Let us consider these eight cases:

e For A=Q,S; ={7,9,10}. Constraints (2.72), (2.73) and
pe > pr, YL €{7,9,10}, (2.82)

pe <pr, V£€{1,2,34,56,8} (2.83)

are consistent. The maximum of Y__, py -+ 3p7 + ps under these constraints is 0.804; it is
achieved for

p = (0.013,0.021,0.030,0.043,0.076,0.086,0.136,0.128,0.166, 0.301). (2.84)
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e For A= {5}, Sy ={5,7,9,10}. Constraints (2.72), (2.73) and
pe > pr, VL €{57,9,10}, (2.85)
pe <pvr, V0e€{1,23,4,6,8} (2.86)
are not consistent, so the optimization problem is not feasible.
e For A= {6}, Sy =1{6,7,9,10}. Constraints (2.72), (2.73) and
pe > vk, V0 €{6,7,9,10}, (2.87)

pe < pr, V£€{1,2,3,4,5,8} (2.88)

are not consistent, so the optimization problem is not feasible.
e For A= {8}, S; ={7,8,9,10}. Constraints (2.72), (2.73) and
pe > pr, V£ €{7,8,910}, (2.89)

pe<pr, Y0€{1,234,56} (2.90)

are consistent. The maximum of Y.5_, py + 4py under these constraints is 0.804; it is
achieved for

p = (0.013,0.020,0.029,0.042,0.074, 0.083,0.136,0.136, 0.166, 0.301). (2.91)

e For A={5,6},S; ={5,6,7,9,10}. Constraints (2.72), (2.73) and
pe=pr, VL €{56,7,9,10}, (2.92)

pe <pr, V£€{1,23,4,8} (2.93)

are consistent. The maximum of Yj_; pe + 5p7 + ps under these constraints is 0.659; it is
achieved for

p = (0.010,0.017,0.026,0.038,0.092,0.098,0.092,0.109, 0.192, 0.327). (2.94)

e For A=1{5,8},S; ={5,7,8,9,10}. Constraints (2.72), (2.73) and
pe=pr, VL €{578,910}, (2.95)

pe <pr, YL€{1,234,6} (2.96)

are consistent. The maximum of Yj_; py + pe -+ 5py under these constraints is 0.688; it is
achieved for

p = (0.017,0.027,0.039, 0.054, 0.092,0.092,0.092,0.112,0.170, 0.306 ). (2.97)

e For A=1{6,8},S; ={6,7,8,9,10}. Constraints (2.72), (2.73) and
pe=pr VL €{6,7,8910}, (2.98)

pe <pr, VL€{1,23,4,5} (2.99)

are consistent. The maximum of Y.o_, py + 5py under these constraints is 0.735; it is
achieved for

p = (0.014,0.024, 0.037,0.054, 0.089, 0.104, 0.104, 0.109, 0.166, 0.301). (2.100)
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e For A=1{5,6,8}, Sy ={5,6,7,8,9,10}. Constraints (2.72), (2.73) and
pe=pr, VL €1{56,7,8910}, (2.101)

pe < pr, VL€{1,2,3,4} (2.102)

are consistent. The maximum of Y;j_, p; + 6p7 under these constraints is 0.688; it is
achieved for

p = (0.017,0.027,0.039, 0.054, 0.092,0.093,0.092,0.111,0.170, 0.305). (2.103)

The highest value obtained in these eight linear optimization problems is 0.804. Thus, 1t; =
0.804.

2.3.5 Application to Continuous Parametric Models

The general approach introduced in Section 2.3.1 can also be applied to the construction
of a predictive belief function based on a sample from a continuous r.v. X with unimodal
probability density function f(x;60) depending on a parameter 6. For each value of 6,
the g-LC possibility distribution 7(x; 6) may be computed using (1.60) or (1.61). Given a
confidence region R for 6, one may then compute the -MCD possibility distribution 77*
as
" (x) = sup 7t(x;0), (2.104)
0ER

for all x € R.

This approach is illustrated below in the cases of exponential and normal distribu-
tions.

2.3.6 Exponential Distribution

Let us assume that X has an exponential distribution £ () with density function f(x; u)
defined by (1.62). As shown in Example 4, Section 1.3.5, the corresponding g-LC possi-
bility distribution is defined for fixed u by (1.64).

Here, we assume that y is unknown but an iid sample Xj, ..., X, from £ (u) has been
observed. It is well known from standard textbooks (see, e.g. [47]) that the sample
average X is an unbiased estimator for y, and its variance is #?/n. From the Central
Limit Theorem, the statistic

\/ﬁ(};y) (2.105)

converges in distribution to a r.v. that is normally distributed with mean 0 and variance
1. For large n and « € (0, 1), the following thus holds

P <—M1a/2 < \/ﬁ();—y) < M1a/2> ~1l—a, (2.106)

where u;_,, /5 is the upper &1 /2 percentile of a standard normal distribution. Equiva-
lently,

X X
P <pu< ~1—a. 2.107
(1+u1—a/2/\/ﬁ =r= 1+M1—a/2/\/ﬁ> ( )

The interval

(2.108)

X X
R(Xy,...,Xp) =3 u: <pu<
(% 2 {,M T4uiop/v/n : 1- ula/Z/ﬁ}
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is therefore an approximate confidence interval for y at level 1 — a.
In order to compute the supremum of 7t(x; ) for y € R(Xj, ..., X,), we observe that

o) _ ¥
o Ee > 0. (2.109)
Consequently,
m*(x) = (G at) (2.110)
with o
X

ot

- Ui_a2/ /0

Figure 2.11 shows the possibility distribution 77*(x) for ¥ = 1 and various values of n.
The case n = oo corresponds to the situation where parameter y is known: in that case,
nt* is simply the g-LC isopignistic possibility distribution induced by the exponential
pignistic distribution with p = 1.

(2.111)

n=10
09r \\ — —-n=30
N — — —n=100

n=co |{

Figure 2.11: Plot of 7t (x) for the exponential distribution withx =1, « = 0.1, and n = 10, 30,
100 and oo.

Example 13. Suppose that the life time X of light bulbs manufactured by a certain company
follows an exponential distribution £(u) with unknown u. For n = 20 bulbs, the average
observed life time was X = 30.5 thousands of hours. What are the belief and plausibility that
the life time of a new bulb will exceed 50 thousands of hours ?

For o = 0.05, u1_4/» = 1.96 and it = 30.5/(1 — 1.96/\/2_0) = 54.3. Thus, the -MCD
possibility distribution is

7 (x) = e/ (14 %) . 2.112)
Now,
pl([50, +0)) = sup 7*(x) = 7*(50) = 0.76 (2.113)
x>50
and
bel([50, +0)) =1 —pl([0,50)) =1— sup 7" (x) =1-—7"(0) =0. (2.114)

0<x<50
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2.3.7 Normal Distribution

Let us now assume that X has a normal distribution with mean u and variance o2. If

these two parameters are known, then the possibility distribution 77(-; ,0) is given by
(1.65).

When p and 0?2 are unknown but an iid sample Xy,...,X, is available, then it is
possible to define a joint confidence region for  and ¢ [9]. In particular, Mood’s exact
confidence region atlevel 1 —a = (1 — a1)(1 — a2) is defined by

— o — (%
R(X1,...,Xn) = {(H}U2) X = ulfal/Zﬁ <pu< X+ ulfal/Zﬁ/
2 2
SR 2”5} (2.115)
Xn—11-ay/2 Xn—1a0/2

where X is the sample mean, $* = (1/n) YI;(X; — X)? is the sample variance, u;_, /2 is
the upper a; /2 percentile of a standard normal distribution, and X%q; w2 and Xifl;lf )2
are the lower and upper &, /2 percentiles of a x2_, distribution. The shape of that region
is illustrated in Figure 2.12. Values of &1 and a; yielding a region of smallest possible size
for a fixed confidence level are given in [9].

35

Figure 2.12: Shape of Mood’s exact region:
Mood’s Exact Region for « = 0.1, a1 = ap and n = 25. Without loss of generality, X =0and
s? = 1. The points with coordinates (72—, (¢+)?) and (1", (6F)?) are denoted A and B,
respectively.

Let P denote the set of Gaussian distributions with parameters contained in confi-
dence region R. Applying the principle outlined in Section 2.3.1, the g-MCD possibility
distribution 77 may be obtained for any x by maximizing 7(x; y, o) given by (1.65) with
respect to ¢ and ¢, under the constraint (,0?) € R. The result is given by the following
proposition.

Proposition 5. The g-MCD possibility distribution 7t* associated with Mood’s confidence confi-
dence region R at level (1 — a1)(1 — ap) is

(=, 0") ifx <
(x) =4 1 ifa- <x<pt (2.116)
n(x;pt,ot) ifx> v,
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with
1/2
2
ot = (2”5> , (2.117)
Xn—l;zxz/Z
R o ot R _ ot
Proof. By definition
*(x) = sup m(x;u,0). (2.119)

(no?)ER

If x € [fi~, fi"], then we can get 71(x; u,0) = 1 by setting u = x.
If x < fi~, then the value 1 cannot be reached. However, using standard calculus, we
obtain, for x < u:

an(ﬁg;y wo) _ (;3:/5_7): exp (_ (xz;zu)z ) <0 (2.120)
and 3 2
an(agau,a) _ (:4\—/;_; exp (_(xz—azﬂ)> -0 2.121)

Consequently, 7t(x; p, o) is maximized by jointly minimizing # and maximizing o, and
the maximum is reached for (y,0) = (i~,67"). Similarly, for x > ", we get:

87'[(7;;{]"/0') _ (;3?/2_}47): exp (_ (xz—o—;/l)Z) ~0 2122)
and X )
a”%’g o) _ (;‘4?/;‘_7)1 exp (—(xz_(ﬂ”)) > 0. (2.123)

Consequently, the maximum of 7t(x; y, o) for x > fi isreached for (u,0) = (p*,67). O

Figure 2.13 shows the possibility distribution 7t*(x) for x = 0, s> = 1, « = 0.1 and
various values of n. The case n = co corresponds to the situation where parameters y
and ¢? are known: in that case, 7t* is simply que g-LC isopignistic possibility distribution
induced by the normal pignistic distribution with 4 = 0 and ¢ = 1.

2.3.8 Conclusion

A new method for generating a belief function from statistical data in the TBM frame-
work has been presented. The starting point of this method is the assumption that, if
the probability distribution Px of a random variable is known, then the belief function
quantifying our belief regarding a future realization of X should be such that its pignis-
tic probability distribution equals Px. In the realistic situation where Px is unknown
but a random sample of X is available, it is possible to build a set P of probability
distributions containing Px with some confidence level. Following the LCD, it is then
reasonable to impose that the sought belief function be g-less committed than all belief
functions whose pignistic probability distribution is in P. Our method selects the g-most
committed consonant belief function verifying this property, referred to as the g-MCD
possibility distribution induced by P. This general principle has been illustrated in three
special cases of general interest involving discrete, exponential and normal distributions,
respectively.
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n=10
——-n=30
- — —n=100

n=co |{

Figure 2.13: Plot of 7*(x) for the normal distribution with ¥ = 0, s2=1,a =0.1, a7 = ap, and
n = 10, 30, 100 and oo.

2.4 Multi-class classification example

In order to demonstrate the usefulness of the proposed approach for constructing a be-
lief function from sample data, let us consider the following multi-sensor classification
problem.

Problem Statement and Solution in the TBM

Let X denote a system that can be in two states (classes) w; and w; corresponding, e.g.,
to the normal state and a faulty state. Let QO = {wj,w2}. The system is equipped
with two sensors Sy and S, that deliver measurements X and Y, considered to be r.v.’s
with distribution depending on the system state. Both r.v.’s are assumed to be normally
distributed and independent conditionally on the system state.

Let us further assume that sensor Sy has been available for a long time, so that we
have gathered a learning set £, of n, = 1000 observations of X from each class. In
contrast, sensor S, is recent and we have only a much small learning set £, of n, < n,
observations of Y from each class.

Based on this information, we would like to construct a decision rule for predicting
the system state from measurements xp and 1o delivered by the two sensors.

In the TBM, the solution of this problem goes through the following steps [116, 28, 43]:

1. Compute the plausibilities pl(xo|wy) and pl(yo|wy) of observing x and yo, respec-
tively, when the system is in state wy (k = 1,2) using the learning data;

2. As X and Y are conditionally independent, let pl(xo, yo|wk) = pl(xo0|wi)pl(yo|wy).

3. Using the General Bayesian Theorem (GBT) [116], compute the conditional bba
m®(+|x0,y0) on Q given X = xp and Y = yy using the following formula:

m?(-|x0,v0) = {wl}Pl(xo,yo|w2)@{wZ}Pl(Xo,yo\wl)’

where the notation {wy }" stands for the simple bba m such that m({wy}) =1 —w
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and m(Q) = w. Thus,

m?(@lxo,y0) = (1-pl(xo,yolw1)) (1= pl(xo,yolw))  (2.124)
m®({w1}|xo,y0) = pl(xo,yolwr) (1 = pl(xo,yolwa)) (2.125)
m®({wa2}xo,y0) = (1= pl(x0,y0lwn)) pl(xo,yolw2) (2.126)
m(Qxo,y0) = pl(x0,yolwr)pl(xo, yolw2). (2.127)

4. Compute the pignistic probability BetP?(-|xo, o) induced by m(+|xo, yo):

o Q(Qxg,10)/2
BetP2(wr|xo, _m ({w1}x0, y0) +m™( 0, Y0 ,
(w1]x0,yo) L @l o)

BetP?(wy|x0,y0) = 1 — BetP?(w|x0,v0).

5. Select the system state with the highest pignistic probability.

The approach exposed in this paper concerns step 1. The plausibilities pl(xg|wy) and
pl(yo|wy) may be computed from (1.60) by substituting the mean and standard deviation
by their sample estimates (this method will be referred to as LC), from (2.116) using Mood
confidence regions (MCD method), or from (2.57), using Cheng and Ile’s confidence
band (CI method). In the latter two cases, function pl(yo|wy) will reflect the additional
sampling uncertainty.

Illustrative Example

Figures 2.14 and 2.15 show typical learning sets £, and L, with, respectively, n, =
1000 and 1, = 50 observations for each class, as well as the corresponding possibility
distributions computed using each of the three methods. For the MCD method, the
confidence level of the Mood regions were fixed at 1 —a = 0.8. For the CI method,
the confidence level of the confidence bands were fixed at 1 — alpha = 0.99. The values
xo = 1.5and yp = —1 are indicated as vertical lines in the upper parts of Figures 2.14 and
2.15.

Let us first do the computations for the LC method: pl(xp|w;) = 0.539, pl(xo|w2) =
0.966, pl(yo|w1) = 0.740, pl(yo|w2) = 0.522. Hence (step 2),

pl(xo,yolwi) = 0.539 x 0.740 = 0.399
pl(xo,yolw2) = 0.966 x 0.522 = 0.504.

Using (2.124)-(2.127) we get (step 3):
m(@lxo,y0) = (1—0.399) (1 —0.504) = 0.298
m({w:i}|xo,y0) = 0.399 x (1 —0.504) = 0.198
m({wy}|x0,0) = (1—0.399) x 0.504 = 0.303
m(Qxo,v0) = 0.399 x 0.504 = 0.201.

The corresponding pignistic probability function is:

BetP®(wq|xo,y0) = 0.425,
BetP(wy|xo,y0) = 0.575.

Using the MCD method, pl(xg|w1) = 0.600, pl(xo|wz) = 0.978, pl(yo|lwr) = 0.922,
pl(yolw2) = 0.796. Thus,

pl(xo,yolw1) = 0.600 x 0.922 = 0.553
pl(x0,yolws) = 0978 x 0.796 = 0.779,
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0.5 | | | | |

Figure 2.14: (a): Plot of pl(x|w7) (solid lines) and pl(x|w,) (dashed lines)
computed using the LC, MCD and CI methods (thin, thick and very thick lines, respectively), as
functions of x. (b) Dot plots of training data from each class in learning set L.

and

m(D|xo,y0) = (1—0.553) (1 —0.779) = 0.099
m({w;i}|xo,y0) = 0.553 x (1—0.779) = 0.122
m({wy}|x0,0) = (1—0.553) x 0.779 = 0.348

)

m(Qxo,v0) = 0.553 x 0.779 = 0.431.

The corresponding pignistic probability function is

BetP?(wy|xo,y0) = 0.375,
BetP?(ws|xo,y0) = 0.625.

Finally, with the CI method, pl(xo|w1) = 0.038, pl(xo|wz) = 0.071, pl(yo|wr) = 0.236,
pl(yolwr) = 0.174. We get:

pl(xo0,yolw1) = 0.038 x 0.236 = 0.009
pl(xo,yolw2) = 0.071 x 0.174 = 0.012,

and

m (@) x0, yo) (1—10.009) (1 —0.012) = 0.979
m?({w;}|xo,0) = 0.009 x (1 —0.012) = 0.009
m({ws}|x0,0) = (1—0.009) x 0.012 = 0.012

m(Qlxo, o) = 0.009 x 0.012 = 1.08 x 1074,
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Figure 2.15: (a): Plot of pl(y|w1) (solid lines) and pl(y|w,) (dashed lines)
computed using the LC, MCD and CI methods (thin, thick and very thick lines, respectively), as
functions of y. (b) Dot plots of training data from each class in learning set L,,.

Finally, the corresponding pignistic probability function is

BetP?(wy|xo, o) = 0.416,
BetP?(wa|xp,y0) = 0.584.

We observe that observation xg tends to point to class wy (as pl(xg|w2) > pl(yo|wn)),
whereas 1o points to class wy (as pl(yo|lw1) > pl(yo|w2)). Using the LC method, the two
observations counterbalance each other, and the resulting pignistic probabilities are close
to 0.5. To a lesser extend, this is also true with the CI method. However, using the MCD
and CI methods, the plausibilities pl(yo|w1), pl(yo|w2) are significantly closer to unity
than the plausibilities pl(xo|wy), pl(xo|wz) calculated from the same method?, reflecting
weak knowledge of the distribution of Y in both classes, due to the small number of
training examples in £,.. As a consequence, the impact of observation v is less important,
resulting in a higher pignistic probability assigned to class w».

In this simple example, the final decision does not change. However, it is clear that
the three methods for computing the plausibilities of observations in each class may lead
to different decisions. As the MCD and CI methods take into account the different sizes of
L, and L, and, as a consequence, give less importance to sensor S, in the decision, they
may be expected to result in better performance. It also seems that the MCD method will
perform even better than the CI method. All this will be verified in the following section.

2With these two methods (MCD and CI), the obtained bell-shape of the distribution is much fatter for
pl(yolwr), pl(yo|ws) than for pl(xglwy ), pl(xo|ws).
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Numerical Experiment

To study the impact of the MCD and CI method for computing the class-conditional
plausibilities in the above scheme, a numerical experiment was carried out as follows.
The following conditional distributions of X and Y were assumed to be: f(x|w;) ~
N(0,1), f(x|wn) ~ N(2,1), f(ylwr) ~ N(0,1), f(ylw) ~ N(05,1).

A test set of 1000 examples for each class was randomly generated. The size of Ly
was fixed to n, = 1000, while the size 1, of £, was successively set to 10, 50 and 100. For
each value of n, the following procedure was repeated 50 times:

e Generate randomly a learning set £, of size n, = 1000;
¢ Generate randomly a learning set £, of size n,;

e Classify each test example using the approach described in Section 2.4 and each of
the following options

use only pl(xo|wk) (k = 1,2) computed using the MCD method (the decision
is the same if the LC or CI method is used instead);

use pl(xo|wy) and pl(yo|wy) (k = 1,2) computed using the LC method;

use pl(xo|wy) and pl(yo|wy) (k = 1,2) computed using the MCD method;

use pl(xo|wy) and pl(yo|wy) (k = 1,2) computed using the CI method;
e Compute the error rates erry, erric, errpcp and errcy using the four methods.

The results are shown in Figure 2.16. We can see that both the MCD and CI methods
significantly outperform the LC method, especially for small values of n,. For n, = 50
and n, = 100, all three methods take advantage of information from sensor S, as they
reach significantly lower error rates than that those obtained using sensor Sy alone. For
ny = 10, the LC method exhibits very poor performances and a very high variance. In
contrast, the MCD and CI methods have uniformly good performances for all values of
ny, and a much lower variance for small sample size. For n, = 10, the variance of the
MCD method is lower than that of the CI method, but its mean error rate is higher. For
larger values of 11,, both methods show very similar error rates, but the MCD method has
a lower variance, which makes it more reliable.

2.5 Conclusion

In this chapter, two methods have been introduced to build belief functions from a sample
of data, in the special case where the variable X of interest is a random variable, and the
only available information is assumed to consist in an independent random sample from
the unknown distribution Px of X. Our methods differ from the solution suggested in
[123] and [45], by the fact that they take two particular things into account. The first
point is that, as the information we dispose of is incomplete, the obtained belief function
should be less informative than Px. The second is that the more observations we dispose
of, the closer to Px the obtained belief function should be and vice versa. Imposing these
two requirements to be satisfied makes the proposed solutions more robust than those
that do not take the sample size into account. This was illustrated through a comparative
classification example. An application of these techniques to novelty detection will be
shown in Chapter 4.
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Figure 2.16: Box plots of error rates for the LC, MCD and CI methods as well as sensor S, alone
(rightmost box), for different sizes 1, of training set £,. Each box plot represents a distribution
over 50 trials. Each box has lines at the lower quartile, median, and upper quartile values. The
whiskers extending from each end of the box show the extent of the rest of the data (except
outliers represented separately). Boxes whose notches do not overlap indicate that the medians
of the two groups differ at the 5% significance level.
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Summary

In this chapter, a review of existing one-class classification techniques will be undertaken.
We consider two classes: the positive or reference class, whose data are available for
training, and the negative class, gathering all other classes. This review is limited to
techniques which can be applied to any domain and any kind of data, and concentrates
on the problem where data of only one class are available for training.

Desired properties of the classifiers are detailed first. They include generalization ability,
robustness and computational qualities. The generalization ability (GA) of a classifier is
its ability to differentiate normal, previously unseen data, from novel data. A classifier
with good GA will show a good trade-off between the false positive and false negative
rates (data classified as belonging to the positive class while they belong to the negative
class and vice versa). Other important points to be considered include a robustness
towards the number of considered features and reasonable performance in case of a low
or very high number of samples. Additionally, classifiers should be robust against noise.
Over-fitting should be avoided, e.g. by the choice of boundaries that are not to tight
around the data points, and the model itself should have low variance. The required
computational qualities are low complexity, easy on-line training and minimization of
the number of parameters.

In a second section, a taxonomy of novelty detection techniques is given, through which
the various ranges of application, advantages and drawbacks of the different approaches
will be easy to identify. We mainly distinguish between four categories: density-based
techniques, boundary based-approaches, reconstruction methods and clustering-based
techniques.

This taxonomy is then used to describe the main algorithms that correspond to each
category, from Parzen Windows to Support Vector Machines, including k-Nearest Neigh-
bours, Extreme Value Theory, Convex Peeling, Principal Component Analysis, Neural
Networks, etc.

Résumé

Dans ce chapitre, une revue des méthodes de classification a une classe existantes est
entreprise. Elle se limite aux techniques qui peuvent étre appliquées a n’importe quel do-
maine et n‘importe quel type de données, et se concentre sur les problemes pour lesquels
des données en provenance d une classe seulement sont disponibles pour I’apprentissage.
On considere deux classes: la classe de référence dite positive, et la classe négative,
rassemblant toutes les autres classes possibles.

Les propriétés désirées pour les classitieurs sont introduites en premier. Elles incluent
la capacité de généralisation, la robustesse et les qualités algorithmiques. La capacité de
généralisation d’un classifieur est sa capacité a différencier des données normales, mais
non rencontrées précédemment, de données atypiques. Un classifieur avec une bonne
capacité de généralisation permet d’obtenir un bon compromis entre les taux de faux
positifs et de faux négatifs (données classifiées comme appartenant a la classe positive
alors qu’elles proviennent de la classe négative et vice versa). Les autres points impor-
tants a prendre en compte sont la robustesse envers le nombre de dimensions utilisées
et des performances raisonnables en cas d’échantillon d’apprentissage de trés petite ou
de tres grande taille. De plus, un classifieur doit étre robuste vis a vis du bruit de
mesure. Le sur-apprentissage doit étre évité, notamment par le choix de frontieres qui
ne sont pas trop “serrées” autour des points, et le modele lui-méme doit avoir une faible
variance. Les qualités algorithmiques requises sont une faible complexité, une facilité
d’apprentissage en ligne et la minimisation du nombre de parametres.

Dans une seconde section, une taxonomie des techniques de détection de nouveauté
est introduite, a travers laquelle les différentes applications, avantages et inconvénients
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des différentes approches seront faciles a identifier. Nous distinguerons principalement
quatre catégories: les techniques basées sur I'estimation de densité ou de frontiere, les
méthodes de reconstruction et les techniques de clustering.

Cette taxonomie est utilisée ensuite pour décrire les principaux algorithmes correspon-
dants a chaque catégorie, des fenétres de"Parzen aux séparateurs a vaste marge en pas-
sant par les k plus proches voisins, la théorie des valeurs extrémes, I'effeuillage convexe,
I’analyse en composantes principales, les réseaux de neurones, etc.
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3.1 Introduction

According to Barnett and Lewis [13], one-class classification consists in the detection of
observations (or subsets of observations) which appear to be inconsistent with the remainder of
the (studied) set of data. It is a very old, cross-disciplinary issue. It has therefore been
widely studied in the literature, under such various names as outlier detection, novelty
detection, one-class classification, noise detection, deviation detection and exception mining. We
will generally refer to the problem as novelty detection or one-class classification. The
existing techniques are grounded on the detection of the patterns that appear to deviate
markedly from other members of the sample under consideration. How markedly the
deviation needs to be before it matters and through which characteristics the data is
assembled into a sample is application-dependent.

Applications of novelty detection are numerous. Amongst them, fraud or intrusion
detection, image analysis, medical condition monitoring and fault detection may be men-
tioned. As we will concentrate on the latter in chapter 4 we will use the vocabulary of
fault detection throughout. The data from the studied (or training) set will thus be termed
normal or un-faulty, while deviating data will be called abnormal, faulty or novel. The
studied set of data will correspond to a specific state, or a set of states of the system under
consideration.

In this chapter, we will review the existing methods for novelty detection. Desired
properties will first be described, and a taxonomy of the different approaches will be
introduced. A synthetic description of each technique will then be given, with particular
emphasis on those that will be referred to in the sequel.

This survey is mainly based on [77, 78, 57, 82]. However, a few of the techniques
mentioned in these reviews are not recalled here because they perform too poorly and
present a number of important drawbacks. Techniques that can only apply to a partic-
ular kind of data (such as character strings) or application (e.g. character recognition
or network intrusion) have also been ignored as well as techniques designed for non
stationary processes (e.g. sequence based). Finally, discrimination techniques have been
ruled out as they do not fit in the constraints of our work, i.e., they require data of several
classes for training. We concentrate here on the situation where data of only one class are
available.

3.2 Desired properties

3.2.1 Generalization ability

The most important feature of a good novelty detection technique is its generalization
ability [77, 82], that is to say, the system should be able to discriminate normal, previously
unseen data, from novel data.

A one-class system may also be seen as a two-class system in which one of the classes
(denoted wy) serves as reference, and corresponds to a well identified state of the system
under consideration, while the other class w; = @y gathers all other possible states of the
system. Two kinds of errors may thus be defined.

An error of type-I occurs if a pattern of class wy (positive) is deemed to come from w
(negative). On the contrary, an error of type-II is encountered when an object of class w;
is classified as belonging to wy. Type-I errors are sometimes referred to as false negative,
and type-II errors as false positive.

Intuitively, it is easy to realize that the minimizations of these two types of errors
are conflicting. In effect, a system that classifies all patterns as objects of class wy will
minimize the false negative rate « but maximize the false positive rate f. On the other
hand, a classifier that considers all patterns as novel (i.e., belonging to w;) will have
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the opposite drawback. A novelty detection technique should thus show good trade-off
between false positive and false negative rates.

In addition, many novelty detection techniques suffer the curse of dimensionality,
that is to say, they are not robust against the number of considered features. Robustness
towards this point should thus be considered in the choice of method, as well as reason-
able performance in the case of a low number of samples, and computational tractability
in case of a very high number of samples.

3.2.2 Robustness

Additionally, novelty detection techniques should be robust against noise. In other words,
the classification results should not change drastically under a slight perturbation of
the training data, nor should they be too training-sample dependent. This implies two
different points.

First, the classifier’s model (or the statistic it uses for classification) should have a low
variance.

Moreover, many novelty detection techniques are based on the estimation of a bound-
ary around the training data. Hence, the second point is that, in order to avoid over-
titting, the boundary should not be too tight around the data points, i.e. boundaries with
a lesser degree of flexibility should be applied. Similarly, density estimates should be
built in such a way that the transition from high densities too low densities is not too
sharp.

3.2.3 Computational qualities

Depending on the application field, different computational considerations may be taken
into account in the choice of the method:

e Minimization of the nunber of parameters: The higher the number of user-defined
parameters, the more difficult it will be to tune the method. Moreover, it has also
been noted that algorithms that imply a high number of parameters are more prone
to over-fitting.

e Low complexity: For on-line use, novelty detection mechanisms should have the
smallest possible computational complexity. However, low complexity should not
come at the expense of too high a need for random access memory, which would
slow the process down once the memory capacity of the computer is exceeded.

e Easy on-line training: For processes that might evolve slowly over time, the possibil-
ity of an on-line update of the model is appealing. Therefore, a system should be
able to use the result of the classification of test samples for retraining. For rapidly
evolving systems, different techniques should be considered altogether.

3.3 A taxonomy of novelty detection techniques

Outliers may arise in the distribution of a training set of data because of human error
(mislabeling), sensor imprecision or malfunctioning, mechanical or other faults, change
in a system behaviour, fraudulent behaviour, natural deviation of populations, etc. The
building of the different techniques that may be used to detect novelties has been widely
influenced by the type of outliers they were primarily designed for. However, most tech-
niques may be used for the identification of a variety of outlier types. We will establish
a taxonomy of methods, through which the various ranges of application, advantages
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and drawbacks of the different approaches will be easy to identify. We will then use this
taxonomy to describe the main algorithms that correspond to each category.

The oldest methods are mostly distance-based. In other words, they involve the
calculation of some sort of distance between a point to be classified (a test point) and
the training data. The test point is then deemed to be novel if its distance to the training
data is greater than some threshold.

3.3.1 Density based techniques

Early techniques often also are density-based and parametric, i.e., they involve some
assumption about the training data distribution (parametric density estimation, Gaussian
mixture models, ...). This limits their domain of applicability but lessens their com-
putational complexity and the amount of memory they require. For obvious reasons,
non parametric techniques have been developed, with nearly opposite pros and cons.
Non parametric techniques, typically Parzen Windows, solve the problem of the ade-
quacy of the data to their supposed distribution, but drastically increase computational
complexity and memory needs in comparison to parametric methods. Depending on
the application field, the training data and the amount of prior knowledge about their
distribution, parametric or non parametric techniques will yield better results.

3.3.2 Boundary based approaches

As the number of considered features increases, and for a training sample of fixed size,
the proportion of available data associated with the relatively low density tails of the dis-
tribution increases as well. This makes it difficult to determine the importance that must
be given to the tails of the distribution. Moreover, it has been shown that the number
of data points required for an accurate estimate of a distribution increases as a power
of the number of dimensions, leading to prohibitive computational costs. Boundary-
based approaches, as opposed to density-based approaches, have thus been developed
to tackle this problem. In such methods (e.g., support vector machines), a boundary is
built around the training samples, and the classification is based on the calculation of a
distance between the tested point(s) and the boundary. The boundary may obviously
be defined with a limited number of training points, namely those situated at the edge
of the distribution. After these points have been selected during the training phase, the
remaining points are not needed any more for the test of an unknown data point, which
solves the previously mentioned computational problem.

3.3.3 Reconstruction approaches

Another way to look at the novelty detection problem is to wonder what underlying
structure actually relates the training points with one-another, rather than trying to de-
fine in what area of space they lie (as density- and boundary-based methods do). This
introduces a third type of approach, namely the reconstruction approaches and, for ex-
ample, principal component analysis. They imply the building of a model of the training
data. The adequacy of tested observations to the model is then evaluated through the
reconstruction error which reflects how well a given point may be represented by the
model. The better a test point fits the model, the more likely it was generated by this
model. These techniques also led to the introduction of novelty indexes that are not
distances in the mathematical sense.
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3.3.4 Clustering-based approaches

Finally, clustering-based approaches (e.g. k-means), are another way of solving the prob-
lem of reducing the computational costs of classification for large training data sets. They
divide the training set into subsets of similar patterns termed clusters. Each cluster may
then be represented by a unique pattern called prototype. It is then possible to work
with prototypes only, hence considerably reducing computational costs. Novelty may
be measured by calculating the distance of tested patterns to prototypes, measuring the
reconstruction error made when a test pattern is represented by a prototype, or checking
the labels of neighbouring prototypes.

3.3.5 Summary

In conclusion, four categories of one-class classification techniques may be defined: density-
based, boundary-based, reconstruction-based, and clustering-based approaches. Amongst density-
based techniques, parametric and non parametric methods should be differentiated. All
four kinds of approaches may also be separated between distance-based algorithms, and
mechanisms relying on other types of novelty indexes. We will see that, depending on
the employed novelty measure, clustering approaches may sometimes be considered as
reconstruction-based approaches.

In the next section, we will describe the most important one-class classification tech-
niques according to the above described taxonomy.

3.4 Description of the main one-class classification techniques

3.4.1 Non-parametric density based approaches
Histograms

One of the simplest outlier detection techniques, as well as one of the oldest, is the
histogram. It is one of the most widely used non parametric density estimates. How-
ever, the shape of the obtained density estimate may vary quite a lot depending on the
considered number of bins, i.e., the necessary bin-width to cover the distribution. They
are computationally inexpensive but very sensitive to the curse of dimensionality.

Histograms are sometimes called naive estimators [114], and constitute a good intro-
duction to the idea of kernel density estimation. Moreover, the multivariate case being a
generalization of the monovariate case, we will start with a description of this estimator
in a one dimensional situation.

By definition of a probability density, if a real variable X has density f then

f(x) =lim <1IP(x—h<X<x+h)>, x € R. (3.1)

For a given 1, it is of course possible to estimate P(x —h < X < x + h) by the proportion
of observations that lie in the interval [x — h, x + h]. A natural estimator f of f is thus
given by the choice of a small number /& and expression:

N
f(x) = ONK 'Z]l[xfh,erh](xi)r (3.2)
N —

Z%IC (x hxl), (3.3)

where N is the size of the sample and K(x) = 1 if |x| < 1, 0 otherwise. In the sequel,
Equation (3.3) will be termed “naive estimator”.
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It follows from (3.3) that the estimator is built by placing a “box” of width 2k and
height (2N/)~! around each observation and summing over the observations to obtain
the estimate.

Parzen windows or kernel density estimation

The naive estimator is not entirely satisfactory from the point of view of density estima-
tion for the representation and interpretation of data. In effect, it follows from definitions
(3.2) and (3.3) that f is discontinuous at some points x and has a null derivative every-
where else. However, is easy to generalize the naive estimator in order to overcome some
of these drawbacks. Let us replace the weight function K by a kernel function satisfying:

+o00
/ K (x)dx = 1. (3.4)
This is the kernel density or Parzen window estimator [114].

Most of the time, K is a symmetrical probability density function, such as the normal
density. By analogy with the naive estimator, the Parzen estimator of kernel K is defined
by:

N o
f(x)zz\}hgicchxl), (3.5)

where & is the width of the Parzen windows, also termed bandwidth, kernel-width or
smoothing parameter. Provided kernel K is non negative and satisfies condition (3.4),
(i.e. K is a probability density), f will be a probability density itself. Furthermore, f
will inherit the continuity and differentiability properties of kernel K. The technique is
easily generalized to the multivariate case by replacing the monovariate representation

window with a volume in dimension d. The estimator may then be written

. 1 N —X;
f(x):th;K<xhx) (3.6)

The shape of the kernel and the value of the smoothing parameter widely influence
the final result.

The bandwidth being fixed once and for all, an artificial perturbation may arise in
the tails of the distribution when the estimator is applied to very sparse distributions.
Numerous methods have been suggested to locally adjust the width of the kernel [93, 94,
133] so that data may be better represented, in particular in regions of low density. Figure
3.1 illustrates the influence of the kernel width on the shape of the final density estimate.

Q= N W s N®®OOo

Figure 3.1: Influence of the kernel on KDE
Influence of the kernel width on the shape of Parzen density estimate



84 Chapter 3. One-class classification

The Parzen window estimator requires all the observations vectors to be stored and
used for each calculation, it is thus computationally expensive. On the other hand, it is
quite robust against the presence of outliers in the training sample as they only influence
the density estimation very locally. The main advantage of this method is its ability to
estimate arbitrary distributions.

K-Nearest Neighbours (kNN)

The k-nearest neighbour (kNN) method may be seen as an attempt to improve the Parzen
window estimator by locally adapting the smoothing parameter to the data [114]. In the
case of the Parzen window estimator, the window width is fixed once and for all. In the
kNN technique, on the other hand, it is the number of data that will be included in the
window that is fixed. Let us define the distance between two real points x and y as the
usual euclidean distance ||x — ||, and for each x;, the distances, in increasing order, of the
observations to sample point x will be termed, respectively, d; (x) < da(x) < ... < d,(x).

The kNN estimator thus reads '
flx) = 55— 3.7)

2N dk(x ) ’
In order to explain this definition, let us suppose the density at point x is f(x). Now, for a
sample of size n, we expect about 2rN f (x) observations to fall in interval [x —r; x + 7], 7 >
0. By definition, exactly k observations fall in interval [x — di(x);x + di(x)]. Conse-
quently, an estimator of the density at point x may be obtained through k = 2d; (x)Nf(x),
which can be re-arranged so that it looks exactly like the definition of the k' nearest
neighbour. In the multivariate case, the window of width 2d(x) is again replaced with
a volume V of a domain D(x). The number of points in the volume V is fixed, and the

estimator thus reads
k/N

P = 55007

While the Parzen estimator is based on the number of observations lying in a box
of fixed width, and centered at the point of interest, the kNN estimator is inversely
proportional to the size of the box needed to contain a given number of observations.
In the tail of the distribution, the distance di(x) will be greater than in the main part of
the distribution, and the problem of lack of smoothing in the tails will be tackled.

Nevertheless, it is more sensible to outliers in the training data than the kernel density
estimator. As for the latter, the sensitivity of the method to noise depends upon the choice
of the smoothing parameter (k for the kNN, & for Parzen windows).

(3.8)

3.4.2 Parametric density-based approaches
Parametric density estimation

The expression parametric density estimation generally refers to any density estimation
technique relying on an hypothesis on the general form of the data distribution.

The simplest technique is to assume the form of the distribution is known, for ex-
ample the data follow a Gaussian distribution. The parameters of the distribution are
then estimated from the training points, e.g., by the technique of maximum likelihood
estimation. The general form of the distribution might be actually known or suggested
by an expert as a reasonable assumption. A tested data point may then be deemed to be
novel if the cdf at this point —under the hypothesis that it comes from the same distri-
bution than the training samples— is under some threshold or if the likelihood function
at this point —again under the hypothesis that it comes from the same distribution as the
training samples— is under some threshold. Classical hypothesis tests may also be used
to compare the distribution of a set of test points with that of the training points.
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Gaussian Mixture Models (GMM)

In order to improve the adequacy of the data to the considered model, it may be con-
sidered that the data were not drawn from a given distribution but a mixture of several
distributions. The best known example of this technique is the Gaussian Mixture Model
[129, 84], in which data are deemed to be drawn from a mixture of Gaussian distributions
of (possibly) different means and variances. The parameters of the Gaussian mixture can
be found, e.g., by maximizing the likelihood over the training set using the EM algorithm.

Extreme value theory (EVT)

The above described methods aim at describing the distribution of the core of the training
data. Another way to look at the problem is to model the distribution of the extremes.
Extreme value theory thus aims at describing the limit distribution for maxima or minima.
It was first developed with the idea of assessing risk for highly unusual events such as
100-year flow, stock market crashes, etc. The solution came from the observation that in
real life situations, the tails of distributions, where by definition the extremes lie, are often
fatter (heavier) than predicted by classical distributions such as the normal distribution
and its cousins.

Suppose that X is a random variable. Let {X3, Xy, ..., X, } be n independent realiza-
tions of X. Define the extreme observations as

Y, = max(Xy, Xp,...,Xy)
Z, =min(Xy, Xp, ..., Xy)

The extreme value theory deals with the distributional properties of Y;, and Z, as n
becomes large.

There are two main theorems in EVT, which both deal with the convergence of ex-
trema [100, 107]. The difference between the two theorems is due to the nature of data
collection. For the first theorem, the data are generated in full range.

The Fisher-Tippett or extremal-types theorem (1928) [51] states that

Theorem 1. If exist constants a,, > 0 and b, € R such that

Y _
n 0 A s — oo (3.9)

n

for some non-degenerate distribution F (i.e., F(x) is continuous and has an inverse), then F must
be one of the only three possible "extreme value distributions’, namely the Gumbel, Fréchet or
Weibull distribution.

The so-called generalized extreme value (GEV) distribution was developed to embed the
three above mentioned distributions, which come as special cases of the GEV distribu-
tion.

The second theorem —termed Pickands-Balkema-de Haan theorem [96, 12]- deals
with data that were generated only when they surpass a given threshold (POT or Peak
Over Threshold models), and corresponds to certain real life situations, for example in the
insurance business, where only losses (pays out) above a certain threshold are accessible
to the company. It may be expressed as follows.

Theorem 2. As the threshold L becomes large, the distribution of the excesses over a threshold L
tends to the Generalized Pareto distribution, provided the underlying distribution F belongs to
the domain of attraction of the Generalized Extreme Value distribution.
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The role of these two theorems is similar to that of the central limit theorem for
averages. The latter states that the limit distribution of the arithmetic mean of a sequence
of iid random variable is the normal distribution no matter what the distribution of the
variable may be. The extremal types theorems are similar in scope in that they tell us
that the limiting distribution of the extremes always takes the same form, whatever the
distribution of the parents from which the considered extremes were drawn.

Novelty may then be detected when the cdf associated with the considered extreme
value distribution is above some threshold at the observed (test) point.

The technique is highly sensible to the presence of very few novel points in the train-
ing set. However, Roberts [102, 103], using the work of Fisher and Tipett [51], managed
to apply the method to real data sets with very good performance.

Pros and cons of parametric methods

Parametric techniques are computationally inexpensive, as only the parameters of the
applied method need to be stored. However, the assumption that the data follow a given
distribution is not always reasonable, nor does it always permit to represent the whole
distribution accurately, leading to a number of misclassifications. Moreover, parametric
methods are often sensible to noise and outliers in the training data, as the variance of the
distribution is often one of the parameters that needs to be estimated from the training
set.

3.4.3 Clustering-based approaches

The k-nearest-neighbour estimator may be used for classification in many different ways.
As mentioned in paragraph 3.4.1, it can be used as a classical density estimator, and a
point will be termed novel if the estimated density of the training data is low at that
point. It can also be seen as a simple clustering technique. In this case, the decision of
classifying a point as novel can be made in many different ways [57].

First, let us define the generalized kNN of a point x [127]. The set NNj of x and its
generalized kNN may be built as follows:

1. Find the non generalized nearest neighbour 17 of x and define NN; = {x,n1};
2. Calculate the distances between 711 and all the other points in the training set except
x, and the distances between x and all the other points in the training set except

n1; select the point that minimizes these distances, and call it ny; define NN, =
NN1 Uny = {x,nl,nQ};

3. Calculate the distances between each of the points in NN, and all the other points
in the training set, and select the point that minimizes these distances; it will be n3
and NN3 = NN2 U ns;

4. Iterate point 3 until you get NN;.

A tested point may be classified as novelty

e if its k nearest neighbours lie within a distance d greater than some threshold;

e or if the chaining distance between the tested point x and its generalized kNN
(i.e., the sum of distances between each of the points in NNj and its own nearest
neighbour in the set) is greater than some threshold.

Alternately, it is also possible to first divide the space in a series of cells [99] and use these
to define the distance between points or groups of points. Then,

e if a given cell ¢ and its adjacent! neighbours contain more than k points, then the

1 Adajacent cells here means cells having at least one common edge or one common vertex with cell c.
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points in cell c are assigned to the positive class;

e or if the number of points lying in cells less than a predefined distance apart from c
is less than k, then all points in cell c are considered as novel.

The word “neighbour” may be understood either as “points in the training set” or
“prototypes”.

k-means and k-medoids

The k-means algorithm separates the data into k clusters by maximizing the inter-cluster
distance while minimizing the intra-cluster distance. These combined two objectives
constitute the objective function to be optimized. It is most of the time based on the
Euclidean distance, but other distances may be used instead, such as the Mahalanobis
distance. Each cluster is then best represented by its mean (or barycentre), which may be
used as prototype for the cluster. A test point is deemed to be novel if it lies at a distance
of the nearest prototype further than some threshold.

The k-medoids algorithm is a variant of the k-means in which a cluster is represented
by its median rather than its mean. It is hence less sensible to outliers in the training data
than the k-means algorithm.

Storage space required for training may be high, but classification through the k-
means or k-medoids algorithm is computationally inexpensive as only prototypes need
to be considered. The quality of the result is highly dependent on the chosen number k
of clusters, which must be defined by the user.

Fuzzy clustering techniques

Fuzzy clustering techniques most of the time work in a similar fashion as their crisp equiv-
alent except that class membership is defined by membership degrees rather than a
crisp label. Each data point can thus be assigned a degree of membership to each of
the clusters. All the novelty detection rules described above can be adapted to work
with a fuzzy membership function. An additional rule is to detect novelty whenever
the considered sample does not belong to any of the available clusters (i.e. its degree
of membership to each of the clusters is less than some threshold). A fuzzy output
intrinsically gives a representation of how precise and certain the obtained classification
is.

Amongst other algorithms, the fuzzy k-means [16] may be mentioned. The algorithm
depends upon a parameter 1 < m < oo that controls how fuzzy the cluster are allowed
to be. As m tends to 1, the algorithm converges towards the hard k-means. Conversely,
as m tends to infinity all the prototype converge towards the centroid of all training data.
The fuzzy k-means algorithm generally outperforms the hard k-means algorithm in that
it lessens its tendency to getting stuck in local minima of the objective function during
training.

3.4.4 Reconstruction-based approaches

Clustering techniques

Clustering algorithms may be seen as reconstruction-based approaches when they in-
clude prototyping. In effect, the reconstruction error associated to the representation of a
given point by the associated prototype may be used as novelty index and compared to
some threshold for classification purpose.
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Supervised neural networks

Neural networks are mostly known as a discrimination technique. However, there exist
neural networks that are trained to reproduce their input features as their output. They
are termed auto-encoders or auto-associators [18, 10, 11, 106]. Figure 3.2 shows a formal
neuron as introduced by Mc Culloch and Pitts [83]. It is a computing unit that carries out
a weighted sum of the input signals to which it applies a transfer function A in order to
obtain the answer of the cell to the input stimuli. With the notations of Figure 3.2, the exit

of a neuron is defined as: a = 'H <Zfl:1 wixi), where w; is the weight associated to the

input x; of the neuron, and H is the transfer function.

A neural network is constituted of several layers of neurons connected to each other.
The neurons of the entrance layer take the different features of the pattern to be studied
as inputs. The neurons of each internal layer take the outputs of the neurons of the
previous layer as input. Either the output layer is constituted of only one neuron, or the
outputs need to be merged so that classification may be performed. In the sequel, the
merging process associated with the last of these two possibilities will be considered as a
particular, additional, one neuron layer.

The choice of the number of layers, the number of neurons in each layers, and the
transfer function associated to each neuron widely influences the performance of the
network. There exist a number of techniques and heuristics to specify the architecture of
the network. The initial weights of the neurons are most of the time randomly initialized.

Training then consists in adapting the weights so that the output of the network
reproduces the input as best possible. It is performed through calculating an objective
function that compares the obtained and desired results and consequently updating the
weights of each neuron until the objective function is optimized. Classification then
consists in presenting a test pattern to the network and collecting the associated output.

Figure 3.2: A formal neuron

Only observations whose structure is close to that of the training patterns are repro-
duced accurately. The reconstruction error, calculated as the Euclidean or Mahalanobis
distance between the input and output of the network, hence becomes a novelty index.
Numerous other variants of neural networks have been proposed in the literature.

Remark 10. There is an interesting connection between principal component analysis and auto-
associators [18]. Let us consider a three layer neural network with a hidden layer including p
neurons. The training of this network as an auto-associator leads to an optimal map* between
the inputs and outputs. It may be shown that this map is the combination of two operations: the
projection onto the subspace spanned by the first p eigenvectors of the data’s covariance matrix
is first performed, and then the data are projected back into the original space. Hence, up to an
arbitrary linear transformation, the activities in the hidden layer are identical to the principal
component of the data as will be defined in the next section (Section 3.4.4).

%In this case, the optimal map is the one that allows the best reconstruction of the inputs of the network
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [52, 111] allows the mapping of high dimensional
data on a lower dimensional space through linear orthogonal projection, thus providing
a more compact representation. The optimal subspace retains most of the variance of the
original data and may have a significantly lower dimension than the original space. It is
obtained by the identification of the dependences between the observations.

It can be shown that the optimal subspace of dimension p < d (where d is the dimen-
sion of the original space) is defined by the first p eigenvectors of the covariance matrix of
the data, the eigenvectors {vy,...,vq} being sorted by decreasing associated eigenvalue.

However, simple PCA relies on the hypothesis of a linear correlation between the
data, which is obviously not always the case. The introduction of a kernel function K
solves the problem: it acts as though the data had undergone a prior transformation k
from the original space into a feature, Hilbert space, in which they are linearly correlated.
The resulting technique is termed Kernel Principal Component Analysis (KPCA).

PCA based novelty detection is traditionally performed via the monitoring of differ-
ent types of error, amongst which the squared prediction error (SPE), Hotelling’s statistic
(or T?) and the reconstruction error. A pattern is considered novel if any of the monitored
errors is above some threshold.

Lee et al. [71] derived formulae for the SPE and T? statistics in the KPCA framework,
thus adapting the monitoring technique to highly non-linear data. Recently, Hoffmann
[58] also provided a calculation of the reconstruction error (here termed kernel recon-
struction error or KRE) adapted to KPCA. These statistics have the property of being
small for data drawn from the same distribution as the data that were used to build the
KPCA model, and greater for data drawn from a different distribution. They can thus be
used as a novelty measure.

As KPCA includes the possibility of dimensionality reduction, it is interesting as a
one-class classifier in the case where the dimensionality of the data to be studied is
high. However, the method remains computationally complex as the determination of
the novelty measure often implies the calculation of the distance of the test pattern to
each of the training data. Noise and outliers influence performances as they influence the
estimation of variances and covariances. A sequential version of the algorithm proposed
by Whenming et al. [137] lessens the need for storage space but slows the training and
classification processes down.

Mathematical formulation: For PCA, it can be shown that the optimal linear trans-
formation is a projection on the subspace spanned by the eigenvectors of the sample’s
covariance matrix. Such a projection is optimal in the sense that, for a given dimension
of the subspace, it has maximum variance. For KPCA, let us introduce a kernel function
of the form: K(x;,x;) = (®(x;), ®(x;)). The covariance matrix in feature space is:

C= D (x,)P(x;)" (3.10)

S| -

n
i=1
and the corresponding eigenvalue problem can be expressed as:

Av = Cyv, (3.11)

where the eigenvector v; corresponding to the largest eigenvalue A becomes the first
component of the feature space. It can be shown that this eigenvalue problem comes
down to another eigenvalue problem:

nie = Ka, (3.12)
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with I = K(xi,x;), ff = [ffy,..., ffn]T, and v = Y, ff;®(x;). The n eigenvectors
solution of (3.12) are denoted ff;, j=1,...,n, and their it element is denoted a;;. Let x be
a datum vector in the original space. The projection of x in the KPCA-subspace will be
denoted t, and its elements ¢; are termed principal components of vector x. The following
relation holds:

= Z(X]',JC(XZ', X). (313)

Dimension reduction is then obtained by selecting the principal components retaining
the greatest part of the variance, say 90% for example. If a number p < n of principal
components is selected, then t' = [t,...,t,], will be used instead of t = [t;,...,t,] in
further calculations.

Hotelling’s statistics (T?) is the sum of the normalized squared scores, and is defined
as

T =[ty,..., t,) A [ty ..., t,]7, (3.14)

where t; is the projection of ®(x) onto eigenvector v and can be calculated from function
k, A~1is the diagonal matrix of the inverse of the eigenvalues associated with the retained
principal components, and p is the number of retained principal components. The SPE
in feature space may be defined as:

n P
SPE=Y t-) t. (3.15)
j=1 j=1

The squared distance between a point in feature space and the centre of the KPCA
subspace is termed (kernel) reconstruction error and denoted KRE. Hoffman demon-
strated that:

SN
AMS

KRE(x) = K(x,x)— K(x,x;) + % Zn: K(xi, xj) — Zp;fg(x)z (3.16)
=1

i=1 ij=1
(3.17)
where:
n 1 n
fo(x) =Y api |K(x,x) — . Y K(xi,xp)

i=1 r=1

S k) + L Y Kx)|, (318)
n &= 7 Ar ) = rrxs) | s

where d is the dimension of the original space (x; € RY, i=1,...,n), and ¢ is the
index that denotes the /" eigenvector, with ¢ = 1 for the eigenvector with the largest
eigenvalue.

3.4.5 Boundary-based approaches
Self Organizing Maps (SOM)

Kohonen’s Self Organizing Maps (SOM) [66, 1, 88, 90] are unsupervised one-layer neural
networks in which the nodes are (initially) organized in a particular way, most of the time
on a rectangular or hexagonal mesh. They are constituted of only one layer. During train-
ing, the weights of the nodes are first randomly initialized. Then, a pattern is presented
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as input to the network: in other words, some distance d between this pattern and each
neuron is calculated. The winning neuron is selected as the one the training pattern is
closest to. Its weights are then updated so that it gets even closer to the training pattern
it has just been checked against. To a lesser extent, the weights of its neighbours are
modified as well, proportionally to their distance to the winning neuron. The process is
repeated iteratively with all the training patterns until the weights of all neurons stabilize.

In case only one class was used for training, the distance of a test point to the activated
node works as a novelty measure.

Alternately, a test pattern is repeatedly presented to the network and the weights are
updated until the weights stabilize. The stabilization”time”(number of presentations of
a given pattern before the weights of the network stabilize) may be used as a novelty
index (with comparison to some threshold). This technique presents the drawback that
classification is much more computationally demanding than with the previous method
(it is in fact as demanding as the training phase).

Note that the network may be graphically represented in such a way that the distance
D between two neighbouring neurons is used as the distance between their representa-
tions, then a node moves each time its weights are updated. When a node moves during
training, the neighbouring nodes move as well. Hence, the mesh tends to reproduce the
configuration of the input patterns.

Once trained, a SOM is computationally undemanding, but training involves distance
calculations between each training pattern and all the neurons in the network. The
number, type (transfer function) and topology of the neurons influence the performances.
SOM are often appreciated for the very self explanatory representation of the data they
provide.

Other neural networks

A number of other (sometimes fuzzy) types of neural network based algorithms have
been described in the literature.

Very similar to the SOM are the so called Habituation Network [79, 80]. Habituation
is the mechanism by which the brain learns to ignore repeated stimuli. Habituation
network simulate this behaviour: they are trained in such a way that the nodes of the
network are less and less activated by the training patterns. Then, the more a tested
point activates the network, the more likely it is to be novel.

Amongst other types of neural network algorithms, Adaptive Resonance Theory (ART)
and fuzzy ART [54, 21, 22], Learned Vector Quantization (LVQ) [66] and Cooper’s Re-
stricted Coulomb Energy network (RCE) [101], may be mentionned. All three of these
algorithms use hyperspheres to surround the training classes and produce closed deci-
sions boundaries. They differ in the way they determine the number and sizes of the
hyperspheres. During training, an ART algorithm fixes the size of the hyperspheres, an
RCE algorithm fixes the position and LVQ fixes the number. Depending of the applica-
tion, some outperform the others, but they have similar pros and cons on a general point
of view. Their more important drawback is that they all depend on the user-set parameter
that fixes —or influences— the number of hyperspheres for the quality of the results.

Minimum volume ellipsoid (MVE)

The Minimum Volume Ellipsoid (MVE) method [105] fits the smallest possible ellipsoid
around a given percentage p of the data distribution model, thus representing the most
densely populated region of space. Subsets of p% of the data are examined. The smallest
ellipsoid enclosing each subset is calculated in order to find the subset that minimizes
the volume occupied by the data, that is to say, the subset with the smallest associated
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ellipsoid. The best subset (smallest volume) is then used to calculate the covariance
matrix of the data and the Mahalanobis distance to all the data points. An appropriate
cut-off distance is then estimated, and the observations within distances that exceed that
threshold are declared outliers.

As this technique fits boundaries around specific percentages of the data, it is insen-
sible to outliers in the training data.

Convex peeling (or data depth) [13, 74, 69] is a similar, but somewhat more sophisti-
cated approach. In this method, nested convex hulls, respectively enclosing all training
data points, all data but the points on the first hull, all data but the points on the first
and second hulls, all data but the points on the three outermost hulls, etc are used to peel
away the records on the boundary of the data distribution. The convex hull of a set of
points X in R?, denoted CH (X), is the intersection of all convex sets in R containing X.

Sequential algorithms permit to determine nested convex hulls for a set of points, thus
limiting the computational complexity. The Convex peeling algorithm therefore works
on massive data sets.

A way of determining which points may be deemed outliers is to consider that nested
hulls define a depth based partial order on the data points and that the p% least deep
points are outliers, for a user defined value of p. A slightly more sophisticated version
of this is the so-called Balloon plot (see Figure 3.3). It is obtained by blowing the hull that
includes 50% of the data (denoted CH(X) 5) by a factor 1.5. Let V5 be a set of vertices for
CH(X) 5. The balloon B for outlier detection is:

Bs = {yl such that Yi =X+ 1.5(3(1' — CHPM), X; € V5}, (3.19)
where CHPM is the convex hull peeling median, defined as follows:

Definition 20. (CHPM) Recursive peeling leads to the inner most point or points. If there is
more than one, then the average of the deepest points is the CHPM of the data set, otherwise the
deepest point is the CHPM.

The balloon plot may be seen as some sort of multidimensional boxplot without
whiskers.

Big changes in the volume of two successive hulls may also be used to detect outliers
(see Figure 3.4).

Both the MVE and Convex Peeling techniques suffer the curse of dimensionality as
convex hulls become more and more difficult to determine when dimension increases.

One-class Support Vector Machines (SVMs)

One-class support vector machines (SVM), also termed v—SVM or Support Vector Data
Description (SVDD), were introduced by Vapnik [132], Scholkopf [112] and Tax and
Duin [128] as a way to estimate the support of a distribution. The underlying idea is
that there is no need to estimate the exact density of a population in order to be able
to determine whether a new measurement originates from the same distribution or not.
The specification of the support of the distribution, i.e., the region of space containing a
large fraction of points drawn from that distribution, is sufficient for most applications
and much more computationally efficient than full density estimation.

The principle of SVMs has two different geometrical interpretations. Scholkopf first
introduced the method as the determination of the hyperplane that separates the training
data from the origin with maximal margin. This is done through the definition of a
function f that is positive in the support of the distribution and negative elsewhere.
Given a learning set x, ..., x,, it can be shown that an optimal function may be defined
as:

Fx) =Y (@K (xi,x) — b), (3:20)

i=1
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Figure 3.3: Outlier detection through balloon plot(reproduced from [70])

and satisfies the constraints 0 < &; < (vn)~! and Y;&; = 1, where b is a scalar parameter
called bias, v is an hyperparameter, and K(-, ) is a kernel function. Function f can be
determined by solving a quadratic programming problem. A pattern x is rejected if f(x)
is negative (or smaller than some threshold).

Tax and Duin then showed that comparable results may be obtained through defining
the smallest hypersphere enclosing all training data. This hypersphere is defined by a
centre a and a radius R.

In both cases, the use of kernel functions allows the definition of implicit mappings
leading to more flexible descriptions. For instance, the data might not be separable
from the origin with an hyperplane in the original space, and, —even in cases were it
is possible—, it would not make sense to do this in the original space as it would very
badly serve the purpose of novelty detection. Hence, the data need to be mapped to a
(possibly high dimensional) feature space in which they are linearly separable from the
origin. The resulting boundary will not be linear once mapped back to the original space.

Additionally, the boundary is made even more flexible by the introduction of slack
variables. Let us consider the hypersphere interpretation: in order to account for the
eventuality of outliers in the training set, the distance of each data to the centre of the
sphere should not be strictly smaller than R, but larger distances should be penalized.

Furthermore, it can be shown that the parameter v is both an upper bound on the
fraction of outliers (i.e. errors) and a lower bound on the fraction of support vectors thus
controlling the trade-off between precision and generalization capacity. Note that, when
v = 1 and the kernel can be normalized as a density in input space, then (3.20) is exactly
equivalent to a Parzen-window density estimate [110]. In Vapnik’s original formulation
[132], a parameter C was used instead of v, and can be shown to be approximately
equivalent to (vn) L.

Example 14. Figure 3.5 shows a simple two-dimensional data set of n = 100 learning vectors,
with a contour plot of function — f (x) computed using (3.20), with a Gaussian kernel IC(x,y) =
exp(||x —y||?/(202)). We can see that the support of the distribution is well approximated by
contour lines of f(x). A novelty detection rule may be implemented by rejected patterns for which
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Figure 3.4: Outlier detection through nested convex hull volume change(reproduced from [70])
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—f (x) is higher than some threshold.

g0

Figure 3.5: SVM-based one-class classification
Data set of Example 14, and contour plot of the SVM novelty measure — f (x), with v = 0.5.

The training phase of SVMs is computationally demanding, as many iterations over
all training patterns need to be processed for the selection of the support vectors and
associated weights. Though recent works [17, 75, 76] show how to tackle this problem in
the case of multi-class SVMs, to the author’s knowledge, no solution is available in the
literature for the one class problem yet.

Classification, on the other hand, is fairly undemanding.

The smoothing parameter i of Kernel K may be difficult to tune depending on the
data. Cross-validation is often used for this purpose, thus increasing computational
needs during training. Overall, SVMs have been found to show very good performances
with respect to other techniques.

Mathematical formulation

Hyperplane technique We will first consider two classes of data respectively labelled
+1 (positive class or class +1) and —1 (negative class) and determine the hyperplane H
that separates the two classes with maximal margin.

Let us consider an hyperplane of equation H : (w, x) —b = 0, or equivalently, (w, x) =
b. A plane supports a set of data (or class) if all points of the class are on one of its side.
If the hyperplane H is to separate the two classes, then w and b should be such that
(w,x) > b for all the points x whose label is +1 and (w, x) < b for the others.

Let us now suppose that the smallest value of (w, x) — b for the points of the positive
class is «, then (w,x) —b > «k, and x can be set to 1 as positive rescaling will leave
the problem unchanged. Equation (w,x) —b = 1 then defines an hyperplane H,; that
supports the data from class +1. Similarly, we may require {(w,x) —b < —1} for the
data in class —1 and {(w, x) — b = —1} defines an hyperplane H_; parallel to H,.

The maximization of the distance or margin between H. 1 and H_; will help us find
the plane furthest from both sets of data, which can be defined as the plane H, parallel to
H4, situated exactly at mid-distance between H; and H_; (see Figure 3.6).

The distance between the supporting planes H,1 and H_; is v = 2/ ||w||,. Hence,
maximizing the margin is equivalent to minimizing ||w||, /2 in the following minimiza-
tion program [15]:



96 Chapter 3. One-class classification

Figure 3.6: Separating hyperplanes H, 1, H_1 and H for a toy example(reproduced from [15])

.1 2
= 21
min 7 [, (3.21)
subject to: y; ((w, x); —b) > 1, (3.22)
where y; = 1 when x; belongs to the positive class and y; = —1 otherwise.

In the one-class problem, the origin stands for the only point in the negative class.
Thus, H is indeed the hyperplane that separates the training data from the origin with
maximal margin. The constraint becomes (w, x); —1 > 1 as the dot product of any vector
with the origin will be null.

The introduction of slack variables §;, i = 1,...,n, and of a kernel function K in place
of the classic dot product leads to:

1 2 1
min > f|w] +%;§1—b, (3.23)
subject to: (w, P(x;)) >b—g, (3.24)
¢i > 0,Vi, (3.25)

where v is an hyperparameter that is used to weight the influence of each term in the
objective function. As already mentioned, it may be shown to be an upper bound on the
fraction of outliers (i.e. errors) and a lower bound on the fraction of support vectors at
the same time.

The solution to this problem is the saddle point of the Lagrangian:

L& baB) = 5wl + - V&b~ Dl (w,@(x)) ~ b+ &) ~ L pdi, (3.26)

where «; and B; are Lagrange multipliers.
The Kuhn-Tucker conditions then lead to the following dual formulation:

|
min 5 szizleC(xi, Xi), (3.27)
1
. 1
subject to: 0 < a; < —, (3.28)
vn

n
Y ai=1; (3.29)
i=1
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where w = Y7; ;®(x;) [112] and K(x;, x;) = (P(x;).@(x;)) [76]. Finally, novelty detection
can be performed using

flx) = sgn[({w, d(x)) - b] (3.30)

f(x) = sgn [Z (0 IC(x, x) — b)] (3.31)

1

as a decision function. A pattern x is then deemed to be novel if f(x) is negative.
Similar formulation can be derived for the hypersphere technique.

3.5 Conclusion

In this chapter, we have summarized the main novelty detection techniques. Tables
3.5 and 3.5 are an attempt to recapitulate the main features of the different methods,
with respect to the desired properties described in Section 3.5. For a given algorithm,
ticks and crosses respectively denote the properties about which positive and negative
remarks have been made in the present chapter for that particular algorithm. This view
is somewhat simplistic, but it gives an overview of the main advantages and drawbacks
previously mentioned for each algorithm.

As outlined in [57], hybrid systems constitute the most recent development in outlier
detection. They combine several classifiers and have been introduced as attempts to
compensate for the drawbacks of a particular algorithm with another algorithm which
may have complementary qualities. They may, of course, include more than two clas-
sifiers. Minimal redundancy should be observed as a rule, in order to avoid wasting
resources, slowing processes and increasing complexity. Moreover, the combination of
several techniques that may provide their result in different formats requires the rep-
resentation of the outputs into a common framework that allows the combination and
fusion of information, and possibly permits to handle information on the precision or
certainty of the provided classifications.

Dempster-Shafer theory seems ideally fitted for such a task. However, until recently,
the problem had not been studied in this framework. This task is undertaken in the next
chapter. Building on previous work reported in [5, 6, 7, 8], we show how to convert the
outputs of one-class classifiers such as one-class SVMs or KPCA into belief functions.
Expressing one-class and multi-class classifiers in a common framework allows the com-
bination of classifiers based on different numbers of classes, different features, different
learning algorithms, or different datasets.
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Robustness Generali- | Low No.
-zation of pa-
ability rameters
No. of | No. of | Noise in | Outliers
features | training | training | in
data data training
data
Histogramd] v v v v
Parzen O O v v v
win-
dows
Parametric [ v O O O v
density
estima-
tion
GMM O v O O O v
EVT O O
kNN v (if O O
proto-
typing)
kmeans O
kmedoids v
Fuzzy v v v
clus-
tering
tech-
niques
Unsuperviised v
NN
MVE O v O
and
Convex
Peeling
SVM v v v
KPCA v O O O v O

Table 3.1: Pros and cons of the novelty detection techniques
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Low computational complexity and low
storage requirement
Training Classification

Histograms v v
Parzen windows O 0
Parametric density esti- | v/ v
mation
GMM v v
EVT
kNN 0 v (if prototyping)
kmeans
kmedoids
Fuzzy clustering tech-
niques
MVE and Convex Peel-
ing
SVM 0 v
Supervised NN
KPCA u O

Table 3.2: Pros and cons of the novelty detection techniques
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Summary

In this chapter, we will see how the work of Chapter 2 can be used together with one-class
(and possibly other) classifiers in such a way that the outputs of the different classifiers
may be expressed in a common framework, namely in the form of belief functions. The
latter can then be compared or combined.

Let us consider a system that can only be in two possible situations: the reference state wy,
or a condition w; including all other possible states. The problem under consideration is
the assessment of the hypothesis that the system is in state wy when the only available
information about the system is a sample of observations xy, ..., X of some variables,
representative of the system state, conditioned on wy.

We suggest a three step scheme to solve this problem:

1. Build a novelty measure T from xq, ..., Xn and, given the observed sample t1, ..., t,
of T for the training data, build a belief function that quantifies our belief in future
values of T drawn from the same distribution;

2. Build two belief functions that quantify our belief in T given that the system is in
the normal state wy or in any other state state w;, respectively;

3. Reverse the conditioning so as to build a belief function that quantifies our belief in
the system state, given T = t,.

The reader is referred to Chapter 2 for Step 1. Steps 2 and 3 are detailed in the present
chapter, and different hypotheses are taken into consideration. A GBT-based solution is
detailed first. Then, the concept of cognitive inequality is introduced and two models
based on this notion are presented. Finally, several examples of applications are given.

Résumé

Dans ce chapitre, nous expliquons comment les travaux du chapitre 2 peuvent étre util-
isés avec les classitfieurs a une ou plusieurs classes de maniere a ce que les sorties des
différents classifieurs puissent étre exprimées dans un référentiel commun, sous la forme
de fonctions de croyance. Ces derniéres peuvent étre ensuite combinées ou comparées.
Considérons un systeme qui peut se trouver dans deux situations seulement: un état
de référence wy, ou une situation wy qui comprend tous les autres états possibles. Le
probléme considéré est le test de I'hypothése selon laquelle le systéme est dans I’état wy
lorsque la seule information disponible sur le systéme est un échantillon x,...,Xn de
certaines variables représentatives de I'état du systéme, conditionné par rapport a wy.
Nous suggérons une procédure en trois étapes:

1. Construire une mesure de nouveauté T a partir de xy,...,x, et, étant donnée les
valeurs observées t1,...,t, de T pour les données d’apprentissage, construire une
fonction de croyance qui quantifie notre croyance dans de futures valeurs de T
issues de la méme distribution;

2. Construire deux fonctions de croyance qui quantitfient notre croyance dans la valeur
de T sachant que le systeme est, respectivement, dans I’état de référence wy ou dans
n’importe quel autre état wy;

3. Renverser le conditionnement afin d’obtenir la fonction de croyance sur I’état du
systeme connaissant la valeur T = t, de T.

Le lecteur est renvoyé au chapitre 2 pour la premiére étape. Les étapes deux et trois
sont détaillées dans le présent chapitre, et différentes hypothéses sont considérées. Une
solution basée sur le théoréme de Bayes généralisé est détaillée pour commencer. Ensuite,
le concept d’inégalité cognitive est introduit, et deux modéles basés sur cette notion sont
présentés. Finalement, plusieurs exemples sont donnés.
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4.1 Introduction

As outlined in the previous chapter, there exist a wide variety of novelty detection al-
gorithms, none of which is best in all situations and for all types of data. In industry,
complex classification tasks such as, e.g., the sorting of letters in the post, chemical,
mechanical or other system monitoring applications, etc, are carried out by existing clas-
sifiers and show good results. However, due to the ever increasing market competition,
there is always a need to improve these results again and again. There seem to be no
point in trying to propose yet another classifier, which will just be as good as any other,
unless it is extremely application specific, and therefore not very attractive as it will not
be very (easily) evolutive. Future seems to lie in hybrid systems, that combine several
existing classifiers [57].

The combination of information is possible in many frameworks such as probability
and possibility theory, fuzzy sets theory and belief function theory. In each of these frame-
works, there exist a number of combination rules, to be chosen depending on whether
the data to be combined are independent or not, equally reliable or not, etc. However,
the application of those rules requires the information to be expressed in a common
framework, and this is what Chapter 2 was mainly concerned with.

In this chapter, we will see how the work of Chapter 2 can be used together with
one-class (and possibly other) classifiers so that the output of the different classifiers may
be expressed in a common framework, namely in the form of belief functions. The latter
can then be compared or combined. Hence, our purpose is not to propose a new novelty
detection technique but to make the most of existing classifiers.

Building on previous work reported in [5, 8], we show how to convert the outputs of
one-class classifiers such as one-class SVMs or KPCA into belief functions.

We will see that the use of belief functions allows a good exploitation of the available
information. In effect, most classifiers provide crisp answers through thresholding a
statistic representative of the state of the system under study. This leads to a loss of
information, as no assessment of the decision (e.g., distance to the threshold) is carried
out to the final output and thus to the user. The belief functions we obtain are both
representative of the value of the statistic and of the uncertainty attached to it, thus
allowing decision to be made in full knowledge.

Furthermore, expressing one-class and multi-class classifiers in a common framework
allows to provide simple solutions to different fusion problems, such as the combination
of several one-class classifiers based on different features or different learning algorithms,
or the combination of one-class and multi-class classifiers built from different sets of data.

This chapter is organized as follows. A general approach to the problem, divided in
three steps, is first presented. The reader is referred to Chapter 2 for Step 1. Steps 2 and
3 are then detailed for a first model, based on the GBT. Then, the concept of cognitive
inequality is introduced, with two definitions, and the least committed belief functions
satisfying each of this inequalities are presented. After that, two models based on the
notion of cognitive inequality are presented. Steps 2 and 3 are detailed for each of these
models. Finally, several examples of application are given.

4.2 General approach

One-class classification, or novelty detection, consists in assessing to what extent an
observation may be deemed to correspond to a given model. In other words, given a
set of observations xy,...,Xxn drawn from a given distribution, one-class classifiers are
used to determine whether an unknown, new point, comes from the same distribution or
not. Training the classifier to this task consists in building a novelty measure T € 7 C R
as a function of xg,...,xn using, e.g., (3.20) or (3.16), whose value will be small in the
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region of space containing the data xq,...,Xn, and larger as the distance to this region
increases. Thus, T will be representative of the state of a system at a given time. A new
observation is then rejected if the value of T exceeds some threshold.

The problem under consideration is the assessment of the hypothesis that a system is
in class wp when the only available information about the system concerns the distribu-
tion of statistic T conditioned on wy.

Let QO = {wo, w1 } be the set of possible states of the system, and our frame of discern-
ment. Let xq,...,Xn be a set of examples available for wy, the latter being the normal or
reference state of the system under study. Additionally, let w; be the set of all other states,
for which no data is available. Having observed a value t. of T, we want to define a bba
m©[t,] on Q, that quantifies our belief about the system state given t.. Our approach is
based on the following three-step procedure:

1. Build a novelty measure T from xq, ..., X and, given the observed sample ty, ..., t,
of T for the training data, build a predictive belief function m? that quantifies our
belief in future values of T drawn from the same distribution;

2. Build two belief functions m? [wp] and m7 [w;] that quantify our belief in T given
that the system is in the normal state wy or in any other state state wj, respectively;

3. Reverse the conditioning in order to build a belief function m[t.] that quantifies
out belief in the system state, given T = ¢,.

Different approaches to these three steps will be detailed in the sequel. They will all
be illustrated with the following toy example.

Example 15. (Ring data) Consider a two-dimensional data set that contains 1202 points. The
first and main part of the data set (800 points) is built as follows. The first component of the data,
x1, is uniformly distributed over [—5; 5], and the second component, xy, is such that x% + x% = 25.
Uniform noise is added to both components. This subset of the data is shaped as a ring. Another
402 points uniformly distributed on a circle of diameter 10 are added inside the ring, as shown in
Figure 4.1.
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Figure 4.1: The ring data set.

4.3 Step 1: building of m?

During step 1, given observations X1, . . ., Xn, @ novelty measure T needs to be built. Any
one-class classifier may be used for that purpose. As already mentioned, it is possible to
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use (3.20) or (3.16), but simple density estimation or any other novelty measure may
be used as well. From observations of the obtained values t4,...,t, of statistic T, a
predictive bba m? on future values of T drawn from the same distribution may be built.
The reader is referred to Chapter 2 for a description of how to build such a belief function.
In the sequel, and by construction, bba m? will be either a discrete or a continuous belief
functionon 7 C R.

Example 16. The result of the application of two of the techniques of Chapter 2 on the ring data
is shown below.

Figure 4.2 shows a contour plot of statistic T = —f(x) computed using (3.20), with a
Gaussian kernel k(x,y) = exp(||x — y||?/(20?)). Parameter v was set to 0.5, and the kernel
bandwidth was defined as 0.7 times the mean Euclidean distance between two training vectors (It
was suggested in [25] to use a half of this distance but adjusting to 0.7 times the distance gives
better results in this particular case). The source code for the calculation of the SVM is Canu et
al.’s and may be found at [19]. We can see that the support of the distribution is well approximated
by contour lines of f(x). A novelty detection rule may be implemented by rejecting patterns for
which — f(x) is higher than some threshold.

Contour-lines of statistic T, SVM
10 T P e T

-10 | | | - ~ | | |
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4.2: Contour lines of the SVM novelty measure T = —f(x) for the ring data set.

Figure 4.3 shows the profile function and contour lines of pl, obtained from T via Kriegler and
Held’s algorithm as described in Section 2.2.3. Note that Figure 4.3 shows the contour lines of pl.
with respect to the value of statistic T, and Figure 4.4 shows the contour lines of pl. with respect
to the position of the data. In the sequel, the method presented in Section 2.2.3 will be termed KH
method.

Figure 4.5 shows the profile function and contour lines of pl. as obtained via Cheng and Iles’
continuous confidence band as described in Section 2.2.4 (the technique described there will be
referred to as CI method). Figure 4.6 shows the position of the contour lines of pl. with respect to
that of the data.
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Figure 4.3: Plausibility function obtained via Kriegler and Held’s algorithm (ring data).

Contour-lines of PI, SVM, KH
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Figure 4.4: Contour-lines of the plausibility function obtained by the KH method, with respect to
the position of the data (ring data).
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Figure 4.5: Plausibility function as obtained via the CI method (ring data).
Contour-lines of PI, SVM, ClI
8 T T
6 - -
4 - -
2 - -
0 - -
_2 - -
_4 - -
_6 - -
_8 | | | | | | | | | |
-10 -8 -6 -4 -2 2 4 6 8 10

Figure 4.6: Contour-lines of the plausibility function obtained by the CI method, with respect to
the position of the data (ring data).
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4.4 Step 2 and 3: Solution using the GBT

In this section, we will introduce the straight-forward most (though maybe not the best)
solution to perform Steps 2 and 3, which may be obtained through the GBT. In the sequel,
plT [wo] and pI7 [w;] will be respectively denoted plZ and pI? or even ply and pl; where
there is no possible ambiguity. The associated bba will be respectively termed m! and
m17, or my and m;.

As we know nothing on the behaviour of T when w; holds, the information we have
at our disposal in this respect can be modeled with the vacuous belief function:

pll(A)=1, VAcT. (4.1)

On the other hand, m? represents our belief on T drawn from the same distribution

than those obtained when the system is in state wy. Consequently, we can take m] = m?.

Equation (1.34) thus yields:

mt] = {wr }o O fwo ). (4.2)
Hence, from (4.1) and (4.2),
m2[t.]({wo}) = 0 (4.3)
mt]({wn}) = 1-plf (t) (4.4)
mt)(Q) = pl (k). (4.5)

Interpretation: If the value of T is completely plausible assuming wy to be the present
state (pIf (t.) = 1), it is not possible to say whether the system is in state wp or in any
other state that yields similar values of T. Thus, no value of T ever supports wy only,
leading to (4.3). Moreover, the nearer the values of T to those obtained under wy, the more
plausible Q) is, hence (4.5). Finally, the more the value of T differs from those obtained
when wy holds, the greater the belief we have in w;: from that we get (4.4).

Example 17. This solution is illustrated in Figures 4.7 and 4.8, for the ring data set, ply being
obtained via the KH algorithm (cf. Figure 4.3).

A drawback of this method is that, in the specific case where pI is continuous and
Bayesian, and t. is a singleton, then ply(t.) equals zero. Equation (4.4) thus becomes:

mt)({wi}) =1-plf (L) =1, (4.6)

and the conclusion is that we always assign full belief to w;, without taking the value
of t. into account. There is a paradox there, but we argue that the problem is not in
formula (4.3-4.5). In effect, when the belief about T is represented by a probability density
function fr, it does not really make sense to assume that ply(t) = O forall t € 7. As
an alternative, it seems more reasonable to use the plausibility function whose pignistic
transform equals fr (See Section 2.3).

Example 18. This solution is illustrated in Figures 4.9 and 4.10, for the ring data set, ply being
obtained via the CI method (cf. Figure 4.5).
4.5 The cognitive inequality

4.5.1 Definition1

We considered up to now the case were the only available information is related to one of
the classes. Nevertheless, some sort of a priori information is quite often available about
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GBT solution, discrete case
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Figure 4.7: Bba on () knowing T = t,, GBT solution, discrete case (ring data), for ply obtained via
Kriegler and Held’s algorithm.

the other class, though it may be very weak. As any piece of knowledge can be turned
into a belief function, no matter how incomplete or scarce it might be, there is no reason
not to use it when it is available.

To keep things to a general level, let us use w, and wy, instead of wy and w; as two
different states of the considered system, and let variable T be a variable whose values
depends on the state of the system. Let pl, = pl[w,] be the belief function representing
your belief on the value of variable T when the system is in condition w, and pl, =
plwy] be the belief function representing your belief on the value of variable T under the
hypothesis that the system is in condition wy,.

Suppose you know for a fact that variable T tends to be bigger when the system is
in a well-defined condition wj, than when the system is in some other condition w, (for
example, the temperature in the oven tends to be warmer when the oven is on (wy) than
when the oven is off (w,)).

In the probability theory, a r.v. X is said to be greater than another r.v. Y iff

Fx(x) < Fy(x), Vx, 4.7)
& Px((—o0;x]) < Py((—o0;x]), Vx, (4.8)
& Px((x400)) < Py((x;+00)), V. (4.9)

In the belief function theory, there exist two distinct ways of expressing this: the first
is based on belief functions, the other on plausibility functions. We may write:

plT ((—o0;t]) < plT ((—o0;t]), VteER. (4.10)

or
belf ((—oo;t]) < bel? ((—o0;t]), VteER. (4.11)

Note that both (4.10) and (4.11) boil down to stochastic inequality when plaT and prT
(and therefore bel? and bel7 ) are probability measures. They will thus be termed cognitive
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Contour-lines of m(ml), SVM, KH, GBT solution
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Figure 4.8: Contour-lines of m?(w;) knowing T = t., GBT solution, discrete case (ring data), for
ply obtained via the KH method.

GBT solution, continuous case, m calculated directly
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Figure 4.9: Bba on () knowing T = t,, GBT solution, continuous case (ring data) for ply obtained
via the CI method.
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Contour-lines of m(u)l), SVM, GBT solution
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Figure 4.10: Contour-lines of m(w; ) knowing T = t,, GBT solution, (ring data), for ply obtained
via the CI method.
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inequalities. We will now use use (4.10), which will be called type I cognitive inequality. A
second type will be defined later.

Suppose now that pl, is known and that the only available information about pl; is
represented by (4.10). Let us build the least committed belief function plj, satisfying the
constraints enforced by this equation.

4.5.2 Determining the LCBF satisfying a cognitive inequality of type I
Case where pl, is a discrete belief function on 7 C R

Let maT be a bba on 7 C R with a finite number of focal elements I4,..., I, of the
form I; = (a;,b;]. By construction, pI7 (—oo;t) is a left continuous step function whose
discontinuity point a; < a... < a, are the lower bounds of the focal elements of maT,
sorted in increasing order!.

The least committed a belief function, the greater the associated plausibility, hence
the least committed BF verifying (4.10), is the ones that maximizes plausibilities, i.e. the

one for which the equality is reached for all t. It may be expressed as follows:

my(—o0; +00) = pl,((—o0;a1]) 4.12)
my(a;+o0) = pl((—o0;a; +1]) — pla((—o0;a;]), Vi=1,...,n—1 (4.13)
my(ay; +00) = 1— ply((—o0;ay]) (4.14)

Proof. e Inorder to get pIf ((—oo;t]) = pIZ ((—o0;t]), Vt € (—00;a1], the mass pl,((—oo; t1])
must be allocated to the biggest possible interval that intersects (—oo;a;], that is,
(—o0; +00), hence we get Equation (4.12).

e So asto make sure that pIf ((—oo; t]) < pIZ ((—o0;t]), Vt € (a1;a2), amass pl,((—o0;a]) —
pla((—o0; a1]) must be allocated to the biggest possible interval that intersects (—oo; a5]
but not (—oo;a1], i.e. (a1; +00), therefore:

my(ay; +00) = ply(—00;a3]) — pla(—o0;a1]). (4.15)

e Again, a mass pl,((—o0;a3]) — pla((—o0; a2]) must be allocated to the biggest pos-
sible interval that intersects (—oo;a3] but not (—c0;a,], i < 3, so as to ensure that
plT ((—o0;t]) < pIT ((—oo;t]), Vt € (a; as). This interval is (ap; +0), thus:

my(ag; +00) = ply(—o0;a3]) — ply(—o0; az]). (4.16)

e The same reasoning holds for any interval (a;; ;11], leading to (4.13).

e Finally, a mass pl,((—o0; +00]) — pl,((—00; a,,]) must be allocated to the biggest pos-
sible interval that intersects (—oo; a,] but not (—co;a;],i < 1, so that pIf ((—oo;t]) <
pl7 ((—oo;t]), Vt € (a,; +o0). This interval is (a,; +o0), yielding Equation (4.14).

O

Remark 11. The focal sets are nested. Subsequently, function ply is a possibility distribution. It
increases over R, and

ply(t) = ply((—o0; t]). (4.17)

Remark 12. By misuse of notations, pl(t)=pl({t}). Similarly, whenever pl is a possibility, the
possibility measure and the possibility distribution are both denoted pl in the sequel.

Remark 13. Considering a bba m, with focal elements I; of the form [a;, b;] would not change the
result.

IWithout loss of generality, it is supposed here that the a; are all distinct.
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Link between the focal elements of m, and those of m;, The function t — pl,((—oo; t])
is discontinuous at points a; such that (a;; b;] is a focal element of pl,. The corresponding
mass is m,((a; b)) = pla((—o0; a;41]) — pla((—o0; a;]). Consequently, m;, may be directly
built from m, by transferring the mass allocated to each focal element (a;; b;] of m, onto
(aj; +00).

Case where pl, is a continuous belief functionon 7 C R

Let m, be a bbd. By construction, pl,((—o0;¢]) is a function increasing over R, V¢. In that
case,

Proposition 6. the least committed belief function bel! compatible with constraints (4.29) is
defined by the following bbd:

mi (t; +00) = /t+oo mq(t,v)do (4.18)

Proof. As a belief function pl] is less committed than another belief function pI7 iff
plT (A) > pl¥ (A), VA € T, the least committed belief function plj, satisfying (4.10) is
the one that maximizes pl, under the constraint of Equation (4.10). Consequently, the
LCBF satistying (4.10) is the one for which the equality in (4.10) is reached, if such a BF
exists. Hence we need:

ply((—o0;t]) = pla((—oo;t]), ,VEteT. (4.19)

Now, pl,((—oo;t]) is the integral of bdd m, on all intervals whose intersection with
(—oo; t] is not empty. Let dt be an infinitesimal quantity. Then pl,((—oo;t — dt]) is the
integral of bdd m, on all intervals whose intersection with (—co;t — df| is not empty.
Hence, the difference pl,((—oco;t]) — pl,((—oo; t — dt]) is the integral of m, on all intervals
intersecting with (—oo; t] but not with (—oo; t — dt] (cf. shaded area on Figure 4.11). The
lower bound u of such intervals may vary between t — dt and ¢, while their upper bound
may vary between u = max(u, t — dt) and +oo.

Y £ It t 400
—+00
t
t—dt
LEGEND :
7772 pla((—ocit)
N pla (005t — dt])

Figure 4.11: Representation of the integration area for the plausibility function

Hence,
A(m) = pla((—o0;t]) — pla((—o0; t — dt]) (4.20)
t +o0
— / / mg(u,v)dodu, (4.21)
u=t—dt Jo=max(u,t—dt)

and, in this particular case, max(u, t — dt) = u.
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As we require

ply((—oo;t]) = pla((—o0;t])) (4.22)
and
ply((—oo;t —dt]) = ply((—o0; t — dt]), (4.23)
we also obviously require
plo((—eo;t]) — ply((—oco;t — dt]) = pla((—00;t]) — pla((—o00;t —d]). (4.24)

Thus, the LCBF my, that satisfies this equality is the one that allocates the amount of belief
A(m) to the biggest possible interval that intersects with (—oo; t| but not with (—oo; t — dt],
namely (t — dt; +c0). Therefore, my, is the bbd such that

my(t — dt, +00) / / mq (1, v)dvdu. (4.25)
u=t—dt Jo=max(u,t—dt)

When dt — 0, this becomes:
—+00
my(t, +00) = / mg(t,v)dv. (4.26)
o=t

Subsequently, masses m, are allocated to intervals of the form (t; +o0), with t € R.
It may be checked that requirement (4.10) is met:

t
pl((—ooit]) = / iy (1; +0)du
= / ) /+oo (u,v)dodu (4.27)

= a

4.5.3 Definition 2

We supposed up to now that variable T tends to be bigger when the system is in state wy,
than when the system is in state w,. Suppose now that we want to express the opposite
hypothesis, i.e. variable T tends to be smaller when the system is in state wj;, than when
the system is in state wj.

In terms of belief functions, this statement may be expressed as follows:

plT ((—o0;t]) < plT ((—o0;t]), VtER. (4.28)

Alternately, we may try to express our hypothesis with belief functions instead of plausi-
bility functions. It yields:

el ((—oo;t]) < bell ((—oo;t]), VtER,
& 1—bell ((—o0;t]) >1—bell ((—o0;t]), VtER,
& pll((E+) > plf (5+0)), VteR. (4.29)

Remark 14. In the belief function theory, there exist two distinct notions of cognitive inequality,
namely (4.10) (called type I) and (4.29), which will be termed type Il in the sequel.

Now, it may be shown that trying to compute the LCBF satisfying requirement (4.28)
systematically leads to the vacuous belief function. On the other end, we will show that
trying to compute the LCBF satisfying requirement (4.29) does not lead to the vacuous
belief function. Equation (4.10) and (4.29) define two forms of cognitive inequalities. The
best possible use of the available knowledge is made when the one that does not lead to
the vacuous belief function for plj, is used.
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4.5.4 Determining the LCBF satisfying a cognitive inequality of type II
Case where pl, is a discrete belief function on 7 C R

The function t +— pl,((t;+00)) is a right continuous step function whose discontinuity
points are the upper bounds b; of the focal intervals (a;; b;], sorted in increasing order.
The least committed bba m, satisfying (4.29) is

mf (—co,+00) = pla((by; +00)), (4.30)
mf (—oo,b;) = plI((bi_1,...,+00)) — plZ ((by,...,+00)), (4.31)
myl (—oo,b1) = 1= pla((by;+00)). (4.32)

Proof. As for the type I case, the idea is to try and get an equality for relation (4.29), and
to deduce bba m;, from this. Note that pl,((t; +00)) is a right continuous step function
decreasing over R, and whose discontinuity points #; are the upper bounds b(;) of the
focal elements of m,, sorted in increasing order. Deriving equation (4.29) for each t;
successively leads to the above result. O

Remark 15. Bba my, may directly be built from m, by transferring the masses allocated to each
focal elements (a;; b;| of m, onto (—oo; by].

Remark 16. Bba my, is consonant and ply(t) = ply((£;+00)) = pla((£;+00)), Vt € R.

Case where pl, is a continuous belief functionon 7 C R

The line of reasoning of Section 4.5.4 directly extends to the case where m? is a bbd. In
that case,

Proposition 7. the least committed belief function bell compatible with constraints (4.29) is
defined by the following bbd:

t
ml (—oo,t) :/ mg(u, t)du (4.33)

Proof. The proof is similar to that of the type I case. The reader is referred to appendix C
for details. o

4.6 Steps 2 and 3: Solutions using the cognitive inequality

We will now introduce two solutions to the novelty detection problem using the cognitive
inequality.

4.6.1 Model1l
Description of the model

Remind that the problem under consideration is the assessment of the hypothesis that a
system is in class wy when the only available information about the system concerns the
distribution of statistic T conditioned on wy.

We defined wy as the normal or reference state of the system under study, for which
a set x1,...,Xn of examples is available, and w; is the set of all other states, for which
no data is available. During step 1, a novelty measure T was built from observations
X1,...,Xn. Having observed a value t, of T, we want to define a bba mQ[t*] on (), that
quantifies our belief about the system state given t,. We first need to built m{ = m7 [wy]
and m? = m7 [w1].
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Step 2: Building of mOT and m7

As in the GBT solution (see Section 4.4), we will take mOT = m?, as m? represents

our belief on T drawn from the same distribution as those obtained from training data
collected when the system is in state wy.

Additionally, let us suppose that, by construction, our novelty measure T tends to be
larger when w; holds than when wy is true?. This corresponds to (4.10), and p/; may thus
be deduced from ply by reasoning as in Section 4.5.2, with ply = pl, and pl; = pl;, and
mo = m, and m; = my. It yields:

my(—o0; +00) = ply((—o0;m]), (4.34)
ml(ai; +OO) = plo((—OO,‘&lH_l]) —plo((—oo;ai]), Vi = 1,...,11—1, (435)
my(ay; +00) = 1— plo((—o0;ay,)). (4.36)
Remark 17. pl; is the possibility distribution defined by:
pL(E) = plo((—eo,1]), VEER. (437)

Step 3: Building of m“[t]

If we follow the reasoning of Section 4.2, we should now apply the GBT to mOT and mlT in
order to obtain m[t.]. However, remember that anecessary condition for the application
of the GBT is the independence of m] and m? . It happens that, as we built m? from m7,

they are not independent. Consequently, the conjunctive combination rule cannot be

applied here.
We need to build m7 * such that:
mT > wed x T = mT (4.38)
and m7*{w} x TV = m?, (4.39)

and then condition it with respect to t, so as to get m[t.].
e Combination of my and m;:

Let I; to I,, be the focal elements of mOT . To each I; = (a;, b;] is associated I/, focal element
of m7, such that: I! = (a;, = ). Thus,

mT* (I x {wo} U I x {wr }) = m (I). (4.40)
e Conditioning with respect to t, C 7:

Note that |t.| may be greater than 1 and that ¢, is not necessarily an interval. The
following relations hold:

plOt]({wo}) = PZTEt*)

plt]({wn}) = oo, sup(t.))
= pzT (t) (4.41)
pl2t)(@) = 1—PloT(—0°,sup(f*))
= 1-plf(t.).
Hence,
m?t](wo) = 0
mt](wr) = P?E ) sul};((t*)))—;?lg (t)
= P t) — ply (ts
WOR(Q) = pll(e) #42)
m[t](@) = 1—29107( oo, sup(t.))
= 1-plf(t).

2This is very often true for novelty measures.



4.6. Clneg-based solutions

119

e Interpretation: This end result may be interpreted as follows.

— When the values of T are similar to those obtained when in state wy, nothing can
be said about them being from one class or the other, and the belief is thus spread

onto Q.

— When the values of T are smaller than those we get when in condition wy, there
is an inconsistency with our original information according to which, when there
is a departure from state wp, T should tend to be bigger than in state wg. The
corresponding amount of belief is thus allocated to the empty set, reflecting this

conflict.

— When T gets bigger than its usual values when the system is in state wy, then our
belief turns to w1, in agreement with (4.10).

e Finally, no value of T ever supports wy only.

Note that normalizing yields:

0
TPZI[ ()
ply (t:)

plf (t.)

(4.43)

Example 19. The result is illustrated in Figures 4.12 and 4.13, for the ring data set, ply being
obtained via Kriegler and Held's algorithm (cf. Figure 4.3). It may be observed that there is an
improvement on the GBT solution as most of the data inside the ring induce a low mass of belief

on wy.

0.9F
0.8F
0.7F
0.6F
05F
041
03F

0.2

Model 1, discrete case

L
L ——min@
;- = ity
. ()
/ mi(w)

Figure 4.12: Bba on () knowing T = t,, Model 1, discrete case (ring data), for ply obtained via
Kriegler and Held’s algorithm.

Remark 18. Note that, if ply is Bayesian, we may end up always deciding in favour of wy, but
the remark of 4.4 still holds: if our information with respect to wy is a probability, then we should
use the belief function whose pignistic transform is this probability, and not the belief function

whose bba is this probability.
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Contour-lines of m(ool), model 1, discrete case

-8 -6 -4 -2 0 2 4 6 8

Figure 4.13: Contour-lines of m(w; ) knowing T = t., Model 1, discrete case (ring data), for ply
obtained via Kriegler and Held’s algorithm.
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Example 20. The result is illustrated in Figures 4.14 and 4.15, for the ring data set, ply being
obtained via the CI method ((cf. Figure 4.5)). As required in this model, data for which the value
of T = —f(x) is lower than for the majority of the training data do not induce a high mass of
belief on wy whereas data for which the value of T is higher than for the majority of the training
data do. The qualitative information that “the value of T gets bigger for abnormal data” has
been successfully incorporated in the model, and leads to an improvement on the results obtained
by the GBT solution.

Model 1, continuous case, m calculated directly
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Figure 4.14: Bba on () knowing T = t,, Model 1, continuous case (ring data), for ply obtained via
Cheng and Iles’ confidence-band.

4.6.2 Model 2
Description of the model

In the previous model, we considered that ply was built directly from the training data,
and that, given the fact that T tends to be larger when w; holds than when wy is true, pl;
could be deduced from ply through (4.10).

Alternately, we may consider, as for the GBT solution, that we know nothing on the
behaviour of T when w; holds, hence the information we have at our disposal in this
respect can be modeled with the vacuous belief function:

plT (A) = plT[wy](A) =1, YACR.

However, we still need to take into account the fact that T was built in such a way
that its value increases in case of departure from the normal state. Let us put it this way:
as T tends to be larger when w; holds than when wy is true, we know that values of T
smaller than those encountered in the training data do not indicate departure from the
normal state.

It is this statement, denoted S;, that we now would like to represent in terms of belief
functions. We may thus consider a frame of discernment Q = {wy, wyr, wi}, where wy
is the observed, normal state, for which training data are collected, and wy» corresponds
to non-observed states leading to values of T smaller than those observed for the normal
state. We do not need to detect states corresponding to wy», as only an increase in the
value of T would be of concern to us. Consequently, we can write Q) = {wy, w; }, with
wo = {wy, wyr }, and build a belief function on Q) that does not distinguish between states
wy and wyr.
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Contour-lines of m(ool), SVM, model 1

Figure 4.15: Contour-lines of mﬂ(wl), knowing T = t., Model 1, discrete case (ring data), for ply
obtained via the CI method.
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Additionally, bba m? obtained at Step 1 represents our belief on T drawn from the
same distribution than those obtained when the system is in state wy. Consequently, we
can take m7 [wy| = m} = m7.

As explained in Section 4.5.3, statement S; may then be turned into the following
constraint:

plT ((t,+00)) < plT ((t, +00)), VtER. (4.44)

where:

e pll is the predictive plausibility function associated with the bba mJ, computed
in the step 1 —that represents our belief in future values of T drawn from exactly
the same distribution as the learning sample—, which corresponds to observations
of T gathered while the system was in a normal state, under some well-defined
experimental conditions EC,

e and pIf = bel”[wy] denotes the plausibility function associated with bba m7 [wy]
on the value of T knowing that the system is in the normal state wy.

We will now see how to solve our novelty detection problem when modeled in this
way.

Step 2: Building of m7 [wy] and m7 [w1]

Equation (4.44) defines a set of constraints that should be statisfied by plI. In the TBM,
the least commitment principle dictates to select the least committed belief function, among
those compatible with a set of constraints [116].

The solution to this problem has been described in Section 4.5.4. With my = m, and
mo = my, we get, in the discrete case,

mg (—oo,+00) = ply((an; +00)), (4.45)
md (—o0,a;) = plg ((ai_1,...,+0)) — plg ((a;,...,+0)), (4.46)
mj (—o0,a1) = 1— ply((a;+00)), (4.47)
and in the continuous case,
t
md (—oo,t) = /_ me (u; t)du; (4.48)
(4.49)

or, equivalently, in both cases, ply is the possibility distribution defined by ply(t) =
ply ((t; +0)), Vt € R. As already mentionned, m; is the vacuous bba.

Special case: mg: built from a confidence band Suppose now that mg: was built using
the confidence band based method described in Section 2.2.3 or 2.2.4. In order to build
the least committed belief function compatible with (4.29), first observe that ply satisfies

plZ ((t,400)) =1 —beld ((—o0,t]) =1 —E(t), (4.50)

where F is the step function defined by (2.22).
Hence pljy has a very simple expression

pll (1) =1—F(t), VteR, (4.51)

and plf (A) = sup,_, plZ (t) forall A C RR.
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Step 3: Constructing m[t]

The belief function bel? [wy] built in the previous step quantifies our beliefs on T, given
that the system is in state wy. As already mentioned, since no data is available regarding
state wy, our belief on T given wy is vacuous, i.e.,

plT [wi](A) = pIT (A) =1, VYACR. (4.52)

This time, mg and m; are independent, and the GBT therefore allows us to compute
our belief on () given that T € t, for any t, C IR. Using (1.34), we get:

m?t]({we}) = 0 (4.53)
mt)({w}) = 1-plg (t) (4.54)
met](Q) = pif (£). (4.55)

As ply is a possibility distribution decreasing over IR, this can be rewritten as:

m?[t]({we}) = 0 (4.56)
mt)({w}) = 1-plg (inf(t.)) (4.57)
mE](Q) = pld (inf(t.)). (4.58)

In the special case where ply has been calculated either from Kolmogorov’s or Cheng
and Iles’ confidence band, if ¢, = {t} (t. is a singleton), we get:

m[t]({wo}) = 0 (4.59)
mt)({wi}) = E(t) (4.60)
mA ) (Q) = 1—F(t). (4.61)

Note that this result has, again, a simple interpretation: a large value of T supports
the hypothesis that the system is not in the normal state. The degree of support increases
as a function of ¢.

On the contrary, a small value of T, similar to those obtained when the system is in
normal conditions, may occur either when the system is in a normal state, or when the
system is in an abnormal state that does not affect the values of T. Therefore, small values
of T are highly plausible under both wy and w; and they do not support any specific
hypothesis.

Example 21. The result is illustrated in Figures 4.16 and 4.17, for the ring data set, ply being
obtained via Cheng and lles” confidence-band as shown in Figure 4.5. The mass of belief on wq
increases with t. Again, the information according to which “values of T smaller than those
obtained for the training set do not indicate a departure from the normal state” has been
successfully incorporated in the model, and leads to an improvement on the results obtained by
the GBT solution.

4.7 Discussion

The use of the cognitive inequality is an obvious improvement to the simple GBT solu-
tion, as it allows the handling of additional, qualitative information. On the other hand,
it is more difficult to compare the relative quality of Models 1 and 2. Model 1 is very
simple and fairly straight-forward, but leads to a more complex solution than Model 2.
On the contrary, the latter is a little far-fetched, but leads to a very simple solution, and is
therefore very easy to use. This solution proved to show good performances in different
novelty detection applications, thus validating the model experimentally.
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Model 2, continuous case
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Figure 4.16: Bba on () knowing T = t,, Model 2, continuous case, for ply obtained via Cheng and

Iles’ confidence-band (ring data).

Contour-lines of m(wl), SVM, model 2
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Figure 4.17: Contour-lines of mQ(wl), knowing T = t,, Model 2, discrete case (ring data), for ply

obtained via the CI method.
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4.8 Examples

4.8.1 Simple novelty detection: example 1

The data set considered here is the breast-cancer data obtained from the UCI machine-
learning repository [89]. The patterns in this data set belong to two classes: benign
and malignant. Each pattern 