
par Astride Arégui

Détection de nouveauté dans le cadre

de la théorie des fonctions de croyance.

Application à la surveillance d’un

système d’incinération de déchets.

Thèse présentée

pour l’obtention du grade

de Docteur de l’UTC.

Soutenue le : 28 novembre 2007
Spécialité : Technologie de l’information et des systèmes





Détection de nouveauté dans le cadre de la
théorie des fonctions de croyance. Application
à la surveillance d’un système d’incinération

de déchets.

Thèse soutenue le 28 novembre 2007 devant le jury composé de :

Mr. Stéphane Canu Professor, Insa, Rouen (France) (Rapporteur)
Mr. Eyke Hüllermeier Professor, Philipps-Universität, Marburg (Germany) (Rapporteur)
M. Walter Schön Professor, UTC, Compiègne (France)
Mme. Xia Ding Expert Senior, CIRCEE, Le Pecq (France)
Mr. Thierry Denœux Professor, UTC, Compiègne (France) (Directeur de thèse)





A mes parents et grands-parents,
A Manu et Amélie,
et à Philippe Smets.





Thanks

My greatest thanks go to Pr. Thierry Denœux, who supervised this work with care and
rigour, and always took the time to assess the current work and new plans for the future
on a regular basis. He helped me face theoretical, technical and practical problems but
also human difficulties, and working with him taught me a lot in all these respects.

Xia Ding did an excellent job in interfacing industrial and academic points of view,
and the project would never have been so well defined without her experience, the
fineness of her analysis of practical situations, her technical knowledge, and her great
kindness. It was a pleasure to work with her during the last three years.

I am obliged to Farrock Fotoohi, who entrusted me with the task of solving the prob-
lem that was presented to him by Novergie’s Technical Direction, and to the latter, in the
persons of José de Freitas and Laure de Saint Phalle, who initiated the project. I am also
grateful to these last two people for introducing me to the waste incineration domain in
a most interesting way, supporting me in all the important steps of the project.

The help I received from the staff of our pilot plant was excellent. They welcomed me
warmly, provided me with all the information I needed, gave me a fantastic amount of
details and hints on how to monitor the process they are in charge of... They included me
and my project in their everyday routine with great enthusiasm, in spite of the additional
work it represented for them, and this was extremely helpful and encouraging. The
names of Mr. Guérin, Managing Director, Mr. Laverre, Technical Director, Frédéric,
Technical Manager, and Jean-Luc, who was my most enthusiastic teacher, deserve a
special mention.

I also wish to thank Séverine Pruvot for the amount of work she managed to fit in six
months, and for the motivation she showed in her work on the prototype we set in the
pilot plant. Experimental results would not have been obtained without her help.

I am extremely grateful to Eyke Hüllermeier for his very detailed evaluation of my
work, for the very interesting perspectives that arise from his report, and for a very
stimulating discussion during the viva. I want to show my gratitude to Stéphane Canu
as well, for accepting to evaluate my work, and for not bearing me a grudge for the fact
that we missed only by inches the opportunity to work together during these three years.
He, too, made very interesting remarks, which created interesting perspectives for future
work.

I am obligated to all the members of my jury for accepting to evaluate my work during
the viva. Thanks go again to Eyke, Stéphane, Thierry and Xia for this particular task, but
I really want to make a special mention to Pr. Walter Schön, who presided over this jury
with attention and kindness, and who showed great concern on and interest in my work
and during my presentation.

The atmosphere in the local team, that is, the whole département de Génie Informa-
tique (GI) and the Ecole Doctorale, –including secretaries, technicians, engineers, and re-
searchers of all kinds–, made it nice to work with them on an everyday basis. A particular
mention must be made here for those who helped me prepare my viva. Very special
thanks go to all the PhD students for the solidarity that exists in the team, and for the
smiles, kind words, coffee breaks, and for all their help that smoothed difficult times
down a lot. Discussions with the team of Thierry’s PhD students, my seniors, Benjamin
and David, but also Frédéric, Amel and all the others, were of course particularly helpful.

There are no words to tell friends, in and out of Compiègne, University of Technology,
what their support represented and still represents for me. Many thanks to:
Mélanie, Olivier, and Manon, for fantastically helpful discussions on the value of this

vii



PhD thesis and what to make of it in the future.
All my friends, for their everyday support in all respects, and here, particularly in con-
nection with this PhD project.
The PhD students of the département GI of Compiègne University for their technical
support in the lab, but also for making life in Compiègne much nicer than it would have
been without their contributions, together with those of other friends from Compiègne
and Picardie.

Last but not least, I am extremely grateful to my family for their support, and for all
the little things that made me be who and what I am, and allowed me to achieve all this.

Finally, to all these people, a single word, for anything you can say around it seems
to hide all the other things that weren’t and cannot be mentioned without making the list
endless: Thank you very much, MERCI BEAUCOUP à vous tous !

viii



Contents

Table of contents xi

Introduction 1

Belief functions 3

1 The TBM 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Discrete Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Belief Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Handling and Revision of Beliefs . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Continuous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Continuous Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 BF on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Belief Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.5 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Predictive BF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 From raw data to BF 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Type I PBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Confidence Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Discrete predictive belief function on a discrete domain . . . . . . . 41
2.2.3 Discrete predictive belief functions on R . . . . . . . . . . . . . . . 42
2.2.4 Continuous predictive belief functions on R . . . . . . . . . . . . . 46
2.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Type II PBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.1 Consonant Belief Function Induced by a Set of Pignistic Probabilities 55
2.3.2 Application to a Sample of a Discrete Random Variable . . . . . . . 57
2.3.3 Construction of P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.4 Determination of the q-MCD Possibility Distribution . . . . . . . . 59
2.3.5 Application to Continuous Parametric Models . . . . . . . . . . . . 62
2.3.6 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.7 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 classification example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

One-class classification 73

3 One-class classification 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Desired properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



3.2.1 Generalization ability . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.3 Computational qualities . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.1 Density based techniques . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2 Boundary based approaches . . . . . . . . . . . . . . . . . . . . . . 81
3.3.3 Reconstruction approaches . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.4 Clustering-based approaches . . . . . . . . . . . . . . . . . . . . . . 82
3.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 1-class classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.1 Density based approaches . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.2 Density based approaches . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.3 Clustering-based approaches . . . . . . . . . . . . . . . . . . . . . . 86
3.4.4 Reconstruction-based approaches . . . . . . . . . . . . . . . . . . . 87
3.4.5 Boundary-based approaches . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 From classifier to BF 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4 GBT solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5 The cognitive inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.1 Definition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5.2 Determining the LCBF satisfying a cognitive inequality of type I . 114
4.5.3 Definition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5.4 Determining the LCBF satisfying a cognitive inequality of type II . 117

4.6 CIneq-based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8.1 Simple novelty detection: example 1 . . . . . . . . . . . . . . . . . . 126
4.8.2 Simple novelty detection: example 2 . . . . . . . . . . . . . . . . . . 128
4.8.3 Classifier Fusion Example . . . . . . . . . . . . . . . . . . . . . . . . 128

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Monitoring of a waste incineration process 133

5 Application 135

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 The waste incineration process . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.1 Waste combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2.2 Energetic promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.3 Flue gas purification . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.4 Pilot plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 PMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Implementation and results 147

6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.1.1 General structure of the PMAT . . . . . . . . . . . . . . . . . . . . . 151
6.1.2 Implementation of the PMAT . . . . . . . . . . . . . . . . . . . . . . 153

x



6.1.3 Classifiers implemented in the PMAT . . . . . . . . . . . . . . . . . 156
6.2 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2.1 Case study examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.2 SVM-based classification . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.3 KPCA-based classification . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Conclusion and Perspectives 179

Appendices 191

A Additional PMAT units 193

B Intuitive justification of expressions (2.48), (2.57) and (2.58) 195

C Proof of Proposition 7 197

xi





Acronyms

bba basic belief assignment
bbd basic belief density
BF Belief Function
cdf cumulated density function
CI Cheng and Iles’ method
CIneq Cognitive Inequality
EVT Extreme Value Theory
FGCR Flue Gas Leaning Residue
GBT Generalized Bayes’ Theorem
GMM Gaussian Mixture Models
iff if and only if
KDE Kernel Density Estimation
KH Kriegler and Held method
KNN or kNN k Nearest Neighbours
(K)PCA (Kernel) Principal Component Analysis
KRE Kernel Reconstruction Error
LC Least Committed
LCBF Least Committed Belief Function
LCP Least Commitment Principle
MCD Most Committed Dominating
MVE Minimum Volume Ellipsoid
NN Neural Network
PBF Predictive Belief Function
p-box probability-box
PMAT Process Monitoring Assistance Tool
r.v. random variable
RSC Residual Sodium Chemicals
SPE Squared Prediction Error
SVM Support Vector Machine
T2 Hotelling’s statistic
TBM Transfereable Belief Model

xiii





Notations

A arbitrary subset of Ω or X
Aw simple bba such that m(A) = 1 − w and m(Ω) = w
B arbitrary subset of Ω or X
b implicability function
bel belief function
BetF cumulated pignistic density function
Bet f pignistic density function
BetP pignistic probability
d dimension of space
Dn Kolmogorov’s statistic
dn,α fractil of Dn of order α
F cumulated density function

F upper bound on F
F lower bound on F
f density function

f upper bound on f
f lower bound on f

G generalization matrix
H arbitrary subset of Ω or X
H separating hyperplane (SVM)
H transfer function (neural network)
I[α,β] set of closed intervals included in [α, β]
K kernel function
m mass of belief
m∗ normalized mass of belief
m∅ mass function allocating a mass of 1 to ∅

m
1 ∩©2

conjunctive combination of m1 and m2

m
1 ∪©2

disjunctive combination of m1 and m2

αm discounted mass of belief
O discrete variable taking values in Ω

o value of O
p number of retained principal components
P probability distribution
P probability measure
Π possibility distribution or measure
pl plausibility function
q commonality function
S arbitrary subset of Ω or X
S source of information
S specialization matrix
Sm Dempsterian specialization matrix based on m
T (discrete or continuous) arbitrary variable taking value in T
T domain of variable T
T[α,β] Triangular representation of I[α,β]

X continuous variable taking values in X
x value of X

xv



X continuous frame of discernement
α discounting rate, or false negative rate
β false positive rate
δ Dirac delta function
Φ mapping into a space in which K acts as a dot product
Ω discrete frame of discernment
ωi element of Ω

↓ projection (or conditioning)
⇓ marginalization
↑ ballooning extension
⇑ vacuous extension
∅ empty set
∩© conjunctive combination
∪© disjunctive combination
⊑pl pl-more committed
⊑q q-more committed
⊑s s-more committed

xvi



List of tables

1.1 Binary representation of the subsets of a frame of discernement Ω . . . . . 12
1.2 The conjunctive combination rule : the three suspects’ saga. . . . . . . . . 17
1.3 The disjunctive and conjunctive combination rules : the three suspects’ saga. 18
1.4 Pignistic probability associated with the disjunctive and conjunctive com-

bination rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1 Pignistic probabilities and corresponding q-LC isopignistic possibility dis-

tributions of Example 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2 Calculation of qmax for the data of Example 10. . . . . . . . . . . . . . . . . 57
2.3 Goodman simultaneous confidence intervals for the data of Example 11, at

confidence level 1 − α = 0.90. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4 Possibility distributions computed for the failure mode data of Example 12: 60
3.1 Pros and cons of the novelty detection techniques . . . . . . . . . . . . . . 98
3.2 Pros and cons of the novelty detection techniques . . . . . . . . . . . . . . 99
6.1 Variables to be monitored and associated process points . . . . . . . . . . . 152
6.2 Values of α and β obtained on the test data set for tpig = 0.95 and varying

values of C and h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3 Values of α and β obtained on the test data set for tpig = 0.9 and varying

values of C and h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.1 Variables to be monitored other than those mentioned in 6.1, associated

process points, and action to be taken. . . . . . . . . . . . . . . . . . . . . . 194

xvii





List of figures

1.1 Different types of bba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Consonant and bayesian bba . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Relationship between confidence measures . . . . . . . . . . . . . . . . . . 12
1.4 Marginalization and vacuous extension operations . . . . . . . . . . . . . . 19
1.5 Conditionning and ballooning extension . . . . . . . . . . . . . . . . . . . . 20
1.6 The three steps of the GBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Triangular representation of I[α,β]. . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Domains of integration for bel, pl and q. . . . . . . . . . . . . . . . . . . . . 26
1.9 q-LC possibility distribution induced by an exponential probability den-

sity E(µ), for three different values of µ. . . . . . . . . . . . . . . . . . . . . 29
1.10 q-LC possibility distribution induced by a normal probability density N (µ, σ2)

for µ = 0 and three different values of σ. . . . . . . . . . . . . . . . . . . . . 30
2.1 Sample cdf Sn and Kolmogorov confidence band at level 1 − α = 0.95 for

the bearings data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Continuous confidence band and cumulative density function estimated

through Cheng and Iles’ algorithm. . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Principle of the construction of a basic belief assignment from a p-box. . . 44
2.4 Focals intervals of the PBF constructed from the Kolmogorov confidence

band at level 1 − α = 0.95 (bearings data). . . . . . . . . . . . . . . . . . . . 45
2.5 Plausibility profile function (left) and pignistic probability density function

(right) of the discrete PBF constructed from the Kolmogorov confidence
band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Contour plots of functions bel(·; X)([x, y]), pl(·; X)([x, y]) and q(·; X)([x, y])
constructed from Kolomogorov’s confidence band . . . . . . . . . . . . . . 47

2.7 Plausibility profile function obtained from the continuous confidence band
of Figure 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 Contour plots of functions bel([x, y]; X), pl([x, y]; X) and q([x, y]; X) con-
structed from Cheng and Iles’ confidence band. . . . . . . . . . . . . . . . . 52

2.9 Definition of the q-most committed dominating (q-MCD) bba m∗ associ-
ated with a set P of probability distribution. . . . . . . . . . . . . . . . . . 56

2.10 Illustration of the approach introduced in [42]: . . . . . . . . . . . . . . . . 57
2.11 Plot of π∗(x) for the exponential distribution with x = 1, α = 0.1, and

n = 10, 30, 100 and ∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.12 Shape of Mood’s exact region: . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.13 Plot of π∗(x) for the normal distribution with x = 0, s2 = 1, α = 0.1,

α1 = α2, and n = 10, 30, 100 and ∞. . . . . . . . . . . . . . . . . . . . . . . 66
2.14 (a): Plot of pl(x|ω1) (solid lines) and pl(x|ω2) (dashed lines) . . . . . . . . 68
2.15 (a): Plot of pl(y|ω1) (solid lines) and pl(y|ω2) (dashed lines) . . . . . . . . 69
2.16 Box plots of error rates for the LC, MCD and CI methods as well as sensor

Sx alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1 Influence of the kernel on KDE . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 A formal neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3 Outlier detection through balloon plot . . . . . . . . . . . . . . . . . . . . . 93
3.4 Outlier detection through nested convex hull volume change . . . . . . . . 94
3.5 SVM-based one-class classification . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Separating hyperplanes H+1, H−1 and H for a toy example . . . . . . . . . 96
4.1 The ring data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xix



4.2 Contour lines of the SVM novelty measure T = − f (x) for the ring data set. 107
4.3 Plausibility function obtained via Kriegler and Held’s algorithm (ring data). 108
4.4 Contour-lines of the plausibility function obtained by the KH method,

with respect to the position of the data (ring data). . . . . . . . . . . . . . . 108
4.5 Plausibility function as obtained via the CI method (ring data). . . . . . . . 109
4.6 Contour-lines of the plausibility function obtained by the CI method, with

respect to the position of the data (ring data). . . . . . . . . . . . . . . . . . 109
4.7 Bba on Ω knowing T = t∗, GBT solution, discrete case (ring data), for pl0

obtained via Kriegler and Held’s algorithm. . . . . . . . . . . . . . . . . . . 111
4.8 Contour-lines of mΩ(ω1) knowing T = t∗, GBT solution, discrete case (ring

data), for pl0 obtained via the KH method. . . . . . . . . . . . . . . . . . . . 112
4.9 Bba on Ω knowing T = t∗, GBT solution, continuous case (ring data) for

pl0 obtained via the CI method. . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.10 Contour-lines of mΩ(ω1) knowing T = t∗, GBT solution, (ring data), for

pl0 obtained via the CI method. . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.11 Representation of the integration area for the plausibility function . . . . . 115
4.12 Bba on Ω knowing T = t∗, Model 1, discrete case (ring data), for pl0

obtained via Kriegler and Held’s algorithm. . . . . . . . . . . . . . . . . . . 119
4.13 Contour-lines of mΩ(ω1) knowing T = t∗, Model 1, discrete case (ring

data), for pl0 obtained via Kriegler and Held’s algorithm. . . . . . . . . . . 120
4.14 Bba on Ω knowing T = t∗, Model 1, continuous case (ring data), for pl0

obtained via Cheng and Iles’ confidence-band. . . . . . . . . . . . . . . . . 121
4.15 Contour-lines of mΩ(ω1), knowing T = t∗, Model 1, discrete case (ring

data), for pl0 obtained via the CI method. . . . . . . . . . . . . . . . . . . . 122
4.16 Bba on Ω knowing T = t∗, Model 2, continuous case, for pl0 obtained via

Cheng and Iles’ confidence-band (ring data). . . . . . . . . . . . . . . . . . 125
4.17 Contour-lines of mΩ(ω1), knowing T = t∗, Model 2, discrete case (ring

data), for pl0 obtained via the CI method. . . . . . . . . . . . . . . . . . . . 125
4.18 Kolmogorov confidence band around the distribution of the value of T for

a KPCA-based classifier (Breast-cancer data). . . . . . . . . . . . . . . . . . 126
4.19 Predictive belief function on the value of T for a KPCA-based classifier

(Breast-cancer data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.20 Pignistic probability function on ω1 for a KPCA-based classifier (Breast-

cancer data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.21 Kolmogorov confidence band around the distribution of the value of T for

a SVM-based classifier (Combustion data). . . . . . . . . . . . . . . . . . . 128
4.22 Predictive belief function on the value of T for a SVM-based classifier

(Combustion data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.23 Pignistic probability function on ω1 for a SVM-based classifier (Combus-

tion data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.24 Test estimates of the ROC curves for the three classifiers . . . . . . . . . . . 130
4.25 Zoom on the top left hand corner of Figure 4.24. . . . . . . . . . . . . . . . 131
5.1 Screen shot of one of the monitoring screen . . . . . . . . . . . . . . . . . . 140
5.2 Global balance sheet of a waste incineration process. . . . . . . . . . . . . . 142
5.3 The four oven combustion zones. . . . . . . . . . . . . . . . . . . . . . . . . 143
5.4 Fumes treatment route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.1 Physical structure of the PMAT (general organization) . . . . . . . . . . . . 154
6.2 A single unit of the PMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3 Matlab default simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.4 BetP(ω1) = g(− f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5 Parameter selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.6 Sensor breakdown detection, combustion data (Example 22, Section 6.2.1) 166

xx



6.7 Sensor breakdown detection, fumes data (Example 23, Section 6.2.1) . . . 167
6.8 Sensor decalibration detection, combustion data (Example 22, Section 6.2.1). 168
6.9 Sensor decalibration detection, fumes data (Example 23, Section 6.2.1). . . 169

6.10 Sensor decalibration detection, steam data. . . . . . . . . . . . . . . . . . . 170
6.11 Slow drift detection, combustion data (Example 22, Section 6.2.1). . . . . . 171
6.12 Slow drift detection, fumes data (Example 23, Section 6.2.1). . . . . . . . . 172
6.13 Slow drift detection, steam data. . . . . . . . . . . . . . . . . . . . . . . . . 173
6.14 Detection of a drift of the upper chamber sensor No.2. . . . . . . . . . . . . 174
6.15 Detection of a 10 degree drop of the flue gas temperature. . . . . . . . . . . 174
6.16 Attempts in smoothing the pignistic probability of fault . . . . . . . . . . . 176
B.1 Calculation of the least committed bel associated with a continuous confi-

dence band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
C.1 Representation of pl0([t − dt; +∞)) and pl0([t; +∞)) . . . . . . . . . . . . . 197

xxi





Introduction

Suez Environnement is one of the leading companies of the Water Distribution, Waste
Water Treatment and Waste Promotion Industry in France. Via some internal audit, the
group’s Waste Promotion Technical Direction noticed that the waste incineration process
monitoring was most of the time not complying with the simplest rules. For example, it
quite often happened that the percentage of oxygen in the oven was maintained around
5%, whereas good combustion requires a minimum of 6% O2. Further analysis showed
that the value of some key measures was actually slowly drifting, so slowly that no-one
noticed the change, and, after some time, habit made the wrongest things sound normal
to the operators. The result of the assessment was alarming.

The control and command desk most of the time displayed many data (up to five
thousands!), but no analysis or synthesis of these measurements was shown on screen.
No reference data were shown either, apart from the fact that an alarm was set on some
of the variables in case they went beyond some upper or lower threshold. A posteriori
analysis was performed on the basis of weekly reports, allowing the detection of some
malfunctioning. However, most of these problems were detected too late, and sometimes
lead to further problems that may have been avoided, had their origin been detected
earlier.

Hence, the Technical Direction decided to take some action on the issue. An attempt
in building a thermodynamic model of the installations failed in predicting the outcomes,
due to the uncertainty and imprecision of the involved data. It was thus decided to sub-
mit the case to the group’s research department, the Centre International de Recherche sur
l’Eau et l’Environnement (International Centre of Research on Water and Environnement).
They, in turn, submitted the problem to Thierry Denœux, professor at the Université de
Technologie de Compiègne (Compiègne University of Technology). It was agreed that the
problem would be the subject of an MSc thesis, which would lead to a PhD thesis if
necessary. It is in this context that the present work was undertaken.

The project aims at the production of a tool establishing a permanent reference on
the process key points, and continuously evaluating the process performances, in terms
of safety, productivity, and standards compliance. The problem may thus be seen as
a classification task, in which the normal, –or desired– state of the system needs to be
differentiated from the different types of faults. Nevertheless, the latter are too numerous
and varied to allow the building of a training set of data, while the normal state of the
process is very well represented in a waste incineration plant database. Therefore, the
problem turns out to be a one-class classification task. Moreover, as already mentioned,
the problem involves a lot of uncertainty.

The objectives of the project were thus specified as follows. The theoretical problem
would be solved in such a way that the uncertainty attached to classification decisions
would be available to the end user, and a functional prototype would be delivered at the
end. It was however decided that the PhD project would only be concerned with the
regulation of the oven-and-boiler subunit, to allow the study to fit in the allocated time.
This does not constitute an important restriction. The roles of the oven and boiler are
indeed determinant for the rest of the installation, and keeping this part of the process
under control ensures the stability of the whole system.

Because of its ability to handle imprecision and uncertainties, the belief function
theory, and more particularly Smet’s Transferable Belief Model [126, 120], seemed to be an
ideal framework in which to solve the problem. A feasibility study showed that the data
have particularly complex correlations. This study concluded that models underlying
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the hypothesis of linear correlation, such as standard Principal Component Analysis,
widely used as a basis for process monitoring in the chemical industry, would not work
efficiently. It was thus decided that kernel-based models, which act as though the data
had undergone a prior transformation that makes them linearly correlated, would be
better adapted.

From a theoretical point of view, this constitutes an interesting problem. In effect,
the multi-class classification problem, for which data of several classes are available for
training, have already been tackled in different ways in the Transferable Belief Model
[38, 37, 36, 56, 138]. On the other hand, the one-class or novelty detection task had not
yet been studied in this framework. Let us consider a system that can only be in two
possible situations: the reference state ω0, or a situation ω1 including all other possible
states. The problem under consideration is the assessment of the hypothesis that the
system is in state ω0 when the only available information about the system is a sample of
observations x1, . . . , xn of some variables, representative of the system state, conditioned
on ω0. It underlies two different subproblems, which will be studied in this PhD thesis.

The first subproblem is to express the available knowledge in terms of belief func-
tions. First, a novelty measure T, whose value will be small in the region of space
containing the data x1, . . . , xn, and larger as the distance to this region increases, needs to
be built as a function of x1, . . . , xn. This may be done using a one-class classifier. Then,
a methodology allowing us to express our belief about the realization of a new sample
drawn from the same distribution as T needs to be established, i.e., we need to be able
to predict what the next observation of T will be. We suggest two possible approaches
to this problem. The first approach is based on Hacking’s frequency principle [55, 117],
which equates the degree of belief of an event to its probability, when the latter is known.
The second method is based on a weak form of Hacking’s principle, which states that
the pignistic probability of an event should be equal to its long run frequency, when the
latter is known.

As we only dispose of data collected when the system was in a given state, the
obtained belief function expresses our belief in future values of T, knowing the system
is in this particular state. From this, we need to infer our belief in the present system
state, knowing the value of the studied statistic. This constitutes the second subproblem.
We propose three different solutions: the first is based on the GBT, and the other two are
based on the notion of cognitive inequality, introduced in this report, and which may be
seen as the belief function theory equivalent of the stochastic inequality.

This report is structured in three main parts, divided in six chapters. The first part
of the work consisted in solving the problem of constructing a belief function from raw
data, and will be presented in Part I. The basics of the transferable belief model will
first be introduced in Chapter 1, and different methodologies for the building of belief
functions from data will be detailed in Chapter 2. Then, the issue of novelty detection
with belief functions had to be tackled, and this is what Part II is about. Chapter 3 is a
review of existing one-class classification techniques, and the new solution developed in
the TBM framework is presented in Chapter 4. Finally, a prototype had to be developed.
It is depicted in Part III. The adopted solution is described in Chapter 5, and results are
shown in Chapter 6. General conclusion and perspectives conclude the report.
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Belief functions
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The Transferable Belief Model (TBM)
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Summary

In this chapter, the main notions pertaining to the belief function theory, –and more
particularly to Smet’s Transferable Belief Model– will be introduced. We will start with
the case of discrete belief functions. Basic definitions will first be recalled. Mechanisms
for the handling and updating of beliefs will then be described. Lastly, the decision
making process will be explained.
After that, the belief functions on R will be presented. The distinction between discrete
and continuous belief functions on the real line will be established. Then, the mechanisms
for the handling and revision of belief functions on R will be clarified. A partial order
on belief functions will be introduced, and the decision making process will be described
for belief functions on R.

Résumé

Dans ce chapitre, les notions principales de la théorie des fonctions de croyance, –et,
en particulier, du modèle des croyances transférables de Smets–, sont abordées. Tout
d’abord, le cas des fonctions de croyance discrètes est présenté. Les définitions de bases
sont rappelées, et les mécanismes de modification et mise à jour des fonctions de croy-
ances sont décrits en détails. Finalement, le procédé de prise de décision est introduit.
Dans un second temps, les fonctions de croyance sur R sont présentées. La distinction
entre fonctions de croyance discrètes et continues dans R est établie. Les mécanismes de
manipulation et de mise à jour des fonctions de croyance sur R sont clarifiés. Un ordre
partiel sur les fonctions de croyance est introduit, et le procédé de prise de décision est
décrit pour les fonctions de croyance sur R.
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1.1 Introduction

The necessity of handling imprecisions and uncertainties of data lead to the development
of several mathematical theories, such as the theory of possibilities, the imprecise prob-
ability theory, and the belief function theory. The latter, sometimes also called evidence
theory or Dempster-Shafer theory, was introduced by Dempster in the late 1960’s [30, 31,
32, 33, 34, 35], and further developed by Shafer in [113] (1976). Several interpretations of
this framework have been introduced since then, amongst which the Transferable Belief
Model (TBM) and Kohlas’ hints theory [65].

The TBM, a subjectivist interpretation of the evidence theory introduced by Smets
[126, 120], establishes an interesting framework for the resolution of problems of diagnos-
tic [119], pattern recognition [38, 37, 36, 56, 138] and information fusion [48, 85]. It is a two
level model. Information is handled at the credal level, where beliefs can be represented,
updated and combined. Decisions are made at the pignistic level, from Latin “pignus”, to
bet.

In this chapter, the main notions pertaining to the TBM will be introduced. The
concepts that will be used throughout this thesis will be especially emphasized.

1.2 Discrete Case

1.2.1 Belief Representation

Basic belief assignment and equivalent functions

Considering a given question (variable) O and a set of possible answers (values) Ω,
termed frame of discernment, we would like to model the belief of an agent Ag in the fact
that the answer to question O is in Ω. However, the agent may not be able to distinguish
amongst single answers, and may need to allocate part of his belief to arbitrary subsets
of Ω. A formal definition of this is given in the TBM.

Definition 1. (Basic belief assignment) Let Ω = {ω1, . . . , ωK} be a finite set, and let O be
a variable taking values in Ω. Given some evidential corpus EC, the knowledge held by a given
agent Ag at a given time over the actual value of variable O can be modeled by a so-called basic
belief assignment (bba) mΩ defined as a mapping from 2Ω into [0, 1] such that:

∑
A⊆Ω

mΩ(A) = 1. (1.1)

Each mass mΩ(A) is interpreted as the part of the agent’s belief allocated to the
hypothesis that O takes some value in A [113, 126]. The subsets A ∈ Ω such that
m(A) > 0 are called focal sets of m.

Where there is no ambiguity, mΩ will be shortened m.
There exists a number of equivalent representation of m, including the belief, plausi-

bility, commonality, and implicability functions defined, respectively, as:

bel(A) = ∑
∅ 6=B⊆A

m(B), (1.2)

pl(A) = ∑
B∩A 6=∅

m(B), (1.3)

q(A) = ∑
B⊇A

m(B), (1.4)

and
b(A) = ∑

B⊆A

m(B), (1.5)

for all A ⊆ Ω.
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Interpretation: The quantity bel(A) (belief in A) can be interpreted as the degree of
belief that can be allocated to a subset A, and is strictly ascertained by the available
evidence.

The plausibility of A, on the other hand, measures the quantity of information that is
not in contradiction with A. In other words, it is the maximum degree of belief that could
be allocated to A upon the collection of additional information.

The commonality of A is the sum of masses allocated to supersets of A, and may be
interpreted as the a measure of ignorance when the answer to question O is known to
belong to A [118].

Finally, the implicability of A is the sum of masses allocated to subsets of A.
Each of these functions is in one to one correspondence with the others. The belief

and plausibility functions are the most commonly used in the formalization of problems,
as their interpretation is easy. The implicability and commonality functions play an
important role in calculations, and often make the mathematics of the TBM simpler.
By misuse of language, any of them may sometimes be designated by the term “belief
function”.

Special cases

A belief function is said to be normal if the empty set is not a focal set, subnormal if it
is. Only normal belief functions are considered in Dempster’s and Shafer’s work, but
the TBM allows subnormal belief functions as well. The mass assigned to the empty set
may actually play an important part, and can be seen as the mass of belief granted to the
hypothesis that the truth does not lie in Ω, hence carrying the idea that the chosen model
might not fit reality with enough precision.

However, as normality is imposed in many interpretations of the evidence theory –
and especially in Dempster’s work, from which the TBM directly follows–, it is important
that the normalization operation be defined here:

Definition 2. (Normalization) Let m be a subnormal bba. Normalization transforms it into a
normal bba m∗ defined as:

m∗(A) =
m(A)

1 − m(∅)
, ∀A 6= ∅,

m∗(∅) = 0.
(1.6)

Through this transformation, the value of m(∅) is spread onto the other subsets of Ω,
leading to a -sometimes important- loss of information.

The mass allocated to Ω, i.e., the part of belief shared between all possible answers,
represents ignorance. Consequently, if the entire mass of belief is assigned to Ω, the
corresponding bba is said to be vacuous. Conversely, when Ω is not a focal set, the mass
function is termed categorical, as it leaves no place for ignorance.

Finally, a bba is called simple if it has at most two focal sets, including Ω, and categorical
if it is simple and dogmatic, i.e., the entire mass is set onto one focal set only and that focal
set is not Ω, reflecting the fact that the agent has no doubt where the truth lies.

The different types of bba are represented in Figure 1.1.

Link to other theories

When the focal sets are nested, m is said to be consonant, and the associated plausibility
function is a possibility measure: it verifies pl(A ∪ B) = max(pl(A), pl(B)) for all A, B ⊆
Ω. The corresponding belief function is the dual necessity measure.

When the focal sets are all singletons, m is termed Bayesian and pl = bel = P is a
probability distribution. A Bayesian belief function is maximally precise.
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(a) (b) (c) (d)

Figure 1.1: Different types of bba
Different types of bba: from (a) to (d): vacuous, simple, categorical, arbitrary bba

Representations of a consonant and a Bayesian bba are given in Figure 1.2. Shaded
areas indicate a non empty mass on the covered elements while white indicates a mass
m = 0.

(a) (b)

Figure 1.2: Consonant and bayesian bba
Different types of bba: (a) consonant bba, (f): bayesian bba

From the above, it is easy to see that belief function theory includes both possibility
and probability theories. The relationship between the different confidence measures is
better represented on a graph (see Figure 1.3).

Matrix representation

A mass function may be represented by a vector m of length 2|Ω| containing, in a pre-
defined order, the value of the mass assigned to each subset of Ω. Any order could be
used, but one particular order proved extremely efficient in compacting mathematical
expressions, and that is the so-called binary order.

Write the elements of Ω on a unique line L in no particular order, and then represent
each subset A of Ω by a binary number composed of ones on the positions corresponding
to the positions on L of the elements of Ω that are included in A, and zeros elsewhere.
Sort the obtained binary numbers increasingly, and you will get a binary ordering of the
subsets of Ω. This means that, if Ω is e.g. {a, b, c}, then the empty set (∅) is coded by
’000’, {a, b} will be denoted by ’011’ and {a, c} by ’101’.

The ith element of vector m will indifferently be denoted mi or m(A), where A equals,
e.g. {a, c} if i = 6. Note that the binary code of A is i − 1. Functions bel, pl, q and b may
similarly be represented by vectors, respectively denoted bel, pl, q, and b. (see Table
1.1).
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Figure 1.3: Relationship between confidence measures

Vector
line no.
(deci-
mal)

Binary
code of
set A

set A m(A) f(A) *

1 000 ∅ m(∅) f(∅)
2 001 {a} m({a}) f({a})
3 010 {b} m({b}) f({b})
4 011 {a,b} m({a,b}) f({a,b})
5 100 {c} m({c}) f({c})
6 101 {a,c} m({a,c}) f({a,c})
7 110 {b,c} m({b,c}) f({b,c})
8 111 Ω = {a,b,c} m(Ω) f(Ω)

Table 1.1: Binary representation of the subsets of a frame of discernement Ω

and associated matrix representation of a belief function on Ω.(* f may be one of bel, pl, q, b.)
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The Least Commitment Principle (LCP)

The LCP plays a role similar to the principle of maximum entropy in Bayesian Probability
Theory.

Definition 3. (The Least Commitment Principle (LCP)) It dictates that, in a set of belief
function compatible with the available information, the least informative should always be chosen.

This principle reflects a cautious attitude. It conveys the idea that no more credit
should ever be given to an hypothesis than is strictly accounted for by available evidence,
nor should any hypothesis be ruled out without sufficient information.

In order to allow the possibility to pick up the least informative BF, a partial order
should be defined.

Ordering

It is sometimes important to be able to compare the precision of two different belief
functions. Several measures have been introduced in order to quantify the precision of an
arbitrary belief function, the quantity of information it carries, or its degree of uncertainty.
Both ordinal and quantitative methods can be used; however, we will restrict ourselves to
ordinal approaches. The reader is referred to [115, 64, 92] for a description of quantitative
approaches.

Several partial orderings, generalizing set inclusion, have been proposed for the com-
parison of belief functions [134, 44]. The pl-, q- and s- orderings will be defined in the
sequel.

It is obvious to see that the least precise of all belief functions is the vacuous bba. On
the contrary, the most precise belief function would be a categorical bba focusing on a
singleton. The intuitive deductions are that,

• the more precise a belief function, the smaller the subsets of Ω its focal sets are;

• there are several, (possibly maximally) equally precise belief functions for a given
frame of discernment Ω.

Let A and B be two non empty subsets of Ω such that A ⊂ B. Let mA and mB be
to categorical bba such that mA(A) = 1 and mB(B) = 1, and let plA and plB be the
corresponding plausibility functions. They are defined as

plA(C) =

{
1 if C ∩ A 6= ∅,
0 otherwise;

(1.7)

and

plB(C) =

{
1 if C ∩ B 6= ∅,
0 otherwise.

(1.8)

Now, as A ⊂ B, C ∩ A 6= ∅ ⇒ C ∩ B 6= ∅. Consequently, plA(C) ≤ plB(C), ∀C ⊆ Ω, and
mA may be said to be pl-more informative than mB. This will be denoted

mA ⊑pl mB. (1.9)

This leads to the following general definition of the pl-ordering for ordinary belief
functions. Let pl1 and pl2 be two plausibility functions on Ω.

Definition 4. (pl-ordering) plΩ
2 is pl-less committed than plΩ

1 iff:

plΩ
1 (A) ≤ plΩ

2 (A), ∀A ⊆ Ω. (1.10)
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Moreover, the same two bba mA and mB also yield:

qA(C) =

{
1 if A ⊇ C,
0 otherwise;

(1.11)

and

qB(C) =

{
1 if B ⊇ C,
0 otherwise.

(1.12)

As A ⊇ C implies B ⊇ C, ∀C ⊆ Ω, then qA(C) ≤ qB(C), ∀C ⊆ Ω, and mA may be said to
be q-more informative than mB, denoted mA ⊑q mB.

The general definition of the q-ordering is:

Definition 5. (q-ordering) qΩ
2 is q-less committed than qΩ

1 iff:

qΩ
1 (A) ≤ qΩ

2 (A), ∀A ⊆ Ω (1.13)

However, the pl- and q- partial orderings are not equivalent in general, and cannot
be compared (neither of them implies the other). Nevertheless, these two orderings are
equivalent in the special case of consonant belief functions: if m1 and m2 are consonant,
then

m1 ⊑q m2 ⇔ m1 ⊑pl m2 ⇔ pl1({ω}) ≤ pl2({ω}), ∀ω ∈ Ω. (1.14)

A stronger partial order may be defined through the notion of specialization that will
be defined in the next section (Section 1.2.2). If m1 is a specialization of m2, then it is
more informative: in effect, we will see that it means that m1 may be obtained from m2

by transferring the masses m2(C) onto subsets of C, for all C ⊆ Ω. This order is termed
s-ordering, and implies both the q- and pl-orderings:

m1 ⊑s m2 ⇒
{

m1 ⊑pl m2

m1 ⊑q m2
. (1.15)

Properties

∀m, m′

m ∩©m′ ⊑pl m ∪©m′,
m ∩©m′ ⊑q m ∪©m′,
m ∩©m′ ⊑s m ∪©m′,

(1.16)

and
m∅ ⊑pl mΩ,
m∅ ⊑q mΩ,
m∅ ⊑s mΩ,

(1.17)

where m∅ denotes a bba of maximal conflict (m∅(∅) = 1) and mΩ is the vacuous belief
function.

The interpretation of these and other ordering relations is discussed in [44] from a
set-theoretical perspective, and in [46] from the point of view of the TBM.

1.2.2 Handling and Revision of Beliefs

Specialization and Generalization

We will see that most operations for the handling and revision of beliefs may be simply
expressed in terms of mass transfer from one subset of Ω to another, hence the name
Transferable Belief Model. In fact, these operations all derive from two types of operations,
namely specialization and generalization.
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The operation of specialization consists in transferring the mass allocated to each focal
element A onto a series of subsets B of A. It constitutes a refinement of the available
information (the belief allocated to a subset A ⊂ Ω is transferred onto subsets of A) or
an addition of new information (part of the belief assigned to Ω may be transferred onto
subsets of Ω, thus reducing the part of ignorance).

Definition 6. (Specialization) A mass function m2 is a specialization of m1 if there exists a
stochastic matrix S of dimensions 2|Ω| × 2|Ω| such that S(A, B) = 0 for all A * B, and

m2 = S · m1, (1.18)

or equivalently,
m2(A) = ∑

B⊆Ω

S(A, B)m1(B). (1.19)

S is an upper-triangular matrix whose element S(A, B) represents the part of the mass
m1(B) that will be transferred onto A ⊆ B.

The opposite of a specialization is a generalization. The operation of generalization
consists in transferring the mass assigned to each subset B of Ω onto a series of subsets A
of Ω that include B.

Definition 7. (Generalization) m2 is a generalization of m1 if there exist a stochastic matrix
G of dimensions 2|Ω| × 2|Ω| such that G(A, B) = 0 for all B * A, and

m2 = G · m1, (1.20)

G is a lower-triangular matrix whose element G(A, B) represents the part of the mass
m1(B) which is transferred onto A ⊇ B.

Conditioning and ballooning extension When a given hypothesis H ⊆ Ω is ascer-
tained, the beliefs are altered to reflect the new state of knowledge. Masses associated to
subsets B, B ⊆ Ω, are transferred onto subsets H ∩ B.

Definition 8. (Conditioning) Consequently, the mass of belief on Ω conditioned to H is:

mΩ[H](A) = ∑
B∩H=A

m(B), ∀A ⊆ Ω (1.21)

The dual operation is termed ballooning extention.

Definition 9. (Ballooning extention) Let mΩ[H] be the bba on Ω conditioned with respect
to H ⊆ Ω. Assume we now learn H finally does not necessarily hold and all previous states of
knowledge have been lost. Masses associated with any non-empty set A of Ω are then transferred
onto B = A ∪ H:

m[H]⇑Ω(B) =

{
m[H](A) if B = A ∪ H
0 otherwise.

(1.22)

The ballooning extension operation only allows finding the least committed bba whose
conditioning on H will lead back to mΩ[H]. Hence, some information might be lost in the
process of successive conditioning and “deconditioning” operations, and the original bba
m cannot always be recovered.

Remark 1. The conditioning operation is a particular form of specialization, and the ballooning
extension is a form of generalization.

Remark 2. Let m be a bba on Ω. A specialization matrix Sm whose elements are defined as
follows:

Sm(A, B) = m[B](A), ∀A, B ⊆ Ω (1.23)

is termed Dempsterian specialization matrix associated with m.
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Combination

In order to decide how to combine two pieces of information, it is important to know
whether they were induced by common evidence or not. In effect, if two sources of
information come to the same conclusion from different pieces of evidence, then the two
results should reinforce one another. However, if they use the same evidence, then this
two conclusions should not reinforce each other. Two such pieces of information are said
not to be distinct.

Conjunctive and Disjunctive combination The most common combination rules are
the conjunctive and disjunctive combination rules. Both rules require the two sources of
information to be distinct.

Given two distinct pieces of evidence m1 and m2, given by two different sources, the
conjunctive combination m

1 ∩©2
of m1 and m2 can be defined as follows:

Definition 10.

m
1 ∩©2

(A) = ∑
B∩C=A

m1(B)m2(C), ∀A ⊆ Ω. (1.24)

This operation corresponds to a very intuitive rule: if two different, equally reliable,
witnesses provide two different testimonies that do not entirely contradict each other,
then the natural way to built a conclusion is to cross-check the two declarations and
to keep only the hypotheses that comply with both testimonies, i.e., it corresponds to
a logical “AND”. It should be used when all sources of information are known to be
reliable.

Remark 3. The conjunctive combination of a mass m2 with a mass m1 is a Dempsterian special-
ization. It generalizes the conditioning operation.

Remark 4. The mass allocated to the empty set by the conjunctive combination of two (normal)
bbas may be seen as the degree of conflict (or contradiction) between the two sources of informa-
tions the bbas originated from.

Definition 11. Dempster’s rule of combination is defined as the conjunctive combination of
two normal bba followed by normalization.

Example 1. (The murderer) Consider a variant of the Peter, Paul and Mary saga introduced
by Smets [120]. The outline of the saga reads as follows. “Big Boss has decided that Mr. Jones
must be murdered by one of the three people present in his waiting room and whose
names are Peter, Paul and Mary.” Suppose now that you know nothing about the way the killer
was selected, that Mary and Peter smoke but Paul does not, and that two persons witnessed the
murder through the window, but did not had time to intervene. Witness-1 says the murderer was
smoking. Witness-2 says the killer was a woman. If you rely equally on both of them, you will
conclude the murderer is Peter.

What happens if none of the witnesses is 100% certain of what he/she said ? Suppose
now that Witness-1 (denoted W1) is 80% sure the murderer was smoking, and Witness-2 (W2)
is only 50% sure the killer was a woman. The belief functions associated with each witness are
represented in table 1.2, together with their conjunctive combination.

Property 1. The conjunctive combination rule is associative and commutative; its neutral element
is the vacuous belief function.

Property 2.

q
1 ∩©2

(A) = q1(A)q2(A), ∀A ⊆ Ω (1.25)

Now, recall that the application of the conjunctive combination rule requires the two
sources of information to be distinct. In [121], Smets attempted to clarify this notion.
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Suspect m1 m2 m
1 ∩©2

∅∗ 0 0 0

Peter 0 0 0

Paul 0 0 0

Peter or Paul 0 0 0

Mary 0 0.5 0.5

Peter or Mary 0.8 0 0.4

Paul or Mary 0 0 0

Peter, Paul or Mary 0.2 0.5 0.1

Table 1.2: The conjunctive combination rule : the three suspects’ saga.
(* Not Peter, nor Paul nor Mary)

Distinctness can be formally defined as follows.
Suppose you first obtain some information I1 about a particular variable O taking

values in Ω and build a belief function m1 on the actual value of O. You then obtain
some additional information I2 and consequently update your belief m1 into m12 via a
specialization matrix S12.

Now suppose you obtain the same pieces of information in the reverse order, i.e., you
first get information I2, build a belief function m2, then get information I1 and update
your knowledge into m21 via a specialization matrix S21.

If your two sources of information are equally reliable, you would want m12 = m21,
i.e., the order in which you get the two sources of information should not matter. It is
said that if m12 = m21 implies that S12 only depends upon I2 and S21 only derives from
I1, –in other words, S12 can entirely be defined from m2 and S21 from m1–, then m1 and
m2 are distinct. In this case, S12 and S21 are, respectively, the Dempsterian specialization
matrices Sm2 and Sm1

.
In practice, m1 and m2 are termed distinct if they come from completely different,

independent (in the sense that they cannot influence each other), sources of information.
If (at least) one of the sources might be unreliable, it is better to carry out a disjunctive

combination:

Definition 12. (Disjunctive rule)

m
1 ∪©2

(A) = ∑
B∪C=A

m1(B)m2(C), ∀A ⊆ Ω. (1.26)

This operation corresponds to a more cautious attitude than that of the conjunctive
combination rule. Knowing that :

• two different but not totally conflicting pieces of evidence were provided by two
sources of information;

• one of the sources of information might not be reliable but we do not know which;

none of the possibilities suggested by the two pieces of evidence may be ruled out. The
natural deduction is that the truth is represented either by one of the pieces of evidence,
either by the other, either by both (this is equivalent to a logical “OR”). It is an operation
in which the mass of belief respectively allocated to two subsets A, B ⊆ Ω by m1 and m2

is transferred onto A ∪ B. The disjunctive combination of a mass m1 with a mass m2 is a
particular form of generalization.

Example 2. (The murderer (continued)) Reconsider the murder case described in example 1
under the hypotheses that both the witnesses are sure of what they are saying, but one of them



18 Chapter 1. The TBM

might be lying. The murderer might then be either Peter or Mary. Now, if the witnesses are
not sure of what they are saying and you are not sure they are telling the truth anyway, then,
supposing Witness-1 (denoted W1) says he/she is 80% sure the murderer was smoking, and
Witness-2 (W2) says he/she is only 50% sure the killer was a woman, the belief function associated
with each witness is represented in table 1.3, together with their conjunctive and disjunctive
combinations.

Suspect m1 m2 m
1 ∩©2

m
1 ∪©2

∅∗ 0 0 0 0

Peter 0 0 0 0

Paul 0 0 0 0

Peter or Paul 0 0 0 0

Mary 0 0.5 0.5 0

Peter or Mary 0.8 0 0.4 0.4

Paul or Mary 0 0 0 0

Peter, Paul or Mary 0.2 0.5 0.1 0.6

Table 1.3: The disjunctive and conjunctive combination rules : the three suspects’ saga.
(* Not Peter, nor Paul nor Mary)

Property 3. The disjunctive combination rule is commutative and associative; it neutral element
is m∅, such that m∅(∅) = 1.

Note that the use of the disjunctive combination also requires m1 and m2 to be distinct.
A definition of the term “distinct”, similar to that given for the conjunctive combination
rule, could also be given for the disjunctive rule of combination.

Operations on a product space

From now on, we will work on the product space X × Ω. X is a random variable (r.v.)
varying over X , assumed to be representative of the state of a system at a given time.
Ω = {ω0, . . . , ωK} is a finite set describing all possible states of the system. The ωi are
termed classes, and they are mutually exclusive. Variable O takes values in Ω.

Definition 13. (Marginalization)

Let mX×Ω denote a bba defined on the Cartesian product X × Ω of the two variables X and
O. The marginal bba mX×Ω↓Ω on Ω is defined, for all B ⊆ Ω as:

mX×Ω↓Ω(B) = ∑
{A⊆(X×Ω)|A↓Ω=B}

mX×Ω(A), (1.27)

where A↓Ω denotes the projection of A onto Ω:

A↓Ω = {o ∈ Ω |∃x ∈ X , (x, o) ∈ A} . (1.28)

The marginalization on X may be defined symmetrically.

Definition 14. (Vacuous Extension) The inverse operation is the vacuous extension. Let mΩ

be a bba on Ω. Its vacuous extension on X × Ω is defined as:

mΩ↑X×Ω(A) =

{
mΩ(B) if A = B ×X for some B ⊆ Ω

0 otherwise.
(1.29)
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Marginalization

Vacuous extension

Figure 1.4: Marginalization and vacuous extension operations

We have already seen in the case of bba on a simple frame (as opposed to product
space frame) that, when a given hypothesis H ⊆ Ω is ascertained, the beliefs are altered
to reflect the new state of knowledge. In fact, the conditioning operation consists in
combining masses conjunctively with a categorical bba mΩ

H supporting hypothesis H ⊆
Ω. In other words, knowing mΩ×X , and knowing that the hypothesis H ⊆ Ω holds,
conditioning with respect to H consists in seeking the marginal bba mX on X that takes
all the available information into account. It may be found through a series of operations
that have already been defined:

• first, mΩ
H should be vacuously extended over X × Ω so as to get a belief function

mΩ↑Ω×X
H on Ω ×X that may be combined with mΩ×X ;

• second, mΩ↑Ω×X and mΩ×X should be combined conjunctively;

• the resulting belief function mX×Ω ∩©mΩ↑Ω×X
H can then be marginalized on X .

Definition 15. (Conditioning)

The mass of belief on X knowing that hypothesis H ⊆ Ω holds, i.e., mΩ
H(H) = 1, is:

mX [H] =
(

mX×Ω ∩©mΩ↑X×Ω
H

)↓X
, (1.30)

or, equivalently, the mass of belief allocated to S ⊆ X knowing that hypothesis H ⊆ Ω holds, is:

mX [H](S) = ∑
B⊆X×Ω | Proj(B∩(H×X )↓Ω)=S

mX×Ω(B). (1.31)

where Proj(C ↓ Ω) denotes the projection of a subset C of X × Ω on Ω.

Now let mX [H] be the bba on X conditioned with respect to H ⊆ Ω. Assume we now
learn H finally does not necessarily hold and all previous states of knowledge have been
lost. We have mX [H], and would like to find the least committed bba mX [H]⇑(X×Ω) on
X ×Ω) reflecting the available information. This procedure, opposite of the conditioning
operation, is termed ballooning extension process [116], and yields to:
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Definition 16. (Ballooning Extension)

mX [H]⇑(X×Ω)(A) =

{
mX [H](S) i f A = (S × H) ∪ (X × H),
0 otherwise.

(1.32)

Masses associated with any non-empty set S of X before the ballooning extension are
then transferred onto (S × H) ∪ (X × H) during this operation.

Note again that some information might be lost in the process of successive condition-
ing and “deconditioning” operations, and the original bba cannot always be recovered.

Conditioning

Ballooning extension (de-conditioning)

Figure 1.5: Conditionning and ballooning extension

The Generalized Bayes’ Theorem

The Generalized Bayes’ Theorem (GBT) was introduced by Smets [116]. It generalizes
Bayes’ theorem in that, whenever the belief functions are Bayesian, and we also have
a Bayesian prior on the classes, the two theorems are exactly equivalent. However, the
power of the GBT lies in the fact that it does not require any prior knowledge on Ω (for
instance, no prior class probabilities).

Let us suppose we know all the conditional bbas mX [ωk], k = 0, . . . , K, we have no
prior knowledge on Ω, and we observe x∗ ⊆ X . From that, we would like to derive our
belief in the fact that the system is in a particular state ωi, knowing the value of statistic
X. In other words, we seek mΩ[x∗]. The GBT allows us to find the answer in three steps
(See No. 1 to 3 of Figure 1.6 for an illustration).

1. We shall first calculate the ballooning extension of each of the functions mX [ωk],
that is to say, “de-condition” them in order to obtain a belief on X × Ω.

2. The obtained bbas mX [ωk]
⇑X×Ω are distinct, as the original mX [ωk] were distinct.

Hence, the mX [ωk]
⇑X×Ω can be combined by applying the conjunctive combination

rule: this will be the second step. We now have a global and un-conditioned belief
function on X × Ω.

3. Conditioning with respect to x∗ returns the belief function we need, namely mΩ[x∗].
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The GBT may then be defined as follows:

Definition 17. (GBT)

mΩ[x∗] =
(

∩©K
k=0mX [ωk]

⇑X×Ω
)

[x∗]. (1.33)

It may be shown that:

mΩ[x∗] = ∩©K
k=0{ωk}

plX [ωk ](x∗)
. (1.34)

where Aw denotes a simple bba such that m(A) = 1 − w and m(Ω) = w. In particu-

lar, {ωk}
plX [ωk ](x∗)

is a simple bba for which m({ωk}) = 1 − plX [ωk](x∗) and m(Ω) =
plX [ωk](x∗).

Equation (1.34) [40] allows an easy interpretation of the GBT: the less x∗ is plausible

under ωk, the more weight is assigned to {ωk} when x∗ occurs.

The equivalent formulation in terms of plausibility functions sometimes makes cal-
culations simpler:

plΩ[x∗](A) = 1 − ∏
ωk∈A

(1 − plX [ωk](x∗)), ∀A ⊆ Ω. (1.35)

Discounting

A mass of belief mΩ[EC] has been defined as the belief held by an agent over the actual
value of a variable O given an evidential corpus EC, i.e. conditionally to EC. The reliability
of the source S providing the evidential corpus EC may sometimes be assessed, and
mΩ[EC] should be updated accordingly.

If the source S is perfectly reliable, then the beliefs need not be updated. If, on the
contrary, the source S is not reliable at all, then the mass mΩ[EC] should be reduced to
the vacuous belief function, representing total ignorance.

Finally, if the source S is only partially reliable, then mass mΩ[EC] should be altered
in such a way that the updated values of the mass are proportional to the reliability of S .

Let us consider a frame of discernment R = {R, NR} whose two elements respec-
tively stand for Reliable and Non-Reliable. Let us consider a mass mR on R of the form

mR({R}) = 1 − α
mR(R) = α,

(1.36)

representing the reliability of source S .

mΩ and mR may be combined to reflect the new state of knowledge.

• They first need to be expressed in a common frame, that is to say, the product space.

• They can then be conjunctively combined.

• The obtained belief function should finally be marginalized so that the beliefs on
the value of O into Ω can be identified.

The resulting belief function, denoted αmΩ may be expressed as follows [113, 116]:

Definition 18. (Discounting)

αmΩ =
(

mΩ[R]⇑Ω×R ∩©mR↑Ω×R
)↓Ω

. (1.37)
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Figure 1.6: The three steps of the GBT



1.2. Discrete Case 23

where α is called the discounting rate.
It may be shown that a simpler expression of αmΩ is the following:

αmΩ(A) = (1 − α)mΩ(A), ∀A ∈ Ω,
αmΩ(Ω) = (1 − α)mΩ(Ω) + α.

(1.38)

This operation amounts to transferring part of the mass allocated to the focal elements
onto Ω, thus accounting for partial ignorance.

Yet another way of writing this operation is:

αmΩ = (1 − α)mΩ + αmΩ
Ω, (1.39)

where mΩ
Ω represents the vacuous belief function on Ω.

It is also possible that the source S is known to be reliable in a given context and less
reliable in some other contexts. For example, a temperature sensor might be reliable in
a given range of temperature values and less reliable (or totally unreliable) outside this
range. In this case, it is possible to perform contextual discounting, as described in [86, 87].

1.2.3 Decision Making

Once all pieces of information have been collected and all beliefs have been modeled,
updated and combined, time comes when a decision should be made. Making a decision
consists in choosing a singleton according to a given rule.

Pignistic Probabilities

According to DeGroot (1970) [27], decisions will only be coherent if the underlying un-
certainties can be described by a probability distribution defined on 2Ω. Therefore, the
belief function gathering the available knowledge on the possible value of O should first
be transformed into a so-called pignistic probability (BetP∗), on the singletons of Ω. Then,
the elected singleton is the one that maximizes BetP.

Definition 19. (Pignistic probability) The pignistic transformation may be defined as follows
(See [126, 124] for a justification):

BetP∗(ω) = ∑
A⊆Ω:ω∈A

m∗(A)

|A| ,∀ω ∈ Ω. (1.40)

Example 3. (The murderer (continued)) Consider the Peter, Paul and Mary saga described
in exemple 1 for the last time. The pignistic probability associated with the disjunctive and
conjunctive combination of the two testimonies read:

Isopignistic belief function

The pignistic transform is not bijective. In effect, it often happens that several belief
functions lead to the same pignistic probability, while, in contrast, a given belief function
can only lead to a specific pignistic probability. The set of bba sharing the same pignistic
probability is called a set of isopignistic belief functions. Amongst isopignistic belief
functions, and in the absence of additional information, the least committed one should
always be chosen as a result of the LCP.

Dubois, Prade and Smets [45] demonstrated that the q-least committed mass function
associated with a given pignistic probability distribution BetP is unique and consonant.
It may be recovered from BetP as follows:

pl({ωi}) =
n

∑
j=1

min(Pi, Pj), ∀i ∈ {1, . . . , n}, (1.41)
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Suspect m1 m2 m
1 ∩©2

m
1 ∪©2

BetP
1 ∩©2

BetP
1 ∪©2

∅∗ 0 0 0 0 – –

Peter 0 0 0 0 0.233 0.4

Paul 0 0 0 0 0.033 0.2

Peter or Paul 0 0 0 0 – –

Mary 0 0.5 0.5 0 0.733 0.4

Peter or Mary 0.8 0 0.4 0.4 – –

Paul or Mary 0 0 0 0 – –

Peter, Paul or Mary 0.2 0.5 0.1 0.6 – –

Table 1.4: Pignistic probability associated with the disjunctive and conjunctive combination
rules.

The three suspect’s saga. (* Not Peter, nor Paul nor Mary)

where

• Pi = BetP({ωi}),

• and P1 ≥ P2 ≥ . . . ≥ Pn.

1.3 Continuous Case

1.3.1 Continuous Domain

The above described tools may be extended to the case where the frame of discernment
X is continuous, typically X ⊆ R.

Let I[α,β] be a set of closed intervals such that:

I[α,β] = {[x, y] : α ≤ x ≤ y ≤ β} . (1.42)

I[−∞,+∞] is denoted I . Note that the infinities are included. The focal elements of a

mass of belief mX defined on a continuous domain X are elements of I[α,β], α, β ∈ R ∪
{−∞, +∞}. They are assumed to be closed intervals, so that belief functions are additive
i.e.

∀A1, A2, . . . , An ∈ I[α,β] : Aj ∩ Ak 6= ∅,(j, k) ∈ {1, . . . , n}2,j 6= k

then
belX (

⋃
i=1,...,n Ai) = ∑

n
i=1 bel(Ai).

(1.43)

An interesting representation (Figure 1.7) of the elements of I[α,β] is given by points in
a two-dimensional frame represented by an isocel right-angled triangle T[α,β], oriented in
such a way that it looks like the upper left hand corner of a square figure. The horizontal
side of the triangle serves as abscissa, and represents the lower bound of an interval, and
the vertical side serves as ordinate, representing the upper bound of an interval. Hence,
any point in the triangle or on the triangle boundaries represents a non-empty interval of
I[α,β]. The triangle associated with I is denoted T. An interval [x, y] is shown as a point
in Figure 1.7.

1.3.2 Types of Belief Functions Defined on R

Discrete BF on R

Under the constraint that the set of focal elements F (m) of mX is finite, the tools de-
scribed in Section 1.2 directly apply even in the case where X is continuous and X ⊆ R.
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Figure 1.7: Triangular representation of I[α,β].

A bba mX : X → [0, 1] with the property ∑
n
i=1 mX (Ai) = 1 is a discrete bba on X as

described in section 1.2. Typically, focal elements are chosen among intervals or, more
generally, Borel sets [136, 50, 135, 95]. Denoting mi = m(Ai), with ∑

n
i=1 mi = 1, and

assuming Ai 6= ∅ for all i, Equations (1.2)-(1.4) may be rewritten as follows:

bel(A) = ∑
Ai⊆A

mi, (1.44)

pl(A) = ∑
Ai∩A 6=∅

mi, (1.45)

and

q(A) = ∑
Ai⊇A

mi, (1.46)

for all A ∈ B(X ), where B(X ) denotes the Borel sigma-algebra on X .

Continuous BF

A more complex generalization of the concepts of section 1.2 is given when the number
of focal elements is not finite any more. In this case, m is no longer a bba but a basic belief
density (bbd): instead of discrete masses defined on points of T[α,β], a continuous mass
density is defined over the area of T[α,β] [2, 29, 123].

A normal basic belief density mX is a density function such that:

∫ x=β

x=α

∫ y=β

y=x
mX (x, y)dydx = 1. (1.47)

Normalization is of course not necessary. In order to define a subnormal bba, the
integral of m over I[α,β] may be allowed to be less than 1, the complement being allocated
to the empty set.

The belief, plausibility, commonality and implicability functions associated with m
can be defined in the same way as in the finite case, replacing finite sums by integrals.
The following definitions hold:

bel(A) =
∫∫

[x,y]⊆A

m(x, y) dx dy, (1.48)

pl(A) =
∫∫

[x,y]∩A 6=∅

m(x, y) dx dy, (1.49)
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q(A) =
∫∫

[x,y]⊇A

m(x, y) dx dy, (1.50)

for all A ∈ B(X ). In particular, when A = [x, y],

bel([x, y]) =
∫ y

x

∫ y

u
m(u, v)dvdu, (1.51)

pl([x, y]) =
∫ y

−∞

∫ +∞

max(x,u)
m(u, v)dvdu, (1.52)

q([x, y]) =
∫ x

−∞

∫ +∞

y
m(u, v)dvdu, (1.53)

for all x, y ∈ I[⊘,⊙].

The domains of these integrals may be represented as the shaded areas in Figure 1.8.

bel pl q

Figure 1.8: Domains of integration for bel, pl and q.

Moreover, m may be recovered from bel or q through:

m(x, y) = −∂2bel([x, y])

∂x∂y
= −∂2q([x, y])

∂x∂y
, (1.54)

provided these derivatives exist. This recovery process does not lead to any loss of
information.

All other concepts described in Section 1.2 remain valid except that masses become
densities and sums are replaced with integrals. However, the associated mathematics
sometimes become much more complex than in the discrete case.

Special cases

• A vacuous bbd on a continuous domain X = [α, β] is a bbd for which m(X ) = 1;

• A categorical bbd is such that mX (a, b) = δ(x − a, y− b), for [a, b] ∈ I[α,β] and [a, b] 6=
X (where δ denotes the Dirac delta function);

• A consonant bbd has nested focal elements;

• A Bayesian bbd is a bbd whose focal elements are singletons, i.e. its possible focal
elements are on the hypotenuse of triangle I[α,β]. It is a probability density function.
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Extension to R
n

According to Smets [123], “The real issue underlying the possibility of extending belief functions
on R

n is the existence of a finite dimensional real space, the elements of which are in one-to-one
correspondence with the focal elements.”. If all focal elements can be represented as a point
in R

d for some d > 0, the theory extends directly. This can be done, e.g., when the focal
elements are convex, closed geometrical figures. However, computations become highly
complex in these cases.

Caron et al. carried out a generalization to R
n for the special case of basic belief

densities induced by multivariate Gaussian probability density functions [20].

1.3.3 Belief Updating

The main operations for the updating of beliefs in the continuous case are the same as in
the discrete case. It is therefore possible to marginalize, vacuously extend, condition or
decondition a continuous belief function, to combine two continuous BF conjunctively or
disjunctively, or to apply the GBT to continuous belief functions. The reader is referred
to [123] for more details.

1.3.4 Ordering

The pl-, q- and s- ordering may be defined exactly as in the finite case, i.e.

• If pl1(X) < pl2(X),∀X ∈ X , then m1 ⊑pl m2 (pl-ordering);

• if q1(X) < q2(X),∀X ∈ X , then m1 ⊑q m2 (q-ordering);

• and if m1 is a specialization of m2 then m1 ⊑s m2 (s-ordering).

The relative properties of the different orderings given in section 1.2.1 still hold.

Based on these orderings, the least commitment principle, a fundamental axiom of
the TBM, still applies in the continuous case, and works as in the discrete case.

1.3.5 Decision Making

As already mentioned in Paragraph 1.2.3, and according to DeGroot [27], decision mak-
ing requires the definition of a (pignistic) probability function that describes the odds in
favour of each possible hypothesis. We will now describe how this can be done in the
case of continuous belief functions.

From m to BetP

Consider a normalized bbd mX describing the belief of agent Ag over the value of a
variable X taking values in X . Let us define a pignistic density function Bet f associated
with mX and the related pignistic distribution BetF. Let us additionaly define BetP as the
pignistic probability of a given event. Then

BetP([a, b]) =
∫ ∞

x=−∞

∫ ∞

y=x

|[a, b] ∩ [x, y]|
|[x, y]| m(x, y)dydx

=
∫ b

x=−∞

∫ ∞

y=a∨x

y ∧ b − x ∨ a

y − x
m(x, y)dydx,

(1.55)

where, by continuity,
|∅|

|[x, y]| = 0, and
(y ∧ b − x ∨ a)

(y − x)
= 1 when a < x = y < b.
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Moreover,

Bet f (a) = lim
ǫ→0

∫ a

x=−∞

∫ ∞

y=a+ǫ

1

y − x
m(x, y)dydx, (1.56)

hence

BetP([a, b]) =
∫ b

a
Bet f (x)dx. (1.57)

Remark 5. Betting always requires normalization as no decision can be taken towards the empty
set (a decision towards the empty set would not make sense).

Remark 6. There is no bijection between mX and Bet f , i.e. different bbd may lead to the same
pignistic density function. Such bbds are said to be isopignistic.

From BetP to m

It is important to note that a probability function on a set of real numbers can be inter-
preted in two different ways.

On the one hand, it can be seen as directly representing an agent’s belief about the
values that may be taken by a variable X varying over R (or any subset of R including
the observed values). In this case, a Bayesian belief function is directly observed.

On the other hand, the collected probability function represents the way the agent
would bet about the value of variable X. In that case, the observed function is the
pignistic probability associated with the agent’s beliefs. Again, two sub-cases can be
derived:

• either the number of values that can be taken by X is finite, and the observed values
define a set of constraints over a discrete belief function on a finite domain,

• or X varies over a continuous domain and the observed values define a set of
constraints over a continuous belief function.

In both cases, the least committed belief function satisfying those constraints should be
selected as a working basis.

The solution for the discrete belief function with continuous domain has been de-
scribed in Section 1.2.3, Equation (1.40). Let us consider the case where X varies over a
continuous domain X . The pignistic transform being a many-to-one operation, the least
commitment principle again needs to be applied when mX has to be deduced from Bet f .

Generally speaking, Dubois, Prade and Smets [45], demonstrated that, both in the
finite and continuous cases, the q-least committed element of a set of isopignistic be-
lief functions is a consonant belief function. This means that the focal elements of the
sought belief function are nested. The observed pignistic density hence defines a set of
constraints on mX , and an optimization problem needs to be solved, so that qX may be
maximized under those constraints (Recall that the higher qX , the least committed the
belief function). The solution cannot be described simply in the general case.

Nevertheless, Smets [123] demonstrated there exist a simple solution when Bet f is a
unimodal, “bell-shaped” density. He showed that the focal sets of mX are the level sets of
the density function Bet f . They are intervals [a, b] such that Bet f (a) = Bet f (b). Given the
upper bound b of any such interval, the lower bound is uniquely defined by a function γ
such that a = γ(b) for all b ≥ ν. The bbd is defined by

mX (a, b) = θ(b)δ(a − γ(b)), (1.58)

with

θ(b) = (γ(b)− b)Bet f ′(b), (1.59)
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where Bet f ′ is the derivative of Bet f and δ is the Dirac delta function. As already men-
tioned, mX is consonant. Consequently, the associated plausibility function is a possibil-
ity measure. The corresponding possibility distribution π is given by:

π(x) = pl({x}) =





∫ +∞

x
(γ(t)− t)Bet f ′(t)dt if x ≥ ν

∫ +∞

γ−1(x)
(γ(t)− t)Bet f ′(t)dt otherwise.

(1.60)

If Bet f is symmetrical, then γ(x) = 2ν − x, and the above equation simplifies to

π(x) =





2(x − ν)Bet f (x) + 2
∫ +∞

x
Bet f (t)dt if x ≥ ν

2(ν − x)Bet f (x) + 2
∫ x

−∞
Bet f (t)dt otherwise.

(1.61)

Example 4. Let f0 be the density function of the exponential distribution E(µ) with mean µ > 0:

f0(x; µ) =

{
1
µ e−x/µ if x ≥ 0

0 otherwise.
(1.62)

This is a unimodal density with mode ν = 0, and γ(b) = 0 for all b ≥ 0. The corresponding
q-LC distribution may be computed from (1.60). It is equal to

π(x; µ) =
∫ +∞

x

1

µ2
te−t/µdt (1.63)

= e−x/µ

(
1 +

x

µ

)
(1.64)

for x ≥ 0 and π(x) = 0 for x < 0. This function is plotted in Figure 1.9 for different values of µ.
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Figure 1.9: q-LC possibility distribution induced by an exponential probability density E(µ), for
three different values of µ.

Example 5. Now, let f0 be the density function of the normal distribution N (µ, σ2) with mean
µ and variance σ2:

f0(x; µ, σ) =
1

σ
√

2π
exp

(
− 1

2σ2
(x − µ)2

)
.
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This is a symmetrical unimodal density with mode µ. The corresponding q-LC distribution may
be computed from (1.61). It is equal to

π(x; µ, σ) =





2(x−µ)

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
+ 2

(
1 − Φ

(
x−µ

σ

))
if x ≥ µ

2(µ−x)

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
+ 2Φ

(
x−µ

σ

)
otherwise,

(1.65)

where Φ is the standard normal cumulative distribution function.
This function is plotted in Figure 1.10 for µ = 0 and three different values of σ.
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Figure 1.10: q-LC possibility distribution induced by a normal probability density N (µ, σ2) for
µ = 0 and three different values of σ.

1.4 Predictive Belief Functions (previous works)

In this section, we summarize the concept of Predictive Belief Function (PBF) introduced
in [41]. The problem may be defined as follows. Let T be a random variable varying
over a domain T . It may be discrete or continuous. Having observed the realization
of an independent and identically distributed iid random sample T = {T1, ..., Tn} of
unknown distribution PT , we would like to be able to represent an agent’s belief about
the realization of a new sample drawn from the same distribution. In other words, we
would like to be able to built a predictive belief function on the value of T.

As a toy example, consider the case where T denotes the color of a ball taken from an
urn containing balls of different colors. Having observed the colors of n balls randomly
taken from the urn with replacement, we would like to quantify our belief regarding the
color of the next ball to be drawn from the urn.

Let belT denote a belief function on T constructed using T. In [41], Denœux postulates
that such a belief function should satisfy the following two requirements:

P {belT(A) ≤ PT (A), ∀A ∈ T } ≥ 1 − α, (1.66)

where α ∈ (0, 1), and

∀A ∈ T , belT(A)
P−→ PT (A), as n → ∞, (1.67)

where
P−→ denotes convergence in probability and T is 2T if T is finite, and T = B(T )

(Borel sigma-algebra generated by T ) if T ⊆ R.
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The introduction of these two requirements may be justified as follows. We do not
know the true distribution PT of T, therefore our knowledge should be represented by
a belief function that is less committed (less informative) than the true distribution PT
of T. However, it is much too stringent to require that belTT ≤ PT all the time, as this
would systematically lead to the vacuous belief function. This is why it is only required
that (1.66) be true with some pre-defined probability, i.e. asymptotically, for at least a fraction
1 − α of the samples. This justifies requirement (1.66).

In addition, the precision of our knowledge on the distribution of statistic T depends
on the number of observations we dispose of. Had we observed an infinity of values of
T, we would know its true distribution. According to Hacking’s principle, belT should
thus tend toward the true distribution PT of T as the number of observation we dispose
of tends to infinity, hence requirement (1.67).

A belief function belT satisfying requirements (1.66) and (1.67) is called a predictive
belief function (PBF) at confidence level 1 − α. Methods for constructing such belief func-
tions in the case of a discrete random variable T with discrete domain were described
by Denœux [41], based on multinomial confidence region. Combining the works of
Ferson [50], and Kriegler and Held [68] permits to built PBF for discrete random variables
with continuous domain. Finally, we introduced a way of building continuous PBF for
continuous random variables with continuous domain [6]. All these techniques will be
discussed in Chapter 2.
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Summary

In this chapter, we show how belief functions can be built from data, considering the
special case where the variable X of interest is defined from the result of a random
experiment. It is thus a random variable, with unknown probability distribution PX.
The available information is assumed to consist in past observations collected from n in-
dependent repetitions of the same experiment, forming an independent random sample
from PX. Based on this information, we would like to be able to represent an agent’s
belief about the realization of a new sample drawn from the same distribution. In other
words, we would like to be able to predict what the next observation will be.
In [42], a formalization of this problem was suggested, using the concept of predictive
belief function (PBF). Practical methods for building belief functions were presented for
the case where the domain X of X is discrete, based on multinomial confidence regions.
In the first section, this approach is extended to the case where X is a continuous random
variable. The extension is based on confidence bands, which play a role similar to that of
multinomial confidence regions in the discrete case.
In the second section, another approach is proposed, which may be argued to be more
in line with the the two-level (credal, pignistic) structure of the TBM. The starting point
of this method is the assumption that, if the probability distribution PX of a random
variable X is known, then the pignistic probability distribution associated with the BF
quantifying our belief regarding future values of X should be PX. As many BFs may
satisfy this property, and there is no unique least committed element in the general case,
the suggested solution selects the most committed consonant belief function amongst the
BFs less committed than those verifying this property.

Résumé

Dans ce chapitre, nous montrons comment une fonction de croyance peut être construite
à partir de données. Nous nous attachons à résoudre le cas particulier dans lequel la
variable d’intérêt, X, est définie comme le résultat d’une expérience aléatoire. Il s’agit
donc d’une variable aléatoire, de distribution de probabilité inconnue PX. On suppose
que l’information disponible consiste en une série d’observations collectées au cours
d’une série de n répétitions de la même expérience, formant un échantillon aléatoire issu
de PX. A partir de cette information, nous montrons comment représenter les croyances
d’un agent vis à vis de futures réalisations de X issues de la même distribution. En
d’autres termes, nous prédisons la valeur de la prochaine observation.
Dans [42], une formalisation de ce problème est suggérée, utilisant le concept de fonction
de croyance prédictive. Des méthodes pratiques, basées sur l’utilisation de régions de
confiance multinomiales, sont introduites pour construire de telles fonctions de croyance
dans le cas où X est une variable aléatoire discrète.
Dans la première section de ce chapitre, cette approche est étendue au cas où X est
une variable aléatoire continue. Cette extension se base sur l’utilisation de bandes de
confiance, qui jouent un rôle similaire aux régions de confiance multinomiales dans le
cas discret.
Dans la seconde section, une autre approche est proposée. Cette dernière peut être con-
sidérée étant plus en accord que la précédente avec la structure à deux niveaux (crédal,
pignistique) du modèle des croyances transférables. Le point de départ de cette méthode
est l’hypothèse suivante: si la distribution de probabilité PX d’une variable aléatoire X est
connue, alors la distribution de probabilité pignistique associée à la fonction de croyance
quantifiant nos croyances vis à vis de valeurs futures de X doit être PX. Comme de
nombreuses fonctions de croyance satisfont cette propriété, et que l’élément le moins
engagé n’est pas unique dans le cas général, la solution suggérée est de choisir la fonction
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de croyance consonante la plus engagée parmi celles qui sont moins engagées que celles
qui satisfont cette propriété.
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2.1 Introduction

In the past few years, belief functions have been developed as a tool for data fusion, but
also for the management of uncertainty and various aspects of data mining or decision
making (see Chapter 1). They are a very flexible tool even when few data are available.
However, it is not always clear how to obtain belief functions or build them from raw
data.

In this chapter, we will consider the special case where the variable X of interest is
defined from the result of a random experiment. It is thus a random variable, with
unknown probability distribution PX. The available information is assumed to consist
in past observations collected from n independent repetitions of the same experiment,
forming an independent random sample from PX. Based on this information, we would
like to be able to represent an agent’s belief about the realisation of a new sample drawn
from the same distribution. In other words, we would like to be able to predict what the
next observation will be.

There are two possible ways of building such a belief function.
The first method is based on Hacking’s frequency principle [55, 117], which equates

the degree of belief of an event to its probability (long run frequency), when the latter is
known. The second method is based on a weak form of Hacking’s principle, which states
that the pignistic probability of an event should be equal to its long run frequency, when
the latter is known.

This chapter will be divided in two main sections. Each section derives a solution
corresponding to one of the above mentioned two points of view. We will thus introduce
two types of predictive belief functions. The first type will be introduced in the following
section, and the second type will be introduced later.

2.2 Type I predictive belief functions

Let us consider the first interpretation. As the probability distribution of X is unknown,
the available information is incomplete and the precision of the obtained belief function
should depend on the number of observations. In [42], a formalization of this problem
was suggested, using the concept of predictive belief function (PBF). A PBF was defined in
Section 1.4 as a belief function less committed than PX with some user-defined probabil-
ity, and converging in probability towards PX as the size of the sample tends to infinity.
Practical methods for building belief functions were presented for the case where the
domain X of X is discrete, based on multinomial confidence regions.

In this section, the above approach is extended to the case where X is a continuous
random variable. The extension is based on confidence bands, which play a role similar
to that of multinomial confidence regions in the discrete case. When a confidence band
is defined by step upper and lower bounding functions, it is known to be equivalent to
a belief function on the real line with a finite number of focal intervals. We first show
that this belief function is a predictive belief function as defined in [42]. We then consider
the generalization to continuous confidence bands. In that case, the corresponding belief
function is continuous, and we derive the expression of its basic belief density.

The section is organized as follows. First, a definition of confidence bands is given,
and the construction of confidence bands of particular interest are detailed. Then, the
solution of the problem of building a discrete PBF on a discrete domain is recalled. Next,
it is shown that the least committed belief function (LCBF) built from a step confidence
band as described by Kriegler and Held [68] is a discrete PBF on a continuous domain.
The approach is finally extended to the construction of a continuous PBF on a continuous
domain.

The results presented here were first published in [6] and [7].
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2.2.1 Confidence Bands

Definition

Let us assume that X is a random variable with cumulative distribution function (cdf) FX.
In some cases, FX is not precisely known, but a lower bounding function F : R → [0, 1]
and an upper bounding function F : R → [0, 1] can be specified such that F(x) ≤ FX(x) ≤
F(x) for all x ∈ R. The convex set of probabilities compatible with these constraints,

ΓX(F, F) = {P|∀x ∈ R, F(x) ≤ P((−∞, x]) ≤ F(x)}, (2.1)

is called a distribution band [68].

In the special case where F and F are step functions, then ΓX(F, F) is called a probability
box1, or p-box for short [50]. A continuous distribution band can always be enclosed in a
p-box. The smallest discrete approximation is always obtained by choosing the lower and
upper bounding step functions to be right and left-continuous, respectively [50]. From
now on, only p-boxes possessing this property will be considered.

Suppose now that the available information about FX takes the form of an iid random
sample X = (X1, . . . , Xn) with parent distribution FX. Let F(·; X) and F(·; X) be two
functions computed from X and such that F(·; X) ≤ F(·; X). The distribution band
ΓX(F(·; X), F(·; X)) is called a confidence band at level α ∈ (0, 1) [72, page 334] iff

P
{

F(x; X) ≤ FX(x) ≤ F(x; X), ∀x ∈ R
}

= 1 − α, (2.2)

or, equivalently:

P
{

PX ∈ ΓX

(
F(·; X), F(·; X)

)}
= 1 − α. (2.3)

Note that, in the above equalities, FX and PX are fixed unknown functions, whereas
F(·; X) and F(·; X) depend on random sample X.

Kolmogorov’s Confidence Band

An entirely non-parametric confidence band on a sample’s cumulated distribution func-
tion of a statistic X can be built through Kolmogorov’s statistic Dn. The value of Dn

represents the supremum of the difference between the estimated and actual cdf at a
confidence level α and is defined as

Dn = sup
x

|Sn(x; X) − FX(x)|, (2.4)

where Sn(·; X) is the sample cumulated distribution function defined by

Sn(x; X) =





0, x < X(1)

k/n, X(k) ≤ x < X(k+1)

1, X(n) ≤ x,
(2.5)

for all x ∈ R, where X(1) ≤ X(2) ≤ . . . ≤ X(n) denote the observations sorted in increasing
order.

The distribution of Dn is totally independent from the reference cdf. It only depends
on the size of the set of data that was used to build the estimated cdf, and is actually
inversely proportional to the sample size n. Thus, the bigger the set of data, the more
precise the estimation of the cdf and the narrower the confidence band.

1Ferson et al. [50] actually used the term “p-box” as a synonym to “distribution band”. However,
following Kriegler and Held [68], we prefer to reserve the term “p-box” for the important case where the
bounding functions are step functions.
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The distribution of Dn was computed for fixed n by Kolmogorov [67], who also
computed the asymptotic distribution of Dn. Let dn,α denote the (1 − α) percentile of
Dn (defined as P(Dn > dn,α) = α). Thus,

P { Sn(x; X) − dn,α ≤ FX(x) ≤ Sn(x; X) + dn,α, ∀x ∈ R } = 1 − α, (2.6)

which implies that Sn ± dn,α defines a confidence band at level 1 − α [63, page 481]. This
band may be narrowed by using the inequalities 0 ≤ FX(x) ≤ 1 for all x. Hence,

F(x; X) = max(0, Sn(x; X) − dn,α), (2.7)

F(x; X) = min(1, Sn(x; X) + dn,α). (2.8)

If the support of X is bounded and known to be included in [b, B], then the above bounds
can be further narrowed.

Note that Sn(·; X) –as defined by (2.5)– and, consequently, both F(·; X) and F(·; X), are
right-continuous step functions. However, F(·; X) can be replaced by the left-continuous

function F
′
(·; X) taking the same values everywhere except at sample points, defined as

F
′
(x; X) = limh→x− F(h; X). The pair (F, F

′
) still defines a confidence band at level 1 − α,

that is to say,

P

{
PX ∈ ΓX(F, F

′
)
}

= 1 − α. (2.9)

Example 6. The data reported in [109] consists in the operational lives (in hours) of 20 bearings.
These are 2398, 2812, 3113, 3212, 3523, 5236, 6215, 6278, 7725, 8604, 9003, 9350, 9460, 11584,
11825, 12628, 12888, 13431, 14266, 17809. Here, the variable of interest, denoted X (the lifetime
of a bearing), has a lower bound b = 0 and no upper bound (B = ∞). Figure 2.1 shows the sample
cdf of this data, together with the lower and upper bounding functions defining the Kolmogorov
confidence band at level 1 − α = 0.95.

Nevertheless, Kolmogorov’s confidence bands lead to a pair of step functions, which
are obviously not the best confidence bounds that can be set around a continuous cdf.
Furthermore, Kolmogorov’s statistic is well known to be very conservative, and thus
leads to wider confidence bands than necessary.

Various authors [23, 108, 91, 73, 59, 62, 24] provide ways of building what we may
term “continuous confidence band” (i.e. confidence bands without points of discontinuity)
with good properties (for the goodness of a confidence band see [60]). The construction of
non-parametric continuous confidence bands may be based, e.g., on bootstrap prediction
[24, 4, 60].

However, when reasonable assumptions can be made about the distribution of the
data, parametric confidence bands are generally narrower and thus less conservative than
non parametric confidence bands.

Cheng and Iles’ Parametric Confidence Bands

Methods for the construction of parametric continuous confidence bands were proposed
by several authors, including Kanofsky and Srinivasan [61] and Cheng and Iles [23].

Of particular interest is the solution provided by Cheng and Iles [23] for the construc-
tion of confidence bands around functions of the location-scale family of mean µ and
standard deviation σ. Their method, which will be used later to demonstrate the main
findings of this section, will briefly be recalled in the sequel.

Let us assume that X is a continuous random variable with cdf FX(x, θ), where θ is a
vector of r unknown parameters. Cheng and Iles’ approach consists in determining lower
and upper bounds of the cdf when θ varies in a confidence region R. This confidence
region is built from the statistics

Q(θ) = (θ̂ − θ)T I(θ)(θ̂ − θ), (2.10)
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Figure 2.1: Sample cdf Sn and Kolmogorov confidence band at level 1 − α = 0.95 for the bearings
data.

where θ̂ is the maximum likelihood estimate of θ, and I(θ) is Fisher’s information matrix.
It is known that Q(θ) is asymptotically a chi-squared variable with r degrees of freedom.
In [23], Cheng and Iles apply their method in the case of a general location-scale para-
metric model of the form:

FX(x) = G

(
x − µ

σ

)
, (2.11)

where G is a fixed distribution function, and µ and σ are the unknown location and scale
parameters. In that case Fisher’s information matrix is of the form

I(µ, σ) =
n

σ2

(
k0 −k1

−k1 k2

)
, (2.12)

where k0, k1 and k2 are constants independent of µ and σ. The bounds of the confidence
band may then be expressed as follows:

F(x) = G(ξ + h), (2.13)

F(x) = G(ξ − h), (2.14)

where ξ = (x − µ̂)/σ̂, µ̂ and σ̂ are the maximum likelihood estimates of µ and σ, and

h =

√
γ

n k0

(
1 +

(k0ξ + k1)2

k0k2 − k2
1

)
. (2.15)

Coefficient γ is the value for which P(Q(µ, σ) ≤ γ) = 1 − α. It can be approximated
by the chi-squared quantile χ2

2(α). Cheng and Iles [23] demonstrated the application of
these formula for the cases of the normal, lognormal, extreme-value (log-Weibull) and
Weibull distributions. In the case of the normal distribution, k0 = 1, k1 = 0, and k2 = 2.
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Example 7. This method was applied to the bearings data of examples 6 and 8 for computing
a continuous predictive belief function. As in [23], we assumed these data have a lognormal
distribution. Figure 2.2 shows the 95 % confidence band and the estimated cdf.
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Figure 2.2: Continuous confidence band and cumulative density function estimated through
Cheng and Iles’ algorithm.

We will first describe how to build a discrete belief function from multinomial confi-
dence intervals. We will then introduce a method for building discrete PBF on R, based
on Kolmogorov’s confidence bands, and a method to built continuous PBF on R, based
on Chend and Iles’ confidence bands.

2.2.2 Discrete predictive belief function on a discrete domain

In [41], Denœux provides a solution to the predictive belief function problem (defined in
Section 1.4) in the case of discrete random variables, based on Goodman’s simultaneous
confidence intervals, which we simply recall in this section. He suggests multinomial
confidence regions be used for the building of a belief function fulfilling requirements
(1.66) and (1.67).

Given an iid sample {x1, · · · , xn} of a discrete random variable X taking values in
X = {ξ1, · · · , ξK}, let Nk = ∑

n
i=1 ξk

(xi) denote the number of observations in category
ξk. The random vector N = (N1, · · · , NK) has a multinomial distribution with parameters
n and p = (p1, · · · , pK), with pk = P(ξk).

Additionnally, let S(N) be a random subset of the parameter space

θ =

{
p = (p1, · · · , pK) ∈ [0, 1]Ksuch that

K

∑
k=1

pk = 1

}
. (2.16)

S(N) is said to be a confidence region for p at confidence level (1 − α), if P(S(N) ∋ p) ≥
1 − α.
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Such a confidence region S(N) may be seen as defining either a set of plausible values
for the vector parameter p, either a family of probability measures, given that each value
of p specifies a unique probability measure of X .

Let P and P denote, respectively, the upper and lower envelopes of S(N) = [P1; P1]×
[P2; P2] × · · · × [PK; PK]. P and P can be computed using:

P(A) = max

(

∑
ξk∈A

Pk, 1 − ∑
ξk /∈A

Pk

)
; P(A) = min

(

∑
ξk∈A

Pk, 1 − ∑
ξk /∈A

Pk

)
. (2.17)

Denœux proved that P satisfies requirements (1.66) and (1.67) and is a predictive
belief function for X in the cases where K = 2 or K = 3. On the other hand, if K > 3,
P may not be a belief function. It is therefore necessary to look for the most committed
belief function amongst those less committed than P. Any function bel solution of

max
mX

(

∑
A⊆X

belX (A)

)
= max

mX

(
2k ∑ 2−|B|mX (B)

)
(2.18)

under constraints:

∑
B⊆A

mX (B) ≤ P−(A), ∀A ⊂ X , (2.19)

∑
A⊆X

mX (A) = 1, (2.20)

and mX (A) ≥ 0, ∀A ⊆ X , (2.21)

satisfies requirements (1.66) and (1.67), [41]. This solution is valid for any number of
cases (K ≥ 2) with the drawback that both the numbers of variables and constraints
rapidly grow with K.

2.2.3 Discrete predictive belief functions on R

We will now address the construction of a discrete predictive belief function from a step
confidence band.

Predictive Belief Function Induced by a Kolmogorov Confidence Band The method
described in Section 2.2.1 for constructing a confidence band yields a pair of lower and
upper step functions, i.e., a p-box. The relationship between p-boxes and belief functions
has been studied by several authors [136, 50, 130]. Recently, the exact correspondence
between p-boxes with bounded support and discrete belief functions was proved by
Kriegler and Held [68], who also proposed an algorithm for the rigorous construction
of a discrete mass function m on R equivalent to a p-box.

Let the bounding step functions F and F be defined as follows :

F(x) =





F(x∗i) x∗i ≤ x < x∗i+1

0 x < x∗1

1 x∗n ≤ x
F(x) =





F(x∗j+1) x∗j < x ≤ x∗j+1

0 x ≤ x∗1
1 x∗m < x

, (2.22)

where the x∗i are the points of discontinuity of F sorted in increasing order so that x∗1 ≤
x∗2 ≤ . . . ≤ x∗n and the x∗j are the points of discontinuity of F sorted in increasing order

so that x∗1 ≤ x∗2 ≤ . . . ≤ x∗m.
The algorithm is the following.

Algorithm 1. Let:



2.2. Type I PBF 43

• index k run over the focal elements of the random set to be constructed;

• index i run over x∗i;

• index j run over x∗j ;

• pk denote the cumulative probability already accounted for at step k;

• the tuple {ξ, m} = {(A1, m1), · · · , (An, mn)} denotes the set of focal elements Ak = (a, b]
of the predictive belief function with their associated basic belief assignments.

Iterate:

1. Initialize: k = 1, i = 1, j = 1, and assign p0 = 0;

2. Construct focal element Ak = (x∗j , x∗i];

3. (a) If j = m choose arbitrary x∗m+1 > x∗m, thus F(x∗m+1) = 1;

(b) else if F(x∗i) < F(x∗j+1): mk = F(x∗i) − pk−1, pk = F(x∗i). Raise indices k →
k + 1, i → i + 1. Return to step 2.

(c) else if F(x∗i) > F(x∗j+1): mk = F(x∗j+1) − pk−1, pk = F(x∗j+1). Raise indices

k → k + 1, j → j + 1. Return to step 2.

(d) else if F(x∗i) = F(x∗j+1): mk = F(x∗j+1) − pk−1.

i. If F(x∗i) = F(x∗j+1) = 1,stop.

ii. If F(x∗i) = F(x∗j+1) < 1, set pk = F(x∗j+1). Raise indices k → k + 1, j → j + 1,
i → i + 1. Return to step 2.

For each step k, x∗j ≤ x∗i since F ≤ F, and mk > 0 since F and F are monotonly increas-

ing. The algorithm will always reach points x∗n, x∗m+1 with F(x∗n) = F(x∗m+1) = 1 and
stop, thus returning the least-committed belief function associated with the confidence
region defined by F and F (this property is demonstrated in [68]).

The principle of this construction is illustrated in Figure 2.3. The lower and upper
bounding functions are assumed to be right and left continuous, respectively. Each
rectangle Ai in this figure corresponds to a focal interval [ai, bi), with mass m(ai, bi) =
di − ci.

Let ΓX(bel) denote the set of probability measures compatible with bel, the belief
function induced by m, i.e.,

ΓX(bel) = {P|bel(A) ≤ P(A), ∀A ∈ B(R)}. (2.23)

Kriegler and Held [68] proved that (F, F) and bel are two equivalent representations of a
unique family of probabilities, i.e.,

ΓX(bel) = ΓX(F, F). (2.24)

If bel and pl denote the corresponding belief and plausibility functions, and if P and P
denote the lower and upper envelopes of ΓX(F, F), then bel = P and pl = P. In particular,
bel((−∞, x]) = F(x) and pl((−∞, x]) = F(x) for all x ∈ R.

Note that, although Kriegler and Held only considered the case of p-boxes with bounded
support, their algorithm and results may be applied directly to the case of p-boxes with
unbounded support.

Let us now consider the case where F and F are the lower and upper bounding
functions of Kolmogorov confidence band at level 1 − α, as defined by (2.7)-(2.8). Let

bel(·; X) denote the belief function on R constructed from p-box (F, F
′
) using Kriegler

and Held’s algorithm. The following proposition holds.
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Figure 2.3: Principle of the construction of a basic belief assignment from a p-box.

Proposition 1. bel(·; X) is a predictive belief function at level 1 − α.

Proof. We need to show that bel(·; X) satisfies requirements (1.66) and (1.67).
First, requirement (1.67) is obviously satisfied as a direct consequence of (2.9) and

(2.24): since ΓX(bel(·; X)) = ΓX(F, F
′
),

P {bel(A; X) ≤ PX(A), ∀A ∈ A} = P {PX ∈ ΓX(bel(·; X))} = 1 − α. (2.25)

Let us now consider requirement (1.66).

We know that Sn(x)
P−→ FX(x) for all x ∈ R, as n → ∞ and limn→∞ dn,α = 0.

Consequently, F(x)
P−→ FX(x) and F

′
(x)

P−→ FX(x) for all x ∈ R, as n → ∞.
Now, as a consequence of Proposition 2.24,

bel(A; X) = inf
P∈ΓX( f , f

′
)

P(A), ∀A ∈ B(R). (2.26)

Let us show that bel(A; X)
P−→ PX(A) for all interval A:

• bel(·; X)((−∞, x]) = f (x)
P−→ FX(x) for all x ∈ R;

• bel(·; X)((x, +∞)) = 1− pl(·; X)((−∞, x]) = 1− f (x)
P−→ 1− FX(x) = PX((x, +∞));

• bel(·; X)((x, y]) = max(0, f (y) − f
′
(x))

P−→ FX(y) − FX(x) = PX((x, y]), for all
x, y ∈ R, x < y;

• bel(·; X)((x, y)) < bel(·; X)((x, y]) only if y = xi for some sample point xi; as this

event has probability zero, bel(·; X)((x, y))
a.s.
= bel(·; X)((x, y]) (where

a.s.
= denotes

almost sure equality) and, consequently, bel(·; X)((x, y))
P−→ PX((x, y));

• Similarly, bel(·; X)((−∞, y))
a.s.
= bel(·; X)((−∞, y]) and, consequently,

bel(·; X)((−∞, y))
P−→ PX((−∞, y)), ∀y ∈ R; (2.27)
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• By construction, no focal element of bel(·; X) can be reduced to a point; conse-
quently:

bel(·; X)([x, y]) = bel(·; X)((x, y]), ∀x, y ∈ R, x < y,

bel(·; X)([x, +∞))) = bel(·; X)((x, +∞)), ∀x ∈ R,

bel(·; X)([x, x]) = 0 = PX([x, x]), ∀x ∈ R.

Now, any borel set B ∈ B can be written as B =
⋃

i∈I Ai for a countable family of intervals
(Ai)i∈I with I ⊆ N, such that Ai ∪ Aj is not an interval, for all i, j ∈ I. With such a
decomposition,

bel(·; X)(B) = ∑
i∈I

bel(·; X)(Ai)
P−→ ∑

i∈I

PX(Ai) = PX(B), (2.28)

which completes the proof.

Example 8. In order to illustrate the construction of a predictive belief function from a Kol-
mogorov confidence band, let us consider again the data of Example 6. Based on this data, we
would like to express our beliefs regarding the lifetime X of a new bearing taken randomly from
the same population. For commodity of representation, let us adopt the reasonable assumption
that X has an upper bound, which will arbitrarily be set to 30000, so that the support of X is
assumed to be [0, 30000].
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Figure 2.4: Focals intervals of the PBF constructed from the Kolmogorov confidence band at level
1 − α = 0.95 (bearings data).

The height of each segment representing a focal interval equals the cumulated mass allocated to
intervals whose lower and upper bounds are, respectively, smaller than the lower and upper

bounds of the considered interval.

The focal intervals of the corresponding PBF bel(·; X) are displayed in Figure 2.4. Figures 2.5
and 2.6 are examples of graphical displays that reveal different aspects of the information contained
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in the belief function bel(·; X). Figure 2.5 shows the plausibility profile function x → pl({x}; X)
and the pignistic probability density function Bet f computed from (1.40), which are two left-
continuous real-valued step functions with simple interpretation. Figure 2.6 shows grey level
representations of bel([x, y]; X), pl([x, y]; X) and q([x, y]; X) as two-dimensional functions of
(x, y).
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Figure 2.5: Plausibility profile function (left) and pignistic probability density function (right) of
the discrete PBF constructed from the Kolmogorov confidence band

(Bearings data).

Random Set Interpretation The bba m associated with a p-box (F, F) may also be shown

to formally correspond to a random set [3]. Let F−1 and F
−1

be the pseudo-inverses of F
and F defined, respectively, as:

F−1(α) = inf{x ∈ R, F(x) ≥ α}, (2.29)

F
−1

(α) = inf{x ∈ R, F(x) ≥ α}, (2.30)

for all α ∈ [0, 1]. Let us consider the mapping ρ from [0, 1] to the set of real intervals, such

that ρ(α) = (F−1(α), F
−1

(α)], and let us consider the uniform probability distribution
PU on [0, 1]. Then ρ is a random set, and it is formally equivalent to m. Let F =

{(F−1(α), F
−1

(α)], α ∈ [0, 1]}. For all A ∈ F ,

m(A) = PU(ρ−1(A)). (2.31)

Note that the uniform probability distribution on [0, 1] and the mapping ρ are only con-
sidered here as mathematical constructs. In the TBM, only belief functions have an
interpretation, and an underlying multi-valued mapping is not assumed. However, the
random set point of view will guide us in the following section to propose a generaliza-
tion of the above results in the case of continuous distribution bands.

2.2.4 Continuous predictive belief functions on R

As already mentioned, Kolmogorov’s confidence bands have the advantage of being
exact and non-parametric. However, they have a constant width, which makes them
unnecessarily broad in the tails. As a result, the equivalent belief functions may be
excessively imprecise. Narrower confidence bands can be computed using parametric
methods as shown in Section 2.2.1, but they are defined by continuous bounding func-
tions. The usual approach to continuous distribution bands is to approximate them using
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a p-box [50]. Here, we show that this approximation can be avoided, and a continuous
predictive belief function on R can be constructed from a continuous confidence band,
thus providing an extension to the results presented in the previous section.

PBF Induced by a Continuous Confidence Band

Let ΓX(F, F) be a continuous distribution band for some continuous random variable X,
and assume that the lower and upper bounding functions F and F are strictly increas-
ing. Consider the mapping ρ from [0, 1] to the set of real intervals, such that ρ(α) =

[F−1(α), F
−1

(α)], where F−1 and F
−1

are the inverses of F and F, respectively. If the [0, 1]
interval is endowed with a uniform probability distribution, then mapping ρ defines a
random set, which corresponds to a continuous belief function bel on R as described in
Section 1.3.2. In other words, a continuous confidence band is formally equivalent to
a continuous belief function on R, which provides a continuous extension to the results
presented in [68] and recalled in Section 2.2.3. As a consequence, a continuous confidence
band constructed using, e.g., the parametric method of Cheng and Iles summarized in
Section 2.2.1, is equivalent to a continuous predictive belief function.

As we are working within the TBM, the above random set is for us a purely math-
ematical construct, and we would like to express bel directly through its bbd m(x, y),
x ≤ y. Hence, we will show that this belief function is such that bel([x, y]) = P([x, y])
for all x ≤ y, P being the lower envelope of the distribution band. This can be achieved
using (1.54). However, it requires a little preparation work.

Let ΓX(F, F) be a continuous distribution band for some continuous r.v. X, and let P
denote its lower envelope defined as:

P(A) = inf
P∈ΓX(F,F)

P(A), ∀A ∈ B(R). (2.32)

We want to show that P is a belief function. For that purpose, let us start with the
following lemma.

Lemma 1.

∂2P([x, y])

∂x∂y
= − f (x) f (y)δ(F(y) − F(x)), (2.33)

= − f (x)δ(y − F−1 ◦ F(x)), (2.34)

= − f (y)δ(x − F
−1 ◦ F(y)), (2.35)

where f and f are the first derivatives of F and F, respectively, and δ is the Dirac delta function.

Proof. By definition,

P([x, y]) = max(0, F(y) − F(x))

= (F(y) − F(x))H(F(y) − F(x)),

where H is the Heavyside function. Consequently,

∂P([x, y])

∂x
= − f (x)

(
H(F(y) − F(x)) + (F(y) − F(x))δ(F(y) − F(x))

)
, (2.36)

and

∂2P([x, y])

∂x∂y
= − f (x)

(
δ(F(y) − F(x)) f (y) + f (y)δ(F(y) − F(x))+

(F(y) − F(x))δ′(F(y) − F(x)) f (y)
)

. (2.37)



2.2. Type I PBF 49

Now, from the property of the delta function: xδ′(x) = −δ(x), ∀x, we get:

(F(y) − F(x))δ′(F(y) − F(x)) = −δ′(F(y) − F(x)). (2.38)

Consequently, (2.37) is equivalent to (2.33).
In order to prove that (2.34) and (2.35) can be deduced from (2.33), we shall use the

following property of the delta function: For all function g,

δ (g(x)) = ∑
i

δ(x − xi)

|g′(xi)|
, (2.39)

where the xi are the roots of g. For fixed x, (F(y)− F(x)) is a function of y with a unique
root (F−1 ◦ F(x)). Hence,

f (x) f (y)δ(F(y) − F(x)) = f (x) f (y)
δ(y − F−1 ◦ F(x))

f (F−1 ◦ F(x))

=

{
0, if y 6= F−1 ◦ F(x)
f (x)δ(y − F−1 ◦ F(x)), if y = F−1 ◦ F(x),

= f (x)δ(y − F−1 ◦ F(x)).

Equation (2.35) can be deduced from (2.33) in a similar way, by fixing y and treating
(F(y) − F(x)) as a function of x.

As a consequence of (1.54), Lemma 1 tells us that, if P is a belief function, the corre-
sponding bbd should be

m(x, y) = f (x) f (y)δ(F(y) − F(x)). (2.40)

The following proposition states that this is actually the case. (Additionally, it can be

checked that
∫ ∞

−∞

∫ ∞

−∞
m(x; y)dxdy = 1 hence m is a bbd).

Proposition 2. The lower envelope P of a continuous confidence band ΓX(F, F) is a continuous
belief function with basic belief density

m(x, y) = f (x) f (y)δ(F(y) − F(x)) (2.41)

= f (x)δ(y − F−1 ◦ F(x)), (2.42)

= f (y)δ(x − F
−1 ◦ F(y)), (2.43)

Proof. Let us first show that P(A) = bel(A) for all interval A. First, consider the case of a
closed interval A = [x, y].

By definition, the belief function associated with bba (2.42) is:

bel([x, y]) =
∫ u=y

u=x

∫ v=y

v=u
f (u)δ(v − F−1 ◦ F(u))dvdu (2.44)

=
∫ u=y

u=x
f (u)

(∫ v=y

v=u
δ(v − F−1 ◦ F(u))dv

)
du. (2.45)

The integral with respect to v equals

∫ v=y

v=u
δ(v − F−1 ◦ F(u))dv =

{
1, if F−1 ◦ F(u) ≤ y ⇔ u ≤ F

−1 ◦ F(y),
0, otherwise.

(2.46)
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Consequently,

bel([x, y]) =





∫ u=F
−1◦F(y)

u=x
f (u)du if F

−1 ◦ F(y) ≥ x ⇔ F(y) ≥ F(x),

0, otherwise.

(2.47)

= max(0, F(y) − F(x)) (2.48)

= P([x, y]). (2.49)

By letting x tend to −∞, we get bel((−∞, y]) = F(y) = P((−∞, y]). Similarly, by
letting y tend to +∞, we get bel([x, +∞]) = 1 − F(x) = P([x, +∞)). It can easily be
checked that the equality bel(A) = P(A) holds for any half-closed or open interval A.
For instance,

bel((x, y)) =
∫ u=y−

u=x+

∫ v=y−

v=u
f (u)δ(v − F−1 ◦ F(u))dvdu (2.50)

=
∫ u=y−

u=x+
f (u)

(∫ v=y−

v=u
δ(v − F−1 ◦ F(u))dv

)
du, (2.51)

and

∫ v=y−

v=u
δ(v − F−1 ◦ F(u))dv =

{
1, if F−1 ◦ F(u) < y ⇔ u < F

−1 ◦ F(y),
0, otherwise.

(2.52)

Consequently,

bel((x, y)) =





∫ u=F
−1◦F(y)−

u=x+
f (u)du if F

−1 ◦ F(y) ≥ x ⇔ F(y) ≥ F(x),

0, otherwise.

(2.53)

= max(0, F(y) − F(x)) (2.54)

= P([x, y]). (2.55)

It can be checked that (2.48) may be recovered from m(x, y) using (1.51). Similarly, the
expressions of pl([x, y]) and q([x, y]) can be obtained from m(x, y) using (1.52) and (1.53).
The following proposition holds.

Proposition 3. Let m be the bbd associated with a continuous distribution band (F, F). The
belief, plausibility and commonality of any real interval [x, y] are given by:

bel([x, y]) = max(0, F(y) − F(x)), (2.56)

pl([x, y]) = F(y) − F(x), (2.57)

q([x, y]) = max(0, F(x)− F(y)). (2.58)

Proof. The proof of (2.56) is given by (2.44) to (2.48). Let us prove (2.58).

q([x, y]) =
∫ x

−∞

∫ +∞

y
m(u, v)dvdu

=
∫ x

−∞
F(u)I(u)du,

with

I(u) =
∫ +∞

y
δ
(

v − F−1 ◦ F(u)
)

dv. (2.59)
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Now, I(u) = 1 if F−1 ◦ F(u) ≥ y, i.e., if u ≥ F
−1 ◦ F(y), and 0 otherwise. Hence q([x, y]) =

0 if F
−1 ◦ F(y) ≥ x, i.e., if F(y) ≥ F(x); otherwise,

q([x, y]) =
∫ x

F
−1◦F(y)

F(u)du = F(x) − F(y). (2.60)

The proof of (2.57) is similar.

In addition to this formal proof, a fairly intuitive justification of expressions (2.48),
(2.57) and (2.58) may be found in Appendix B.

Remark 7. From (2.56) and (2.57), it can be checked that bel((−∞, x]) = F(x) and pl((−∞, x]) =
F(x), for all x ∈ R.

Finally, the expression of the pignistic probability density associated with bbd m is
given by the following proposition.

Proposition 4. Let m be the bbd associated with a continuous distribution band (F, F). The
associated pignistic probability density Bet f is given by

Bet f (x) =
∫ x

F
−1◦F(x)

f (u)

F−1 ◦ F(u)− u
du. (2.61)

Proof. From (1.56), we get

Bet f (x) = lim
ǫ→0

∫ x

−∞
J(u)du, (2.62)

with

J(u) = f (u)
∫ +∞

x+ǫ

δ
(

v − F−1 ◦ F(u)
)

v − u
dv

=

{
f (u)

F−1◦F(u)−u
if F−1 ◦ F(u) ≥ x + ǫ

0 otherwise.

The condition F−1 ◦ F(u) ≥ x + ǫ can be expressed as u ≥ F
−1 ◦ F(x + ǫ), hence

Bet f (x) = lim
ǫ→0

∫ x

F
−1◦F(x+ǫ)

f (u)

F−1 ◦ F(u) − u
du

=
∫ x

F
−1◦F(x)

f (u)

F−1 ◦ F(u) − u
du.

The above results are valid for any continuous distribution band (F, F). When (F, F)
is a confidence band at level 1 − α, then it is easy to see, using the same line of reasoning
as in Section 2.2.3, that the corresponding belief function is a predictive belief function at
level 1 − α.

Example 9. The plausibility profile function x → pl({x}; X) obtained from the confidence band
shown in example 7 is shown in Figure 2.7, and contour plots of bel([x, y]; X), pl([x, y]; X) and
q([x, y]; X) are shown in Figure 2.8. These figures should be compared to Figures 2.1, 2.5 and 2.6,
respectively.



52 Chapter 2. From raw data to BF

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

pl
(x

)

Plausibility profile function

Figure 2.7: Plausibility profile function obtained from the continuous confidence band of Figure
2.2.
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2.2.5 Conclusion

In this section, we demonstrated how to built a predictive belief function from raw data.
We first recalled Denœux’s solution for the construction of a discrete predictive belief
function with discrete domain [42], based on multinomial intervals. We then addressed
the problem of constructing predictive belief functions as defined in [42], in the case
where the random variable X is continuous. We showed that such belief functions can be
constructed from confidence bands. We demonstrated that Krigler and Held’s algorithm
for constructing a discrete BF with a finite number of interval focal sets leads to a predic-
tive belief function when applied to a Kolomogov confidence band. We then presented an
original way of building a continuous predictive basic belief density from a continuous
parametric confidence band. These belief functions are interpreted as quantifying our
belief in future realizations of X, based on a realization of a random sample from the
same distribution. An application of these results to classification is given at the end of
this chapter, and an application to novelty detection is described in Chapter 4.

The above work is based on Hacking’s frequency principle [55, 117], which equates
the degree of belief of an event to its probability, when the latter is known. As mentioned
in the introduction, we may require instead that a weaker form of Hacking’s principle
be satisfied, which states that the pignistic probability of an event should be equal to its
long run frequency, when the latter is known. This other point of view will be presented
in the next section.
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2.3 Type II predictive belief functions

In this section, a new method for building a BF from raw data is introduced. A first
approach to this problem was presented in [42] and Section 2.2 in the cases of discrete and
continuous distributions, respectively, and a similar approach in the context of Possibility
Theory was presented in [81]. However, the TBM [126, 122] is a two-level mental model
in which the beliefs held by an agent are represented at the credal level by belief functions
[113], whereas decision making is based on probability distributions and takes place at
the pignistic level [124]. The new solution presented here is more in line with this two-level
structure of the TBM.

More precisely, the problem considered in this section can be described as follows.
Let X be a random variable with unknown probability distribution PX. We would like
to quantify the beliefs held by an agent about a future realization of X from past inde-
pendent observations X1, . . . , Xn drawn from the same distribution. In [42], it was argued
that a belief function bel(·; X1, . . . , Xn) solution to this problem should meet requirements
(1.66) and (1.67).

In the approach presented in [42] and in Section 2.2, the above-mentioned two re-
quirements are derived from Hacking’s frequency principle [55, 117], which equates the
degree of belief of an event to its probability (long run frequency), when the latter is
known. The relevance of Hacking’s principle, however, can be questioned. For instance,
consider the result X of a coin-tossing experiment, with X ∈ {H, T}, where H and T
stand for “Head” and “Tail”, respectively. If the coin is known to be perfectly balanced,
then PX({H}) = PX({T}) = 0.5. If asked about our opinion regarding the result of the
next toss, should we necessarily assign a degree of belief 0.5 to the event that this toss will
bring a “Head”? This requirement seems difficult to justify. However, if we are forced
to bet on the result of this random experiment, then it seems reasonable to assign equal
odds to the two elementary events.

In the TBM, degrees of chance are not equated with degrees of belief: as emphasized
above, decision making is assumed to be handled at the pignistic level, which is distin-
guished from the credal level at which beliefs are entertained [126, 124]. The pignistic
transformation converts each belief function bel into a pignistic probability distribution
BetP that is used for decision making. As a consequence, the use of Hacking’s principle
may be replaced by the weaker requirement that the pignistic probability of an event be equal
to its long run frequency, when the latter is known. Coming back to the coin example, this
requirement leads to the constraint BetP({H}) = BetP({T}) = 0.5, which defines a set of
admissible belief functions. Within this set, the Least Commitment Principle (LCP) [116]
dictates that the least committed one (i.e., the least informative) should be chosen, which
leads here to the vacuous belief function.

In the above coin-tossing example, the probability distribution of X is assumed to be
known. In this section, we consider a more realistic situation, where only partial infor-
mation is available about this distribution, in the form of a random sample X1, . . . , Xn.
In that case, it is possible to construct a set P of possible probability distributions for
X defined, e.g., by a parametric confidence region. A natural extension of the line of
reasoning suggested in [42] is then to require that bel be less committed than any belief
function whose pignistic probability distribution is in P . This leads to the definition of a
set of admissible belief functions, among which the most committed can be chosen. This
is the principle of the approach presented in this section.

The rest of this section is organized as follows. First, the proposed approach will be
formalized. It will then be applied to the case of a discrete r.v., and to continuous para-
metric models. In particular, the exponential and normal distributions will be treated.
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2.3.1 Consonant Belief Function Induced by a Set of Pignistic Probabilities

In the case where the pignistic distribution is know exactly, the solution was given by
Dubois, Prade and Smets in the discrete case (see Equation (1.41) in Section 1.2.3), and by
Smets in the continuous case (see Equation (1.58) in Section 1.3.5).

What if the pignistic probability is not known exactly? Let us suppose we only
dispose of a set of realizations of a random variable drawn from the pignistic probability
distribution or density, and we would like to calculate the least-committed belief function
associated with the pignistic probability described by these observations. Our problem
then decomposes in two subproblems :

1. The set P of admissible pignistic probability distribution underlying the variables
first needs to be determined;

2. then, the associated least committed belief function should be deduced from P .
However, P does not necessarily have a unique LC element. Consequently, the
most committed element of the set of BF less committed than those in P should be
selected.

Let us assume that the pignistic probability distribution P0 of an agent is only known
to belong to a set P of probability distributions and we seek to approximate the agent’s
bba m0. The problem is underdetermined, as we can only say that m0 belongs to the set
M(P) = Bet−1(P) defined by

M(P) = {m | Bet(m) ∈ P}
=

⋃

P∈P
M(P),

where M(P) = Bet−1(P) denotes the set of bbas whose pignistic probability distribution
equals P (see Figure 2.9).

According to the LCP, m0 should be approximated by a bba m∗ less committed than
m0, with respect to some ordering ⊑. In general, the set M(P) does not contain a LC
element. However, we may define the admissible set M∗(P) as the set of bbas dominating
(i.e., less committed than) all bbas in M(P):

M∗(P) = {m′ | m ⊑ m′, ∀m ∈ M(P)}. (2.63)

It is then natural to choose m∗ as the most committed element in M∗(P), if this element
exists. The solution of this problem is not obvious in the general case. However, a simple
solution can be found if we restrict the search to the subset C∗(P) ⊂ M∗(P) of consonant
bbas less committed than all bbas in M(P), and we consider the q-ordering.

For all P ∈ P , let mP = Bet−1
LC(P) be the q-LC isopignistic bba induced by P. It is

consonant. Let πP denote the corresponding possibility distribution. Bba mP is the q-
least committed bba in the set M(P) of bbas whose pignistic probability distribution is
P. Consequently, a consonant bba m belongs to C∗(P) if and only if it is q-less committed
than mP, for all P ∈ P , ie, for all mP in M(P). In other words, a consonant bba m belongs
to C∗(P) if and only if

πP ≤ π, ∀P ∈ P ,

where π is the possibility distribution associated with m. It follows that the q-most
committed element in C∗(P) is defined by the following possibility distribution

π∗(x) = sup
P∈P

πP(x), ∀x ∈ X . (2.64)

Possibility distribution π∗ will be termed the q-most committed dominating (q-MCD)
possibility distribution associated with P . The corresponding bba will be denoted m∗.
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Figure 2.9: Definition of the q-most committed dominating (q-MCD) bba m∗ associated with a set
P of probability distribution.

The set M(P) contains all bbas with pignistic probability function in P . The set M∗(P)
contains all bbas dominating (i.e., less committed than) all bbas in M(P). The q-MCD bba m∗ is

the q-most committed consonant bba in M∗(P).

Example 10. Let us consider a frame X = {ξ1, ξ2, ξ3} with three elements, and a set P =
{P, P′, P′′} of three probability distributions shown in Table 2.1. The corresponding q-LC pos-
sibility distributions π, π′, π′′ computed from (1.41) are displayed in Table 2.1. Note that there
is no q-LC element among these three bbas, as π′′ is not comparable to π and π′ through the q-
ordering. Possibility distribution π∗ computed using (2.64) is shown in the last column of Table
2.1. The corresponding bba is

m∗({ξ1}) = 0.35, m∗({ξ1, ξ2}) = 0.05, m∗(X ) = 0.6. (2.65)

This bba is q-less committed than all bbas whose pignistic distribution is in P = {P, P′, P′′}, and
it is the q-most committed among all consonant bbas in M∗(P).

x P(x) P′(x) P′′(x) π(x) π′(x) π′′(x) π∗(x)
ξ1 0.7 0.6 0.65 1 1 1 1
ξ2 0.2 0.25 0.1 0.5 0.65 0.3 0.65
ξ3 0.1 0.15 0.25 0.3 0.45 0.6 0.6

Table 2.1: Pignistic probabilities and corresponding q-LC isopignistic possibility distributions of
Example 10.

Remark 8. By definition, the q-MCD bba m∗ is the q-most committed element among all con-
sonant bbas that are q-less committed than all bbas in M(P). The restriction to consonant
bbas is justified by the existence and unicity of a solution in C∗(P), whereas the existence of a
q-most committed element in M∗(P) is not guaranteed in general. Additionally, finding the
solution in C∗(P) is computationally tractable in several cases of practical interest, as will be
shown below, and the result usually has a very simple expression. It may happen, however, that a
q-most committed element in M∗(P) exists, and that it is strictly more committed than m∗. This
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Figure 2.10: Illustration of the approach introduced in [42]:
m◦ is the pl-most committed bba in the set M◦(P) of bbas that are less committed than all

probability measures in P . This approach does not distinguish between the pignistic and credal
levels (compare with Figure 2.9).

is the case, in particular, when function qmax defined by

qmax(A) = max
p∈P

qP(A), ∀A ⊆ X (2.66)

is a commonality function, qP being the commonality function associated with mP. In that case,
the corresponding bba mmax is obviously the q-most committed element in M∗(P). This is the
case in Example 10: as shown in Table 2.2, qmax = max(q, q′, q′′) is a commonality function, and
the corresponding bba mmax is strictly q-more committed than m∗.

A {ξ1} {ξ2} {ξ1, ξ2} {ξ3} {ξ1, ξ3} {ξ2, ξ3} X
q(A) 1 0.5 0.5 0.3 0.3 0.3 0.3
q′(A) 1 0.65 0.65 0.45 0.45 0.45 0.45
q′′(A) 1 0.3 0.3 0.6 0.6 0.3 0.3
q∗(A) 1 0.65 0.65 0.6 0.6 0.6 0.6

qmax(A) 1 0.65 0.65 0.6 0.6 0.45 0.45
mmax(A) 0.2 0 0.2 0 0.15 0 0.45

Table 2.2: Calculation of qmax for the data of Example 10.
In that case, qmax is a commonality function, and the corresponding bba mmax is strictly q-more

committed than m∗, as qmax(A) < q∗(A) for A = {ξ2, ξ3} and for A = X .

Remark 9. The approach presented here is different from that introduced in [42] and 2.2, in
which we searched for the pl-most committed bba m◦, in the set M◦(P) of bbas that are less
committed than all probability measures in P (see Figure 2.10). In that alternative approach,
the solution is obtained as the lower envelope P of P , when it is a belief function. This is the case,
in particular, when P is a p-box (see Section 2.2), or when it is constructed from a multinomial
confidence region with K ≤ 3 [42]. Different heuristics were introduced in [42] for constructing
a belief function less committed than P when P is not a belief function. As will be shown below,
the approach adopted here usually yields a simpler result as it produces consonant belief functions.
Additionally, it may be argued to be more in line with the two-level structure of the TBM, as it
does not directly compare probabilities at the pignistic level with belief functions at the credal level.

2.3.2 Application to a Sample of a Discrete Random Variable

In this section, we consider the application of the methodology described in Section 2.3.1
to the construction of a predictive belief function based on an independent and identically
distributed (iid) sample X1, . . . , Xn from a discrete variable X defined on a finite domain
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X . We first show that a set P of possible probability distributions of X can be constructed
using multinomial simultaneous confidence intervals. An algorithm for finding the q-
MCD possibility distribution π∗ induced by P is then presented.

2.3.3 Construction of P
As before (see Section 2.2.2), let X be a discrete r.v. on a finite domain X = {ξ1, . . . , ξK},
with unknown probability distribution PX. Given an iid random sample X1, . . . , Xn from
PX, let Nk = ∑

n
i=1 1ξk

(Xi) denote the number of observations in category ξk. The random
vector N = (N1, . . . , NK) has a multinomial distribution with parameters n and p =
(p1, . . . , pK), with pk = PX({ξk}).

Of particular interest are simultaneous confidence intervals, i.e., regions defined as a
Cartesian product of intervals:

S(N) = [p−1 , p+
1 ] × . . . × [p−K , p+

K ], (2.67)

which have easy interpretation. Such asymptotic confidence regions were proposed by
Quesenberry and Hurst [98], and Goodman [53]. Goodman’s intervals are defined as:

p−k =
a + 2nk −

√
∆k

2(n + a)
(2.68)

p+
k =

a + 2nk +
√

∆k

2(n + a)
, (2.69)

where a is the quantile of order 1 − α/K of the chi-square distribution with one degree of
freedom (for K > 2), and

∆k = a

(
a +

4nk(n − nk)

n

)
. (2.70)

When K = 2, a should be defined as the quantile of order 1 − α of the chi-square distri-
bution with one degree of freedom. Note that p−k and p+

k both converge in probability
towards pk as n → +∞, for k = 1, . . . , K.

As remarked in [42, 81], S(N) can be seen as defining a family P of probability
measures. Such a family, obtained by bounding the probability of each singleton, is called
a set of probability intervals in [26]. Each vector p of probabilities corresponds to a possible
probability measure P for X.

Example 11. The data analyzed in [98] and [53] describe the frequency of ten modes of failure as
recorded in a study of 870 machines that failed. These data are shown in Table 2.3, together with
the corresponding Goodman confidence intervals at confidence level 1 − α = 0.90.

Mode ξk 1 2 3 4 5 6 7 8 9 10

nk 5 11 19 30 58 67 92 118 173 297
nk/n 0.0057 0.013 0.022 0.035 0.067 0.077 0.106 0.136 0.199 0.341

p−k 0.002 0.006 0.012 0.022 0.048 0.057 0.082 0.109 0.166 0.301
p+

k 0.017 0.027 0.039 0.054 0.092 0.104 0.136 0.168 0.236 0.384

Table 2.3: Goodman simultaneous confidence intervals for the data of Example 11, at confidence
level 1 − α = 0.90.
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2.3.4 Determination of the q-MCD Possibility Distribution

Following the approach outlined in the previous section, assume that P is interpreted as
a set of pignistic probabilities. For each Betp in P , the q-LC isopignistic belief function is
defined by (1.41). Consequently, the q-MCD possibility distribution π∗ defined by (1.41)
can be obtained by solving the following maximization problems:

π∗
k = max

P

K

∑
ℓ=1

min(pk, pℓ) (2.71)

under the constraints
p−

ℓ
≤ pℓ ≤ p+

ℓ
, ℓ = 1, . . . , K (2.72)

K

∑
ℓ=1

pℓ = 1. (2.73)

Note that this problem is similar to the one addressed in [81] for a different probability-
posssibility transformation. We may first notice that the solution has a simple upper
bound π̃∗

k defined by

π̃∗
k = min

(
1,

K

∑
ℓ=1

min(p+
k , p+

ℓ
)

)
, (2.74)

which can be used as an approximation.
The exact solution to optimization problem (2.71)-(2.73) may be found by reasoning

as follows.
First observe that (2.71) can be written as

π∗
k = max

P


∑

ℓ∈Sk

pℓ + |Sk|pk


 , (2.75)

where Sk = {ℓ ∈ {1, . . . , K} | pℓ ≥ pk} is the set of indices of probabilities pℓ at least equal
to pk, |Sk| is its cardinality , and Sk is the complement of Sk. For fixed Sk, the objective
function in (2.75) is linear and it may be maximized using a standard linear programming
algorithm. An approach for solving problem (2.71)-(2.73) is thus to enumerate all possible
sets Sk compatible with constraints (2.72), and for each Sk solve the following linear
programming problem LP(Sk):

max
P


∑

ℓ∈Sk

pℓ + |Sk|pk


 (2.76)

under constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ Sk. (2.77)

pℓ ≤ pk, ∀ℓ ∈ Sk. (2.78)

If problem LP(Sk) is feasible, let π∗
k (Sk) denote its solution of the above problem. Then

π∗
k is the maximum of π∗

k (Sk) for all Sk such that the problem LP(Sk) is feasible.
To enumerate all possible sets Sk, we may observe that indices ℓ such that p−

ℓ
≥ p+

k
surely belong to Sk, whereas indices ℓ such that p+

ℓ
< p−k cannot belong to Sk. All other

indices may be included in Sk or not. Formally, let

S∗
k = {k} ∪ {ℓ ∈ {1, . . . , K} | p−

ℓ
≥ p+

k }, (2.79)

I∗k = {ℓ ∈ {1, . . . , K} | p+
ℓ

< p−k }, (2.80)
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and

P∗
k = {1, . . . , K} \ (S∗

k ∪ I∗k ). (2.81)

Then, all possible sets Sk are of the form Sk = S∗
k ∪ A for A ⊆ P∗

k .
The proposed algorithm may be summarized as follows:

1. Initialize π∗
k = 0.

2. Compute S∗
k , I∗k and P∗

k using (2.79)-(2.81).

3. For all A ⊆ P∗
k :

(a) Let Sk = S∗
k ∪ A.

(b) If constraints (2.72)-(2.73) and (2.77)-(2.78) are feasible, then

i. Compute π∗
k (Sk) = maxP ∑ℓ∈Sk

pℓ + |Sk|pk under constraints (2.72)-(2.73)
and (2.77)-(2.78) using a linear programming procedure.

ii. π∗
k = max(π∗

k , π∗
k (Sk)).

(c) End if.

4. End For.

Example 12. Let us come back to the data of Example 11 reported in Table 2.3. The values of π∗
k

for k = 1, . . . , 10 are shown in Table 2.4, together with the approximations π̃∗
k computed using

(2.74). The q-LC possibility distribution π̂ computed from the sample frequencies nk/n is also
shown in Table 2.4. This possibility distribution is more committed than π∗ as it does not take
into account sampling uncertainty. Detailed calculations for k = 7 are presented below.

Mode ξk 1 2 3 4 5 6 7 8 9 10

nk 5 11 19 30 58 67 92 118 173 297
nk/n 0.0057 0.013 0.022 0.035 0.067 0.077 0.106 0.136 0.199 0.341

π̂k 0.058 0.120 0.193 0.282 0.475 0.526 0.641 0.731 0.858 1
π∗

k 0.171 0.258 0.353 0.462 0.688 0.735 0.804 0.867 0.935 1
π̃∗

k 0.171 0.258 0.353 0.462 0.688 0.747 0.875 0.973 1 1

Table 2.4: Possibility distributions computed for the failure mode data of Example 12:
q-LC possibility distribution computed from the sample frequencies (π̂), q-MCD possibility

distribution computed from the multinomial confidence intervals shown in Table 2.3 (π∗), and
approximation computed using (2.74) (π̃).

Detailed calculation for k = 7:

Let us consider the calculation of π∗
7 . We know that S∗

7 = {7, 9, 10}, I∗7 = {1, 2, 3, 4} and
P∗

7 = {5, 6, 8}. Using the algorithm described in Section 2.3.4, we have to solve a distinct linear
optimization problem for each of the 23 = 8 subsets A of P∗

7 . Let us consider these eight cases:

• For A = ∅, S7 = {7, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {7, 9, 10}, (2.82)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4, 5, 6, 8} (2.83)

are consistent. The maximum of ∑
6
ℓ=1 pℓ + 3p7 + p8 under these constraints is 0.804; it is

achieved for

p = (0.013, 0.021, 0.030, 0.043, 0.076, 0.086, 0.136, 0.128, 0.166, 0.301). (2.84)
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• For A = {5}, S7 = {5, 7, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {5, 7, 9, 10}, (2.85)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4, 6, 8} (2.86)

are not consistent, so the optimization problem is not feasible.

• For A = {6}, S7 = {6, 7, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {6, 7, 9, 10}, (2.87)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4, 5, 8} (2.88)

are not consistent, so the optimization problem is not feasible.

• For A = {8}, S7 = {7, 8, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {7, 8, 9, 10}, (2.89)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4, 5, 6} (2.90)

are consistent. The maximum of ∑
6
ℓ=1 pℓ + 4p7 under these constraints is 0.804; it is

achieved for

p = (0.013, 0.020, 0.029, 0.042, 0.074, 0.083, 0.136, 0.136, 0.166, 0.301). (2.91)

• For A = {5, 6}, S7 = {5, 6, 7, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {5, 6, 7, 9, 10}, (2.92)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4, 8} (2.93)

are consistent. The maximum of ∑
4
ℓ=1 pℓ + 5p7 + p8 under these constraints is 0.659; it is

achieved for

p = (0.010, 0.017, 0.026, 0.038, 0.092, 0.098, 0.092, 0.109, 0.192, 0.327). (2.94)

• For A = {5, 8}, S7 = {5, 7, 8, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {5, 7, 8, 9, 10}, (2.95)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4, 6} (2.96)

are consistent. The maximum of ∑
4
ℓ=1 pℓ + p6 + 5p7 under these constraints is 0.688; it is

achieved for

p = (0.017, 0.027, 0.039, 0.054, 0.092, 0.092, 0.092, 0.112, 0.170, 0.306). (2.97)

• For A = {6, 8}, S7 = {6, 7, 8, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {6, 7, 8, 9, 10}, (2.98)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4, 5} (2.99)

are consistent. The maximum of ∑
5
ℓ=1 pℓ + 5p7 under these constraints is 0.735; it is

achieved for

p = (0.014, 0.024, 0.037, 0.054, 0.089, 0.104, 0.104, 0.109, 0.166, 0.301). (2.100)
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• For A = {5, 6, 8}, S7 = {5, 6, 7, 8, 9, 10}. Constraints (2.72), (2.73) and

pℓ ≥ pk, ∀ℓ ∈ {5, 6, 7, 8, 9, 10}, (2.101)

pℓ ≤ pk, ∀ℓ ∈ {1, 2, 3, 4} (2.102)

are consistent. The maximum of ∑
4
ℓ=1 pℓ + 6p7 under these constraints is 0.688; it is

achieved for

p = (0.017, 0.027, 0.039, 0.054, 0.092, 0.093, 0.092, 0.111, 0.170, 0.305). (2.103)

The highest value obtained in these eight linear optimization problems is 0.804. Thus, π∗
7 =

0.804.

2.3.5 Application to Continuous Parametric Models

The general approach introduced in Section 2.3.1 can also be applied to the construction
of a predictive belief function based on a sample from a continuous r.v. X with unimodal
probability density function f (x; θ) depending on a parameter θ. For each value of θ,
the q-LC possibility distribution π(x; θ) may be computed using (1.60) or (1.61). Given a
confidence region R for θ, one may then compute the q-MCD possibility distribution π∗

as

π∗(x) = sup
θ∈R

π(x; θ), (2.104)

for all x ∈ R.
This approach is illustrated below in the cases of exponential and normal distribu-

tions.

2.3.6 Exponential Distribution

Let us assume that X has an exponential distribution E(µ) with density function f (x; µ)
defined by (1.62). As shown in Example 4, Section 1.3.5, the corresponding q-LC possi-
bility distribution is defined for fixed µ by (1.64).

Here, we assume that µ is unknown but an iid sample X1, . . . , Xn from E(µ) has been
observed. It is well known from standard textbooks (see, e.g. [47]) that the sample
average X is an unbiased estimator for µ, and its variance is µ2/n. From the Central
Limit Theorem, the statistic √

n(X − µ)

µ
(2.105)

converges in distribution to a r.v. that is normally distributed with mean 0 and variance
1. For large n and α ∈ (0, 1), the following thus holds

P

(
−u1−α/2 ≤

√
n(X − µ)

µ
≤ u1−α/2

)
≈ 1 − α, (2.106)

where u1−α1/2 is the upper α1/2 percentile of a standard normal distribution. Equiva-
lently,

P

(
X

1 + u1−α/2/
√

n
≤ µ ≤ X

1 + u1−α/2/
√

n

)
≈ 1 − α. (2.107)

The interval

R(X1, . . . , Xn) =

{
µ :

X

1 + u1−α/2/
√

n
≤ µ ≤ X

1 − u1−α/2/
√

n

}
(2.108)
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is therefore an approximate confidence interval for µ at level 1 − α.

In order to compute the supremum of π(x; µ) for µ ∈ R(X1, . . . , Xn), we observe that

∂π(x; µ)

∂µ
=

x2

µ3
e−x/µ

> 0. (2.109)

Consequently,

π∗(x) = π
(
x; µ̂+

)
(2.110)

with

µ̂+ =
X

1 − u1−α/2/
√

n
. (2.111)

Figure 2.11 shows the possibility distribution π∗(x) for x = 1 and various values of n.
The case n = ∞ corresponds to the situation where parameter µ is known: in that case,
π∗ is simply the q-LC isopignistic possibility distribution induced by the exponential
pignistic distribution with µ = 1.
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Figure 2.11: Plot of π∗(x) for the exponential distribution with x = 1, α = 0.1, and n = 10, 30,
100 and ∞.

Example 13. Suppose that the life time X of light bulbs manufactured by a certain company
follows an exponential distribution E(µ) with unknown µ. For n = 20 bulbs, the average
observed life time was X = 30.5 thousands of hours. What are the belief and plausibility that
the life time of a new bulb will exceed 50 thousands of hours ?

For α = 0.05, u1−α/2 = 1.96 and µ̂+ = 30.5/(1 − 1.96/
√

20) = 54.3. Thus, the q-MCD
possibility distribution is

π∗(x) = e−x/54.3
(

1 +
x

54.3

)
. (2.112)

Now,

pl([50, +∞)) = sup
x≥50

π∗(x) = π∗(50) = 0.76 (2.113)

and

bel([50, +∞)) = 1 − pl([0, 50)) = 1 − sup
0≤x<50

π∗(x) = 1 − π∗(0) = 0. (2.114)



64 Chapter 2. From raw data to BF

2.3.7 Normal Distribution

Let us now assume that X has a normal distribution with mean µ and variance σ2. If
these two parameters are known, then the possibility distribution π(·; µ, σ) is given by
(1.65).

When µ and σ2 are unknown but an iid sample X1, . . . , Xn is available, then it is
possible to define a joint confidence region for µ and σ2 [9]. In particular, Mood’s exact
confidence region at level 1 − α = (1 − α1)(1 − α2) is defined by

R(X1, . . . , Xn) =

{
(µ; σ2) : X − u1−α1/2

σ√
n
≤ µ ≤ X + u1−α1/2

σ√
n

,

nS2

χ2
n−1;1−α2/2

≤ σ2 ≤ nS2

χ2
n−1;α2/2

}
, (2.115)

where X is the sample mean, S2 = (1/n) ∑
n
i=1(Xi − X)2 is the sample variance, u1−α1/2 is

the upper α1/2 percentile of a standard normal distribution, and χ2
n−1;α2/2 and χ2

n−1;1−α2/2

are the lower and upper α2/2 percentiles of a χ2
n−1 distribution. The shape of that region

is illustrated in Figure 2.12. Values of α1 and α2 yielding a region of smallest possible size
for a fixed confidence level are given in [9].
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Figure 2.12: Shape of Mood’s exact region:
Mood’s Exact Region for α = 0.1, α1 = α2 and n = 25. Without loss of generality, X = 0 and

s2 = 1. The points with coordinates (µ̂−, (σ̂+)2) and (µ̂+, (σ̂+)2) are denoted A and B,
respectively.

Let P denote the set of Gaussian distributions with parameters contained in confi-
dence region R. Applying the principle outlined in Section 2.3.1, the q-MCD possibility
distribution π∗ may be obtained for any x by maximizing π(x; µ, σ) given by (1.65) with
respect to µ and σ, under the constraint (µ, σ2) ∈ R. The result is given by the following
proposition.

Proposition 5. The q-MCD possibility distribution π∗ associated with Mood’s confidence confi-
dence region R at level (1 − α1)(1 − α2) is

π∗(x) =





π(x; µ̂−, σ̂+) if x < µ̂−

1 if µ̂− ≤ x ≤ µ̂+

π(x; µ̂+, σ̂+) if x > µ̂+,
(2.116)
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with

σ̂+ =

(
nS2

χ2
n−1;α2/2

)1/2

, (2.117)

µ̂− = X − u1−α1/2
σ̂+

√
n

, µ̂+ = X + u1−α1/2
σ̂+

√
n

. (2.118)

Proof. By definition

π∗(x) = sup
(µ,σ2)∈R

π(x; µ, σ). (2.119)

If x ∈ [µ̂−, µ̂+], then we can get π(x; µ, σ) = 1 by setting µ = x.

If x < µ̂−, then the value 1 cannot be reached. However, using standard calculus, we
obtain, for x < µ:

∂π(x; µ, σ)

∂µ
= − (x − µ)2

σ3
√

2π
exp

(
− (x − µ)2

2σ2

)
< 0 (2.120)

and
∂π(x; µ, σ)

∂σ
=

(µ − x)3

σ4
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0. (2.121)

Consequently, π(x; µ, σ) is maximized by jointly minimizing µ and maximizing σ, and
the maximum is reached for (µ, σ) = (µ̂−, σ̂+). Similarly, for x > µ̂+, we get:

∂π(x; µ, σ)

∂µ
=

(x − µ)2

σ3
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0 (2.122)

and
∂π(x; µ, σ)

∂σ
=

(x − µ)3

σ4
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0. (2.123)

Consequently, the maximum of π(x; µ, σ) for x > µ̂+ is reached for (µ, σ) = (µ̂+, σ̂+).

Figure 2.13 shows the possibility distribution π∗(x) for x = 0, s2 = 1, α = 0.1 and
various values of n. The case n = ∞ corresponds to the situation where parameters µ
and σ2 are known: in that case, π∗ is simply que q-LC isopignistic possibility distribution
induced by the normal pignistic distribution with µ = 0 and σ2 = 1.

2.3.8 Conclusion

A new method for generating a belief function from statistical data in the TBM frame-
work has been presented. The starting point of this method is the assumption that, if
the probability distribution PX of a random variable is known, then the belief function
quantifying our belief regarding a future realization of X should be such that its pignis-
tic probability distribution equals PX. In the realistic situation where PX is unknown
but a random sample of X is available, it is possible to build a set P of probability
distributions containing PX with some confidence level. Following the LCP, it is then
reasonable to impose that the sought belief function be q-less committed than all belief
functions whose pignistic probability distribution is in P . Our method selects the q-most
committed consonant belief function verifying this property, referred to as the q-MCD
possibility distribution induced by P . This general principle has been illustrated in three
special cases of general interest involving discrete, exponential and normal distributions,
respectively.
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Figure 2.13: Plot of π∗(x) for the normal distribution with x = 0, s2 = 1, α = 0.1, α1 = α2, and
n = 10, 30, 100 and ∞.

2.4 Multi-class classification example

In order to demonstrate the usefulness of the proposed approach for constructing a be-
lief function from sample data, let us consider the following multi-sensor classification
problem.

Problem Statement and Solution in the TBM

Let Σ denote a system that can be in two states (classes) ω1 and ω2 corresponding, e.g.,
to the normal state and a faulty state. Let Ω = {ω1, ω2}. The system is equipped
with two sensors Sx and Sy that deliver measurements X and Y, considered to be r.v.’s
with distribution depending on the system state. Both r.v.’s are assumed to be normally
distributed and independent conditionally on the system state.

Let us further assume that sensor Sx has been available for a long time, so that we
have gathered a learning set Lx of nx = 1000 observations of X from each class. In
contrast, sensor Sy is recent and we have only a much small learning set Ly of ny ≪ nx

observations of Y from each class.

Based on this information, we would like to construct a decision rule for predicting
the system state from measurements x0 and y0 delivered by the two sensors.

In the TBM, the solution of this problem goes through the following steps [116, 28, 43]:

1. Compute the plausibilities pl(x0|ωk) and pl(y0|ωk) of observing x0 and y0, respec-
tively, when the system is in state ωk (k = 1, 2) using the learning data;

2. As X and Y are conditionally independent, let pl(x0, y0|ωk) = pl(x0|ωk)pl(y0|ωk).

3. Using the General Bayesian Theorem (GBT) [116], compute the conditional bba
mΩ(·|x0, y0) on Ω given X = x0 and Y = y0 using the following formula:

mΩ(·|x0, y0) = {ω1}pl(x0,y0|ω2) ∩©{ω2}pl(x0,y0|ω1),

where the notation {ωk}w stands for the simple bba m such that m({ωk}) = 1 − w
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and m(Ω) = w. Thus,

mΩ(∅|x0, y0) = (1 − pl(x0, y0|ω1)) (1 − pl(x0, y0|ω2)) (2.124)

mΩ({ω1}|x0, y0) = pl(x0, y0|ω1) (1 − pl(x0, y0|ω2)) (2.125)

mΩ({ω2}|x0, y0) = (1 − pl(x0, y0|ω1)) pl(x0, y0|ω2) (2.126)

mΩ(Ω|x0, y0) = pl(x0, y0|ω1)pl(x0, y0|ω2). (2.127)

4. Compute the pignistic probability BetPΩ(·|x0, y0) induced by mΩ(·|x0, y0):

BetPΩ(ω1|x0, y0) =
mΩ({ω1}|x0, y0) + mΩ(Ω|x0, y0)/2

1 − mΩ(∅|x0, y0)
,

BetPΩ(ω2|x0, y0) = 1 − BetPΩ(ω1|x0, y0).

5. Select the system state with the highest pignistic probability.

The approach exposed in this paper concerns step 1. The plausibilities pl(x0|ωk) and
pl(y0|ωk) may be computed from (1.60) by substituting the mean and standard deviation
by their sample estimates (this method will be referred to as LC), from (2.116) using Mood
confidence regions (MCD method), or from (2.57), using Cheng and Ile’s confidence
band (CI method). In the latter two cases, function pl(y0|ωk) will reflect the additional
sampling uncertainty.

Illustrative Example

Figures 2.14 and 2.15 show typical learning sets Lx and Ly with, respectively, nx =
1000 and ny = 50 observations for each class, as well as the corresponding possibility
distributions computed using each of the three methods. For the MCD method, the
confidence level of the Mood regions were fixed at 1 − α = 0.8. For the CI method,
the confidence level of the confidence bands were fixed at 1 − alpha = 0.99. The values
x0 = 1.5 and y0 = −1 are indicated as vertical lines in the upper parts of Figures 2.14 and
2.15.

Let us first do the computations for the LC method: pl(x0|ω1) = 0.539, pl(x0|ω2) =
0.966, pl(y0|ω1) = 0.740, pl(y0|ω2) = 0.522. Hence (step 2),

pl(x0, y0|ω1) = 0.539 × 0.740 = 0.399

pl(x0, y0|ω2) = 0.966 × 0.522 = 0.504.

Using (2.124)-(2.127) we get (step 3):

mΩ(∅|x0, y0) = (1 − 0.399) (1 − 0.504) = 0.298

mΩ({ω1}|x0, y0) = 0.399 × (1 − 0.504) = 0.198

mΩ({ω2}|x0, y0) = (1 − 0.399) × 0.504 = 0.303

mΩ(Ω|x0, y0) = 0.399 × 0.504 = 0.201.

The corresponding pignistic probability function is:

BetPΩ(ω1|x0, y0) = 0.425,

BetPΩ(ω2|x0, y0) = 0.575.

Using the MCD method, pl(x0|ω1) = 0.600, pl(x0|ω2) = 0.978, pl(y0|ω1) = 0.922,
pl(y0|ω2) = 0.796. Thus,

pl(x0, y0|ω1) = 0.600 × 0.922 = 0.553

pl(x0, y0|ω2) = 0.978 × 0.796 = 0.779,
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Figure 2.14: (a): Plot of pl(x|ω1) (solid lines) and pl(x|ω2) (dashed lines)
computed using the LC, MCD and CI methods (thin, thick and very thick lines, respectively), as

functions of x. (b) Dot plots of training data from each class in learning set Lx.

and

mΩ(∅|x0, y0) = (1 − 0.553) (1 − 0.779) = 0.099

mΩ({ω1}|x0, y0) = 0.553 × (1 − 0.779) = 0.122

mΩ({ω2}|x0, y0) = (1 − 0.553) × 0.779 = 0.348

mΩ(Ω|x0, y0) = 0.553 × 0.779 = 0.431.

The corresponding pignistic probability function is

BetPΩ(ω1|x0, y0) = 0.375,

BetPΩ(ω2|x0, y0) = 0.625.

Finally, with the CI method, pl(x0|ω1) = 0.038, pl(x0|ω2) = 0.071, pl(y0|ω1) = 0.236,
pl(y0|ω2) = 0.174. We get:

pl(x0, y0|ω1) = 0.038 × 0.236 = 0.009

pl(x0, y0|ω2) = 0.071 × 0.174 = 0.012,

and

mΩ(∅|x0, y0) = (1 − 0.009) (1 − 0.012) = 0.979

mΩ({ω1}|x0, y0) = 0.009 × (1 − 0.012) = 0.009

mΩ({ω2}|x0, y0) = (1 − 0.009) × 0.012 = 0.012

mΩ(Ω|x0, y0) = 0.009 × 0.012 = 1.08 × 10−4.



2.4. classification example 69

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

pl

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

y

cl
as

s

(b)

Figure 2.15: (a): Plot of pl(y|ω1) (solid lines) and pl(y|ω2) (dashed lines)
computed using the LC, MCD and CI methods (thin, thick and very thick lines, respectively), as

functions of y. (b) Dot plots of training data from each class in learning set Ly.

Finally, the corresponding pignistic probability function is

BetPΩ(ω1|x0, y0) = 0.416,

BetPΩ(ω2|x0, y0) = 0.584.

We observe that observation x0 tends to point to class ω2 (as pl(x0|ω2) > pl(y0|ω1)),
whereas y0 points to class ω1 (as pl(y0|ω1) > pl(y0|ω2)). Using the LC method, the two
observations counterbalance each other, and the resulting pignistic probabilities are close
to 0.5. To a lesser extend, this is also true with the CI method. However, using the MCD
and CI methods, the plausibilities pl(y0|ω1), pl(y0|ω2) are significantly closer to unity
than the plausibilities pl(x0|ω1), pl(x0|ω2) calculated from the same method2, reflecting
weak knowledge of the distribution of Y in both classes, due to the small number of
training examples in Ly. As a consequence, the impact of observation y0 is less important,
resulting in a higher pignistic probability assigned to class ω2.

In this simple example, the final decision does not change. However, it is clear that
the three methods for computing the plausibilities of observations in each class may lead
to different decisions. As the MCD and CI methods take into account the different sizes of
Lx and Ly and, as a consequence, give less importance to sensor Sy in the decision, they
may be expected to result in better performance. It also seems that the MCD method will
perform even better than the CI method. All this will be verified in the following section.

2With these two methods (MCD and CI), the obtained bell-shape of the distribution is much fatter for
pl(y0|ω1), pl(y0|ω2) than for pl(x0|ω1), pl(x0|ω2).
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Numerical Experiment

To study the impact of the MCD and CI method for computing the class-conditional
plausibilities in the above scheme, a numerical experiment was carried out as follows.
The following conditional distributions of X and Y were assumed to be: f (x|ω1) ∼
N (0, 1), f (x|ω2) ∼ N (2, 1), f (y|ω1) ∼ N (0, 1), f (y|ω2) ∼ N (0.5, 1).

A test set of 1000 examples for each class was randomly generated. The size of Lx

was fixed to nx = 1000, while the size ny of Ly was successively set to 10, 50 and 100. For
each value of ny, the following procedure was repeated 50 times:

• Generate randomly a learning set Lx of size nx = 1000;

• Generate randomly a learning set Ly of size ny;

• Classify each test example using the approach described in Section 2.4 and each of
the following options

– use only pl(x0|ωk) (k = 1, 2) computed using the MCD method (the decision
is the same if the LC or CI method is used instead);

– use pl(x0|ωk) and pl(y0|ωk) (k = 1, 2) computed using the LC method;

– use pl(x0|ωk) and pl(y0|ωk) (k = 1, 2) computed using the MCD method;

– use pl(x0|ωk) and pl(y0|ωk) (k = 1, 2) computed using the CI method;

• Compute the error rates errx, errLC, errMCD and errCI using the four methods.

The results are shown in Figure 2.16. We can see that both the MCD and CI methods
significantly outperform the LC method, especially for small values of ny. For ny = 50
and ny = 100, all three methods take advantage of information from sensor Sy, as they
reach significantly lower error rates than that those obtained using sensor Sx alone. For
ny = 10, the LC method exhibits very poor performances and a very high variance. In
contrast, the MCD and CI methods have uniformly good performances for all values of
ny, and a much lower variance for small sample size. For ny = 10, the variance of the
MCD method is lower than that of the CI method, but its mean error rate is higher. For
larger values of ny, both methods show very similar error rates, but the MCD method has
a lower variance, which makes it more reliable.

2.5 Conclusion

In this chapter, two methods have been introduced to build belief functions from a sample
of data, in the special case where the variable X of interest is a random variable, and the
only available information is assumed to consist in an independent random sample from
the unknown distribution PX of X. Our methods differ from the solution suggested in
[123] and [45], by the fact that they take two particular things into account. The first
point is that, as the information we dispose of is incomplete, the obtained belief function
should be less informative than PX. The second is that the more observations we dispose
of, the closer to PX the obtained belief function should be and vice versa. Imposing these
two requirements to be satisfied makes the proposed solutions more robust than those
that do not take the sample size into account. This was illustrated through a comparative
classification example. An application of these techniques to novelty detection will be
shown in Chapter 4.
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Figure 2.16: Box plots of error rates for the LC, MCD and CI methods as well as sensor Sx alone
(rightmost box), for different sizes ny of training set Ly. Each box plot represents a distribution
over 50 trials. Each box has lines at the lower quartile, median, and upper quartile values. The

whiskers extending from each end of the box show the extent of the rest of the data (except
outliers represented separately). Boxes whose notches do not overlap indicate that the medians

of the two groups differ at the 5% significance level.
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Summary

In this chapter, a review of existing one-class classification techniques will be undertaken.
We consider two classes: the positive or reference class, whose data are available for
training, and the negative class, gathering all other classes. This review is limited to
techniques which can be applied to any domain and any kind of data, and concentrates
on the problem where data of only one class are available for training.
Desired properties of the classifiers are detailed first. They include generalization ability,
robustness and computational qualities. The generalization ability (GA) of a classifier is
its ability to differentiate normal, previously unseen data, from novel data. A classifier
with good GA will show a good trade-off between the false positive and false negative
rates (data classified as belonging to the positive class while they belong to the negative
class and vice versa). Other important points to be considered include a robustness
towards the number of considered features and reasonable performance in case of a low
or very high number of samples. Additionally, classifiers should be robust against noise.
Over-fitting should be avoided, e.g. by the choice of boundaries that are not to tight
around the data points, and the model itself should have low variance. The required
computational qualities are low complexity, easy on-line training and minimization of
the number of parameters.
In a second section, a taxonomy of novelty detection techniques is given, through which
the various ranges of application, advantages and drawbacks of the different approaches
will be easy to identify. We mainly distinguish between four categories: density-based
techniques, boundary based-approaches, reconstruction methods and clustering-based
techniques.
This taxonomy is then used to describe the main algorithms that correspond to each
category, from Parzen Windows to Support Vector Machines, including k-Nearest Neigh-
bours, Extreme Value Theory, Convex Peeling, Principal Component Analysis, Neural
Networks, etc.

Résumé

Dans ce chapitre, une revue des méthodes de classification à une classe existantes est
entreprise. Elle se limite aux techniques qui peuvent être appliquées à n’importe quel do-
maine et n’importe quel type de données, et se concentre sur les problèmes pour lesquels
des données en provenance d’une classe seulement sont disponibles pour l’apprentissage.
On considère deux classes: la classe de référence dite positive, et la classe négative,
rassemblant toutes les autres classes possibles.
Les propriétés désirées pour les classifieurs sont introduites en premier. Elles incluent
la capacité de généralisation, la robustesse et les qualités algorithmiques. La capacité de
généralisation d’un classifieur est sa capacité à différencier des données normales, mais
non rencontrées précédemment, de données atypiques. Un classifieur avec une bonne
capacité de généralisation permet d’obtenir un bon compromis entre les taux de faux
positifs et de faux négatifs (données classifiées comme appartenant à la classe positive
alors qu’elles proviennent de la classe négative et vice versa). Les autres points impor-
tants à prendre en compte sont la robustesse envers le nombre de dimensions utilisées
et des performances raisonnables en cas d’échantillon d’apprentissage de très petite ou
de très grande taille. De plus, un classifieur doit être robuste vis à vis du bruit de
mesure. Le sur-apprentissage doit être évité, notamment par le choix de frontières qui
ne sont pas trop “serrées” autour des points, et le modèle lui-même doit avoir une faible
variance. Les qualités algorithmiques requises sont une faible complexité, une facilité
d’apprentissage en ligne et la minimisation du nombre de paramètres.
Dans une seconde section, une taxonomie des techniques de détection de nouveauté
est introduite, à travers laquelle les différentes applications, avantages et inconvénients
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des différentes approches seront faciles à identifier. Nous distinguerons principalement
quatre catégories: les techniques basées sur l’estimation de densité ou de frontière, les
méthodes de reconstruction et les techniques de clustering.
Cette taxonomie est utilisée ensuite pour décrire les principaux algorithmes correspon-
dants à chaque catégorie, des fenêtres de¨Parzen aux séparateurs à vaste marge en pas-
sant par les k plus proches voisins, la théorie des valeurs extrêmes, l’effeuillage convexe,
l’analyse en composantes principales, les réseaux de neurones, etc.
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3.1 Introduction

According to Barnett and Lewis [13], one-class classification consists in the detection of
observations (or subsets of observations) which appear to be inconsistent with the remainder of
the (studied) set of data. It is a very old, cross-disciplinary issue. It has therefore been
widely studied in the literature, under such various names as outlier detection, novelty
detection, one-class classification, noise detection, deviation detection and exception mining. We
will generally refer to the problem as novelty detection or one-class classification. The
existing techniques are grounded on the detection of the patterns that appear to deviate
markedly from other members of the sample under consideration. How markedly the
deviation needs to be before it matters and through which characteristics the data is
assembled into a sample is application-dependent.

Applications of novelty detection are numerous. Amongst them, fraud or intrusion
detection, image analysis, medical condition monitoring and fault detection may be men-
tioned. As we will concentrate on the latter in chapter 4 we will use the vocabulary of
fault detection throughout. The data from the studied (or training) set will thus be termed
normal or un-faulty, while deviating data will be called abnormal, faulty or novel. The
studied set of data will correspond to a specific state, or a set of states of the system under
consideration.

In this chapter, we will review the existing methods for novelty detection. Desired
properties will first be described, and a taxonomy of the different approaches will be
introduced. A synthetic description of each technique will then be given, with particular
emphasis on those that will be referred to in the sequel.

This survey is mainly based on [77, 78, 57, 82]. However, a few of the techniques
mentioned in these reviews are not recalled here because they perform too poorly and
present a number of important drawbacks. Techniques that can only apply to a partic-
ular kind of data (such as character strings) or application (e.g. character recognition
or network intrusion) have also been ignored as well as techniques designed for non
stationary processes (e.g. sequence based). Finally, discrimination techniques have been
ruled out as they do not fit in the constraints of our work, i.e., they require data of several
classes for training. We concentrate here on the situation where data of only one class are
available.

3.2 Desired properties

3.2.1 Generalization ability

The most important feature of a good novelty detection technique is its generalization
ability [77, 82], that is to say, the system should be able to discriminate normal, previously
unseen data, from novel data.

A one-class system may also be seen as a two-class system in which one of the classes
(denoted ω0) serves as reference, and corresponds to a well identified state of the system
under consideration, while the other class ω1 = ω0 gathers all other possible states of the
system. Two kinds of errors may thus be defined.

An error of type-I occurs if a pattern of class ω0 (positive) is deemed to come from ω1

(negative). On the contrary, an error of type-II is encountered when an object of class ω1

is classified as belonging to ω0. Type-I errors are sometimes referred to as false negative,
and type-II errors as false positive.

Intuitively, it is easy to realize that the minimizations of these two types of errors
are conflicting. In effect, a system that classifies all patterns as objects of class ω0 will
minimize the false negative rate α but maximize the false positive rate β. On the other
hand, a classifier that considers all patterns as novel (i.e., belonging to ω1) will have
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the opposite drawback. A novelty detection technique should thus show good trade-off
between false positive and false negative rates.

In addition, many novelty detection techniques suffer the curse of dimensionality,
that is to say, they are not robust against the number of considered features. Robustness
towards this point should thus be considered in the choice of method, as well as reason-
able performance in the case of a low number of samples, and computational tractability
in case of a very high number of samples.

3.2.2 Robustness

Additionally, novelty detection techniques should be robust against noise. In other words,
the classification results should not change drastically under a slight perturbation of
the training data, nor should they be too training-sample dependent. This implies two
different points.

First, the classifier’s model (or the statistic it uses for classification) should have a low
variance.

Moreover, many novelty detection techniques are based on the estimation of a bound-
ary around the training data. Hence, the second point is that, in order to avoid over-
fitting, the boundary should not be too tight around the data points, i.e. boundaries with
a lesser degree of flexibility should be applied. Similarly, density estimates should be
built in such a way that the transition from high densities too low densities is not too
sharp.

3.2.3 Computational qualities

Depending on the application field, different computational considerations may be taken
into account in the choice of the method:

• Minimization of the nunber of parameters: The higher the number of user-defined
parameters, the more difficult it will be to tune the method. Moreover, it has also
been noted that algorithms that imply a high number of parameters are more prone
to over-fitting.

• Low complexity: For on-line use, novelty detection mechanisms should have the
smallest possible computational complexity. However, low complexity should not
come at the expense of too high a need for random access memory, which would
slow the process down once the memory capacity of the computer is exceeded.

• Easy on-line training: For processes that might evolve slowly over time, the possibil-
ity of an on-line update of the model is appealing. Therefore, a system should be
able to use the result of the classification of test samples for retraining. For rapidly
evolving systems, different techniques should be considered altogether.

3.3 A taxonomy of novelty detection techniques

Outliers may arise in the distribution of a training set of data because of human error
(mislabeling), sensor imprecision or malfunctioning, mechanical or other faults, change
in a system behaviour, fraudulent behaviour, natural deviation of populations, etc. The
building of the different techniques that may be used to detect novelties has been widely
influenced by the type of outliers they were primarily designed for. However, most tech-
niques may be used for the identification of a variety of outlier types. We will establish
a taxonomy of methods, through which the various ranges of application, advantages
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and drawbacks of the different approaches will be easy to identify. We will then use this
taxonomy to describe the main algorithms that correspond to each category.

The oldest methods are mostly distance-based. In other words, they involve the
calculation of some sort of distance between a point to be classified (a test point) and
the training data. The test point is then deemed to be novel if its distance to the training
data is greater than some threshold.

3.3.1 Density based techniques

Early techniques often also are density-based and parametric, i.e., they involve some
assumption about the training data distribution (parametric density estimation, Gaussian
mixture models, ...). This limits their domain of applicability but lessens their com-
putational complexity and the amount of memory they require. For obvious reasons,
non parametric techniques have been developed, with nearly opposite pros and cons.
Non parametric techniques, typically Parzen Windows, solve the problem of the ade-
quacy of the data to their supposed distribution, but drastically increase computational
complexity and memory needs in comparison to parametric methods. Depending on
the application field, the training data and the amount of prior knowledge about their
distribution, parametric or non parametric techniques will yield better results.

3.3.2 Boundary based approaches

As the number of considered features increases, and for a training sample of fixed size,
the proportion of available data associated with the relatively low density tails of the dis-
tribution increases as well. This makes it difficult to determine the importance that must
be given to the tails of the distribution. Moreover, it has been shown that the number
of data points required for an accurate estimate of a distribution increases as a power
of the number of dimensions, leading to prohibitive computational costs. Boundary-
based approaches, as opposed to density-based approaches, have thus been developed
to tackle this problem. In such methods (e.g., support vector machines), a boundary is
built around the training samples, and the classification is based on the calculation of a
distance between the tested point(s) and the boundary. The boundary may obviously
be defined with a limited number of training points, namely those situated at the edge
of the distribution. After these points have been selected during the training phase, the
remaining points are not needed any more for the test of an unknown data point, which
solves the previously mentioned computational problem.

3.3.3 Reconstruction approaches

Another way to look at the novelty detection problem is to wonder what underlying
structure actually relates the training points with one-another, rather than trying to de-
fine in what area of space they lie (as density- and boundary-based methods do). This
introduces a third type of approach, namely the reconstruction approaches and, for ex-
ample, principal component analysis. They imply the building of a model of the training
data. The adequacy of tested observations to the model is then evaluated through the
reconstruction error which reflects how well a given point may be represented by the
model. The better a test point fits the model, the more likely it was generated by this
model. These techniques also led to the introduction of novelty indexes that are not
distances in the mathematical sense.
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3.3.4 Clustering-based approaches

Finally, clustering-based approaches (e.g. k-means), are another way of solving the prob-
lem of reducing the computational costs of classification for large training data sets. They
divide the training set into subsets of similar patterns termed clusters. Each cluster may
then be represented by a unique pattern called prototype. It is then possible to work
with prototypes only, hence considerably reducing computational costs. Novelty may
be measured by calculating the distance of tested patterns to prototypes, measuring the
reconstruction error made when a test pattern is represented by a prototype, or checking
the labels of neighbouring prototypes.

3.3.5 Summary

In conclusion, four categories of one-class classification techniques may be defined: density-
based, boundary-based, reconstruction-based, and clustering-based approaches. Amongst density-
based techniques, parametric and non parametric methods should be differentiated. All
four kinds of approaches may also be separated between distance-based algorithms, and
mechanisms relying on other types of novelty indexes. We will see that, depending on
the employed novelty measure, clustering approaches may sometimes be considered as
reconstruction-based approaches.

In the next section, we will describe the most important one-class classification tech-
niques according to the above described taxonomy.

3.4 Description of the main one-class classification techniques

3.4.1 Non-parametric density based approaches

Histograms

One of the simplest outlier detection techniques, as well as one of the oldest, is the
histogram. It is one of the most widely used non parametric density estimates. How-
ever, the shape of the obtained density estimate may vary quite a lot depending on the
considered number of bins, i.e., the necessary bin-width to cover the distribution. They
are computationally inexpensive but very sensitive to the curse of dimensionality.

Histograms are sometimes called naive estimators [114], and constitute a good intro-
duction to the idea of kernel density estimation. Moreover, the multivariate case being a
generalization of the monovariate case, we will start with a description of this estimator
in a one dimensional situation.

By definition of a probability density, if a real variable X has density f then

f (x) = lim
h→0

(
1

2h
P(x − h < X < x + h)

)
, x ∈ R. (3.1)

For a given h, it is of course possible to estimate P(x − h < X < x + h) by the proportion
of observations that lie in the interval [x − h, x + h]. A natural estimator f̂ of f is thus
given by the choice of a small number h and expression:

f̂ (x) =
1

2Nh

N

∑
i=1

1[x−h,x+h](xi), (3.2)

=
1

N

N

∑
i=1

1

h
K
(

x − xi

h

)
, (3.3)

where N is the size of the sample and K(x) = 1
2 if |x| ≤ 1, 0 otherwise. In the sequel,

Equation (3.3) will be termed “naive estimator”.
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It follows from (3.3) that the estimator is built by placing a “box” of width 2h and
height (2Nh)−1 around each observation and summing over the observations to obtain
the estimate.

Parzen windows or kernel density estimation

The naive estimator is not entirely satisfactory from the point of view of density estima-
tion for the representation and interpretation of data. In effect, it follows from definitions
(3.2) and (3.3) that f is discontinuous at some points x and has a null derivative every-
where else. However, is easy to generalize the naive estimator in order to overcome some
of these drawbacks. Let us replace the weight function K by a kernel function satisfying:

∫ +∞

−∞
K(x)dx = 1. (3.4)

This is the kernel density or Parzen window estimator [114].
Most of the time, K is a symmetrical probability density function, such as the normal

density. By analogy with the naive estimator, the Parzen estimator of kernel K is defined
by:

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x − xi

h

)
, (3.5)

where h is the width of the Parzen windows, also termed bandwidth, kernel-width or
smoothing parameter. Provided kernel K is non negative and satisfies condition (3.4),
(i.e. K is a probability density), f̂ will be a probability density itself. Furthermore, f̂
will inherit the continuity and differentiability properties of kernel K. The technique is
easily generalized to the multivariate case by replacing the monovariate representation
window with a volume in dimension d. The estimator may then be written

f̂ (x) =
1

Nhd

N

∑
i=1

K
(

x − xi

h

)
(3.6)

The shape of the kernel and the value of the smoothing parameter widely influence
the final result.

The bandwidth being fixed once and for all, an artificial perturbation may arise in
the tails of the distribution when the estimator is applied to very sparse distributions.
Numerous methods have been suggested to locally adjust the width of the kernel [93, 94,
133] so that data may be better represented, in particular in regions of low density. Figure
3.1 illustrates the influence of the kernel width on the shape of the final density estimate.

Figure 3.1: Influence of the kernel on KDE
Influence of the kernel width on the shape of Parzen density estimate
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The Parzen window estimator requires all the observations vectors to be stored and
used for each calculation, it is thus computationally expensive. On the other hand, it is
quite robust against the presence of outliers in the training sample as they only influence
the density estimation very locally. The main advantage of this method is its ability to
estimate arbitrary distributions.

K-Nearest Neighbours (kNN)

The k-nearest neighbour (kNN) method may be seen as an attempt to improve the Parzen
window estimator by locally adapting the smoothing parameter to the data [114]. In the
case of the Parzen window estimator, the window width is fixed once and for all. In the
kNN technique, on the other hand, it is the number of data that will be included in the
window that is fixed. Let us define the distance between two real points x and y as the
usual euclidean distance ‖x − y‖, and for each xi, the distances, in increasing order, of the
observations to sample point x will be termed, respectively, d1(x) ≤ d2(x) ≤ . . . ≤ dn(x).
The kNN estimator thus reads

f̂ (x) =
k

2Ndk(x)
. (3.7)

In order to explain this definition, let us suppose the density at point x is f (x). Now, for a
sample of size n, we expect about 2rN f (x) observations to fall in interval [x− r; x + r], r >

0. By definition, exactly k observations fall in interval [x − dk(x); x + dk(x)]. Conse-
quently, an estimator of the density at point x may be obtained through k = 2dk(x)N f̂ (x),
which can be re-arranged so that it looks exactly like the definition of the kth nearest
neighbour. In the multivariate case, the window of width 2dk(x) is again replaced with
a volume V of a domain D(x). The number of points in the volume V is fixed, and the
estimator thus reads

f̂n(x) =
k/N

V(D(x))
. (3.8)

While the Parzen estimator is based on the number of observations lying in a box
of fixed width, and centered at the point of interest, the kNN estimator is inversely
proportional to the size of the box needed to contain a given number of observations.
In the tail of the distribution, the distance dk(x) will be greater than in the main part of
the distribution, and the problem of lack of smoothing in the tails will be tackled.

Nevertheless, it is more sensible to outliers in the training data than the kernel density
estimator. As for the latter, the sensitivity of the method to noise depends upon the choice
of the smoothing parameter (k for the kNN, h for Parzen windows).

3.4.2 Parametric density-based approaches

Parametric density estimation

The expression parametric density estimation generally refers to any density estimation
technique relying on an hypothesis on the general form of the data distribution.

The simplest technique is to assume the form of the distribution is known, for ex-
ample the data follow a Gaussian distribution. The parameters of the distribution are
then estimated from the training points, e.g., by the technique of maximum likelihood
estimation. The general form of the distribution might be actually known or suggested
by an expert as a reasonable assumption. A tested data point may then be deemed to be
novel if the cdf at this point –under the hypothesis that it comes from the same distri-
bution than the training samples– is under some threshold or if the likelihood function
at this point –again under the hypothesis that it comes from the same distribution as the
training samples– is under some threshold. Classical hypothesis tests may also be used
to compare the distribution of a set of test points with that of the training points.
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Gaussian Mixture Models (GMM)

In order to improve the adequacy of the data to the considered model, it may be con-
sidered that the data were not drawn from a given distribution but a mixture of several
distributions. The best known example of this technique is the Gaussian Mixture Model
[129, 84], in which data are deemed to be drawn from a mixture of Gaussian distributions
of (possibly) different means and variances. The parameters of the Gaussian mixture can
be found, e.g., by maximizing the likelihood over the training set using the EM algorithm.

Extreme value theory (EVT)

The above described methods aim at describing the distribution of the core of the training
data. Another way to look at the problem is to model the distribution of the extremes.
Extreme value theory thus aims at describing the limit distribution for maxima or minima.
It was first developed with the idea of assessing risk for highly unusual events such as
100-year flow, stock market crashes, etc. The solution came from the observation that in
real life situations, the tails of distributions, where by definition the extremes lie, are often
fatter (heavier) than predicted by classical distributions such as the normal distribution
and its cousins.

Suppose that X is a random variable. Let {X1, X2, . . . , Xn} be n independent realiza-
tions of X. Define the extreme observations as

Yn = max(X1, X2, . . . , Xn)

Zn = min(X1, X2, . . . , Xn)

The extreme value theory deals with the distributional properties of Yn and Zn as n
becomes large.

There are two main theorems in EVT, which both deal with the convergence of ex-
trema [100, 107]. The difference between the two theorems is due to the nature of data
collection. For the first theorem, the data are generated in full range.

The Fisher-Tippett or extremal-types theorem (1928) [51] states that

Theorem 1. If exist constants an > 0 and bn ∈ R such that

Yn − an

bn

d−→ F as n → ∞ (3.9)

for some non-degenerate distribution F (i.e., F(x) is continuous and has an inverse), then F must
be one of the only three possible ’extreme value distributions’, namely the Gumbel, Fréchet or
Weibull distribution.

The so-called generalized extreme value (GEV) distribution was developed to embed the
three above mentioned distributions, which come as special cases of the GEV distribu-
tion.

The second theorem –termed Pickands-Balkema-de Haan theorem [96, 12]– deals
with data that were generated only when they surpass a given threshold (POT or Peak
Over Threshold models), and corresponds to certain real life situations, for example in the
insurance business, where only losses (pays out) above a certain threshold are accessible
to the company. It may be expressed as follows.

Theorem 2. As the threshold L becomes large, the distribution of the excesses over a threshold L
tends to the Generalized Pareto distribution, provided the underlying distribution F belongs to
the domain of attraction of the Generalized Extreme Value distribution.
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The role of these two theorems is similar to that of the central limit theorem for
averages. The latter states that the limit distribution of the arithmetic mean of a sequence
of iid random variable is the normal distribution no matter what the distribution of the
variable may be. The extremal types theorems are similar in scope in that they tell us
that the limiting distribution of the extremes always takes the same form, whatever the
distribution of the parents from which the considered extremes were drawn.

Novelty may then be detected when the cdf associated with the considered extreme
value distribution is above some threshold at the observed (test) point.

The technique is highly sensible to the presence of very few novel points in the train-
ing set. However, Roberts [102, 103], using the work of Fisher and Tipett [51], managed
to apply the method to real data sets with very good performance.

Pros and cons of parametric methods

Parametric techniques are computationally inexpensive, as only the parameters of the
applied method need to be stored. However, the assumption that the data follow a given
distribution is not always reasonable, nor does it always permit to represent the whole
distribution accurately, leading to a number of misclassifications. Moreover, parametric
methods are often sensible to noise and outliers in the training data, as the variance of the
distribution is often one of the parameters that needs to be estimated from the training
set.

3.4.3 Clustering-based approaches

The k-nearest-neighbour estimator may be used for classification in many different ways.
As mentioned in paragraph 3.4.1, it can be used as a classical density estimator, and a
point will be termed novel if the estimated density of the training data is low at that
point. It can also be seen as a simple clustering technique. In this case, the decision of
classifying a point as novel can be made in many different ways [57].

First, let us define the generalized kNN of a point x [127]. The set NNk of x and its
generalized kNN may be built as follows:

1. Find the non generalized nearest neighbour n1 of x and define NN1 = {x, n1};

2. Calculate the distances between n1 and all the other points in the training set except
x, and the distances between x and all the other points in the training set except
n1; select the point that minimizes these distances, and call it n2; define NN2 =
NN1 ∪ n2 = {x, n1, n2};

3. Calculate the distances between each of the points in NN2 and all the other points
in the training set, and select the point that minimizes these distances; it will be n3

and NN3 = NN2 ∪ n3;

4. Iterate point 3 until you get NNk.

A tested point may be classified as novelty

• if its k nearest neighbours lie within a distance d greater than some threshold;

• or if the chaining distance between the tested point x and its generalized kNN
(i.e., the sum of distances between each of the points in NNk and its own nearest
neighbour in the set) is greater than some threshold.

Alternately, it is also possible to first divide the space in a series of cells [99] and use these
to define the distance between points or groups of points. Then,

• if a given cell c and its adjacent1 neighbours contain more than k points, then the

1Adajacent cells here means cells having at least one common edge or one common vertex with cell c.
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points in cell c are assigned to the positive class;

• or if the number of points lying in cells less than a predefined distance apart from c
is less than k, then all points in cell c are considered as novel.

The word “neighbour” may be understood either as “points in the training set” or
“prototypes”.

k-means and k-medoids

The k-means algorithm separates the data into k clusters by maximizing the inter-cluster
distance while minimizing the intra-cluster distance. These combined two objectives
constitute the objective function to be optimized. It is most of the time based on the
Euclidean distance, but other distances may be used instead, such as the Mahalanobis
distance. Each cluster is then best represented by its mean (or barycentre), which may be
used as prototype for the cluster. A test point is deemed to be novel if it lies at a distance
of the nearest prototype further than some threshold.

The k-medoids algorithm is a variant of the k-means in which a cluster is represented
by its median rather than its mean. It is hence less sensible to outliers in the training data
than the k-means algorithm.

Storage space required for training may be high, but classification through the k-
means or k-medoids algorithm is computationally inexpensive as only prototypes need
to be considered. The quality of the result is highly dependent on the chosen number k
of clusters, which must be defined by the user.

Fuzzy clustering techniques

Fuzzy clustering techniques most of the time work in a similar fashion as their crisp equiv-
alent except that class membership is defined by membership degrees rather than a
crisp label. Each data point can thus be assigned a degree of membership to each of
the clusters. All the novelty detection rules described above can be adapted to work
with a fuzzy membership function. An additional rule is to detect novelty whenever
the considered sample does not belong to any of the available clusters (i.e. its degree
of membership to each of the clusters is less than some threshold). A fuzzy output
intrinsically gives a representation of how precise and certain the obtained classification
is.

Amongst other algorithms, the fuzzy k-means [16] may be mentioned. The algorithm
depends upon a parameter 1 < m < ∞ that controls how fuzzy the cluster are allowed
to be. As m tends to 1, the algorithm converges towards the hard k-means. Conversely,
as m tends to infinity all the prototype converge towards the centroid of all training data.
The fuzzy k-means algorithm generally outperforms the hard k-means algorithm in that
it lessens its tendency to getting stuck in local minima of the objective function during
training.

3.4.4 Reconstruction-based approaches

Clustering techniques

Clustering algorithms may be seen as reconstruction-based approaches when they in-
clude prototyping. In effect, the reconstruction error associated to the representation of a
given point by the associated prototype may be used as novelty index and compared to
some threshold for classification purpose.



88 Chapter 3. One-class classification

Supervised neural networks

Neural networks are mostly known as a discrimination technique. However, there exist
neural networks that are trained to reproduce their input features as their output. They
are termed auto-encoders or auto-associators [18, 10, 11, 106]. Figure 3.2 shows a formal
neuron as introduced by Mc Culloch and Pitts [83]. It is a computing unit that carries out
a weighted sum of the input signals to which it applies a transfer function H in order to
obtain the answer of the cell to the input stimuli. With the notations of Figure 3.2, the exit

of a neuron is defined as : a = H
(

∑
d
i=1 wixi

)
, where wi is the weight associated to the

input xi of the neuron, and H is the transfer function.

A neural network is constituted of several layers of neurons connected to each other.
The neurons of the entrance layer take the different features of the pattern to be studied
as inputs. The neurons of each internal layer take the outputs of the neurons of the
previous layer as input. Either the output layer is constituted of only one neuron, or the
outputs need to be merged so that classification may be performed. In the sequel, the
merging process associated with the last of these two possibilities will be considered as a
particular, additional, one neuron layer.

The choice of the number of layers, the number of neurons in each layers, and the
transfer function associated to each neuron widely influences the performance of the
network. There exist a number of techniques and heuristics to specify the architecture of
the network. The initial weights of the neurons are most of the time randomly initialized.

Training then consists in adapting the weights so that the output of the network
reproduces the input as best possible. It is performed through calculating an objective
function that compares the obtained and desired results and consequently updating the
weights of each neuron until the objective function is optimized. Classification then
consists in presenting a test pattern to the network and collecting the associated output.

Figure 3.2: A formal neuron

Only observations whose structure is close to that of the training patterns are repro-
duced accurately. The reconstruction error, calculated as the Euclidean or Mahalanobis
distance between the input and output of the network, hence becomes a novelty index.
Numerous other variants of neural networks have been proposed in the literature.

Remark 10. There is an interesting connection between principal component analysis and auto-
associators [18]. Let us consider a three layer neural network with a hidden layer including p
neurons. The training of this network as an auto-associator leads to an optimal map2 between
the inputs and outputs. It may be shown that this map is the combination of two operations: the
projection onto the subspace spanned by the first p eigenvectors of the data’s covariance matrix
is first performed, and then the data are projected back into the original space. Hence, up to an
arbitrary linear transformation, the activities in the hidden layer are identical to the principal
component of the data as will be defined in the next section (Section 3.4.4).

2In this case, the optimal map is the one that allows the best reconstruction of the inputs of the network
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [52, 111] allows the mapping of high dimensional
data on a lower dimensional space through linear orthogonal projection, thus providing
a more compact representation. The optimal subspace retains most of the variance of the
original data and may have a significantly lower dimension than the original space. It is
obtained by the identification of the dependences between the observations.

It can be shown that the optimal subspace of dimension p ≤ d (where d is the dimen-
sion of the original space) is defined by the first p eigenvectors of the covariance matrix of
the data, the eigenvectors {v1, . . . , vd} being sorted by decreasing associated eigenvalue.

However, simple PCA relies on the hypothesis of a linear correlation between the
data, which is obviously not always the case. The introduction of a kernel function K
solves the problem: it acts as though the data had undergone a prior transformation k
from the original space into a feature, Hilbert space, in which they are linearly correlated.
The resulting technique is termed Kernel Principal Component Analysis (KPCA).

PCA based novelty detection is traditionally performed via the monitoring of differ-
ent types of error, amongst which the squared prediction error (SPE), Hotelling’s statistic
(or T2) and the reconstruction error. A pattern is considered novel if any of the monitored
errors is above some threshold.

Lee et al. [71] derived formulae for the SPE and T2 statistics in the KPCA framework,
thus adapting the monitoring technique to highly non-linear data. Recently, Hoffmann
[58] also provided a calculation of the reconstruction error (here termed kernel recon-
struction error or KRE) adapted to KPCA. These statistics have the property of being
small for data drawn from the same distribution as the data that were used to build the
KPCA model, and greater for data drawn from a different distribution. They can thus be
used as a novelty measure.

As KPCA includes the possibility of dimensionality reduction, it is interesting as a
one-class classifier in the case where the dimensionality of the data to be studied is
high. However, the method remains computationally complex as the determination of
the novelty measure often implies the calculation of the distance of the test pattern to
each of the training data. Noise and outliers influence performances as they influence the
estimation of variances and covariances. A sequential version of the algorithm proposed
by Whenming et al. [137] lessens the need for storage space but slows the training and
classification processes down.

Mathematical formulation: For PCA, it can be shown that the optimal linear trans-
formation is a projection on the subspace spanned by the eigenvectors of the sample’s
covariance matrix. Such a projection is optimal in the sense that, for a given dimension
of the subspace, it has maximum variance. For KPCA, let us introduce a kernel function
of the form: K(xi, xj) =

〈
Φ(xi), Φ(xj)

〉
. The covariance matrix in feature space is:

C =
1

n

n

∑
i=1

Φ(xj)Φ(xi)
T (3.10)

and the corresponding eigenvalue problem can be expressed as:

λv = Cv, (3.11)

where the eigenvector v1 corresponding to the largest eigenvalue λ1 becomes the first
component of the feature space. It can be shown that this eigenvalue problem comes
down to another eigenvalue problem:

nλα = Kα, (3.12)
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with Kij = K(xi, xj), ff = [ff1, . . . , ffn]
T, and v = ∑

n
i=1 ffiΦ(xi). The n eigenvectors

solution of (3.12) are denoted ffj, j=1,. . . ,n, and their ith element is denoted αj,i. Let x be
a datum vector in the original space. The projection of x in the KPCA-subspace will be
denoted t, and its elements tj are termed principal components of vector x. The following
relation holds:

tj =
〈
vj, Φ(x)

〉

=
n

∑
i=1

αj,iK(xi, x). (3.13)

Dimension reduction is then obtained by selecting the principal components retaining
the greatest part of the variance, say 90% for example. If a number p < n of principal
components is selected, then t′ = [t1, . . . , tp], will be used instead of t = [t1, . . . , tn] in
further calculations.

Hotelling’s statistics (T2) is the sum of the normalized squared scores, and is defined
as

T2 = [t1, . . . , tp]Λ
−1[t1, . . . , tp]

T, (3.14)

where tk is the projection of Φ(x) onto eigenvector vk and can be calculated from function
k, Λ−1 is the diagonal matrix of the inverse of the eigenvalues associated with the retained
principal components, and p is the number of retained principal components. The SPE
in feature space may be defined as:

SPE =
n

∑
j=1

t2
j −

p

∑
j=1

t2
j . (3.15)

The squared distance between a point in feature space and the centre of the KPCA
subspace is termed (kernel) reconstruction error and denoted KRE. Hoffman demon-
strated that:

KRE(x) = K(x, x) − 2

n

n

∑
i=1

K(x, xi) +
1

n2

n

∑
i,j=1

K(xi, xj) −
p

∑
ℓ=1

fℓ(x)2 (3.16)

(3.17)

where:

fℓ(x) =
n

∑
i=1

αℓ,i

[
K(x, xi) −

1

n

n

∑
r=1

K(xi, xr)

− 1

n

n

∑
r=1

K(x, xr) +
1

n2

n

∑
r,s=1

K(xr, xs)

]
, (3.18)

where d is the dimension of the original space (xi ∈ R
d, i = 1, . . . , n), and ℓ is the

index that denotes the ℓth eigenvector, with ℓ = 1 for the eigenvector with the largest
eigenvalue.

3.4.5 Boundary-based approaches

Self Organizing Maps (SOM)

Kohonen’s Self Organizing Maps (SOM) [66, 1, 88, 90] are unsupervised one-layer neural
networks in which the nodes are (initially) organized in a particular way, most of the time
on a rectangular or hexagonal mesh. They are constituted of only one layer. During train-
ing, the weights of the nodes are first randomly initialized. Then, a pattern is presented
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as input to the network: in other words, some distance d between this pattern and each
neuron is calculated. The winning neuron is selected as the one the training pattern is
closest to. Its weights are then updated so that it gets even closer to the training pattern
it has just been checked against. To a lesser extent, the weights of its neighbours are
modified as well, proportionally to their distance to the winning neuron. The process is
repeated iteratively with all the training patterns until the weights of all neurons stabilize.

In case only one class was used for training, the distance of a test point to the activated
node works as a novelty measure.

Alternately, a test pattern is repeatedly presented to the network and the weights are
updated until the weights stabilize. The stabilization“time”(number of presentations of
a given pattern before the weights of the network stabilize) may be used as a novelty
index (with comparison to some threshold). This technique presents the drawback that
classification is much more computationally demanding than with the previous method
(it is in fact as demanding as the training phase).

Note that the network may be graphically represented in such a way that the distance
D between two neighbouring neurons is used as the distance between their representa-
tions, then a node moves each time its weights are updated. When a node moves during
training, the neighbouring nodes move as well. Hence, the mesh tends to reproduce the
configuration of the input patterns.

Once trained, a SOM is computationally undemanding, but training involves distance
calculations between each training pattern and all the neurons in the network. The
number, type (transfer function) and topology of the neurons influence the performances.
SOM are often appreciated for the very self explanatory representation of the data they
provide.

Other neural networks

A number of other (sometimes fuzzy) types of neural network based algorithms have
been described in the literature.

Very similar to the SOM are the so called Habituation Network [79, 80]. Habituation
is the mechanism by which the brain learns to ignore repeated stimuli. Habituation
network simulate this behaviour: they are trained in such a way that the nodes of the
network are less and less activated by the training patterns. Then, the more a tested
point activates the network, the more likely it is to be novel.

Amongst other types of neural network algorithms, Adaptive Resonance Theory (ART)
and fuzzy ART [54, 21, 22], Learned Vector Quantization (LVQ) [66] and Cooper’s Re-
stricted Coulomb Energy network (RCE) [101], may be mentionned. All three of these
algorithms use hyperspheres to surround the training classes and produce closed deci-
sions boundaries. They differ in the way they determine the number and sizes of the
hyperspheres. During training, an ART algorithm fixes the size of the hyperspheres, an
RCE algorithm fixes the position and LVQ fixes the number. Depending of the applica-
tion, some outperform the others, but they have similar pros and cons on a general point
of view. Their more important drawback is that they all depend on the user-set parameter
that fixes –or influences– the number of hyperspheres for the quality of the results.

Minimum volume ellipsoid (MVE)

The Minimum Volume Ellipsoid (MVE) method [105] fits the smallest possible ellipsoid
around a given percentage p of the data distribution model, thus representing the most
densely populated region of space. Subsets of p% of the data are examined. The smallest
ellipsoid enclosing each subset is calculated in order to find the subset that minimizes
the volume occupied by the data, that is to say, the subset with the smallest associated
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ellipsoid. The best subset (smallest volume) is then used to calculate the covariance
matrix of the data and the Mahalanobis distance to all the data points. An appropriate
cut-off distance is then estimated, and the observations within distances that exceed that
threshold are declared outliers.

As this technique fits boundaries around specific percentages of the data, it is insen-
sible to outliers in the training data.

Convex peeling (or data depth) [13, 74, 69] is a similar, but somewhat more sophisti-
cated approach. In this method, nested convex hulls, respectively enclosing all training
data points, all data but the points on the first hull, all data but the points on the first
and second hulls, all data but the points on the three outermost hulls, etc are used to peel
away the records on the boundary of the data distribution. The convex hull of a set of
points X in R

d, denoted CH(X), is the intersection of all convex sets in R
d containing X.

Sequential algorithms permit to determine nested convex hulls for a set of points, thus
limiting the computational complexity. The Convex peeling algorithm therefore works
on massive data sets.

A way of determining which points may be deemed outliers is to consider that nested
hulls define a depth based partial order on the data points and that the p% least deep
points are outliers, for a user defined value of p. A slightly more sophisticated version
of this is the so-called Balloon plot (see Figure 3.3). It is obtained by blowing the hull that
includes 50% of the data (denoted CH(X).5) by a factor 1.5. Let V.5 be a set of vertices for
CH(X).5. The balloon B.5 for outlier detection is:

B.5 = {yi such that yi = xi + 1.5(xi − CHPM), xi ∈ V.5}, (3.19)

where CHPM is the convex hull peeling median, defined as follows:

Definition 20. (CHPM) Recursive peeling leads to the inner most point or points. If there is
more than one, then the average of the deepest points is the CHPM of the data set, otherwise the
deepest point is the CHPM.

The balloon plot may be seen as some sort of multidimensional boxplot without
whiskers.

Big changes in the volume of two successive hulls may also be used to detect outliers
(see Figure 3.4).

Both the MVE and Convex Peeling techniques suffer the curse of dimensionality as
convex hulls become more and more difficult to determine when dimension increases.

One-class Support Vector Machines (SVMs)

One-class support vector machines (SVM), also termed ν−SVM or Support Vector Data
Description (SVDD), were introduced by Vapnik [132], Schölkopf [112] and Tax and
Duin [128] as a way to estimate the support of a distribution. The underlying idea is
that there is no need to estimate the exact density of a population in order to be able
to determine whether a new measurement originates from the same distribution or not.
The specification of the support of the distribution, i.e., the region of space containing a
large fraction of points drawn from that distribution, is sufficient for most applications
and much more computationally efficient than full density estimation.

The principle of SVMs has two different geometrical interpretations. Schölkopf first
introduced the method as the determination of the hyperplane that separates the training
data from the origin with maximal margin. This is done through the definition of a
function f that is positive in the support of the distribution and negative elsewhere.
Given a learning set x1, . . . , xn, it can be shown that an optimal function may be defined
as:

f (x) =
n

∑
i=1

(αiK(xi, x) − b) , (3.20)
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Figure 3.3: Outlier detection through balloon plot(reproduced from [70])

and satisfies the constraints 0 ≤ αi ≤ (νn)−1 and ∑i αi = 1, where b is a scalar parameter
called bias, ν is an hyperparameter, and K(·, ·) is a kernel function. Function f can be
determined by solving a quadratic programming problem. A pattern x is rejected if f (x)
is negative (or smaller than some threshold).

Tax and Duin then showed that comparable results may be obtained through defining
the smallest hypersphere enclosing all training data. This hypersphere is defined by a
centre a and a radius R.

In both cases, the use of kernel functions allows the definition of implicit mappings
leading to more flexible descriptions. For instance, the data might not be separable
from the origin with an hyperplane in the original space, and, –even in cases were it
is possible–, it would not make sense to do this in the original space as it would very
badly serve the purpose of novelty detection. Hence, the data need to be mapped to a
(possibly high dimensional) feature space in which they are linearly separable from the
origin. The resulting boundary will not be linear once mapped back to the original space.

Additionally, the boundary is made even more flexible by the introduction of slack
variables. Let us consider the hypersphere interpretation: in order to account for the
eventuality of outliers in the training set, the distance of each data to the centre of the
sphere should not be strictly smaller than R, but larger distances should be penalized.

Furthermore, it can be shown that the parameter ν is both an upper bound on the
fraction of outliers (i.e. errors) and a lower bound on the fraction of support vectors thus
controlling the trade-off between precision and generalization capacity. Note that, when
ν = 1 and the kernel can be normalized as a density in input space, then (3.20) is exactly
equivalent to a Parzen-window density estimate [110]. In Vapnik’s original formulation
[132], a parameter C was used instead of ν, and can be shown to be approximately
equivalent to (νn)−1.

Example 14. Figure 3.5 shows a simple two-dimensional data set of n = 100 learning vectors,
with a contour plot of function − f (x) computed using (3.20), with a Gaussian kernel K(x, y) =
exp(‖x − y‖2/(2σ2)). We can see that the support of the distribution is well approximated by
contour lines of f (x). A novelty detection rule may be implemented by rejected patterns for which
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Figure 3.4: Outlier detection through nested convex hull volume change(reproduced from [70])
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− f (x) is higher than some threshold.
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Figure 3.5: SVM-based one-class classification
Data set of Example 14, and contour plot of the SVM novelty measure − f (x), with ν = 0.5.

The training phase of SVMs is computationally demanding, as many iterations over
all training patterns need to be processed for the selection of the support vectors and
associated weights. Though recent works [17, 75, 76] show how to tackle this problem in
the case of multi-class SVMs, to the author’s knowledge, no solution is available in the
literature for the one class problem yet.

Classification, on the other hand, is fairly undemanding.

The smoothing parameter h of Kernel K may be difficult to tune depending on the
data. Cross-validation is often used for this purpose, thus increasing computational
needs during training. Overall, SVMs have been found to show very good performances
with respect to other techniques.

Mathematical formulation

Hyperplane technique We will first consider two classes of data respectively labelled
+1 (positive class or class +1) and −1 (negative class) and determine the hyperplane H
that separates the two classes with maximal margin.

Let us consider an hyperplane of equation H : 〈w, x〉− b = 0, or equivalently, 〈w, x〉 =
b. A plane supports a set of data (or class) if all points of the class are on one of its side.
If the hyperplane H is to separate the two classes, then w and b should be such that
〈w, x〉 > b for all the points x whose label is +1 and 〈w, x〉 < b for the others.

Let us now suppose that the smallest value of 〈w, x〉 − b for the points of the positive
class is κ, then 〈w, x〉 − b ≥ κ, and κ can be set to 1 as positive rescaling will leave
the problem unchanged. Equation 〈w, x〉 − b = 1 then defines an hyperplane H+1 that
supports the data from class +1. Similarly, we may require {〈w, x〉 − b ≤ −1} for the
data in class −1 and {〈w, x〉 − b = −1} defines an hyperplane H−1 parallel to H+1.

The maximization of the distance or margin between H+1 and H−1 will help us find
the plane furthest from both sets of data, which can be defined as the plane H, parallel to
H+1, situated exactly at mid-distance between H+1 and H−1 (see Figure 3.6).

The distance between the supporting planes H+1 and H−1 is γ = 2/ ‖w‖2. Hence,
maximizing the margin is equivalent to minimizing ‖w‖2 /2 in the following minimiza-
tion program [15]:
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Figure 3.6: Separating hyperplanes H+1, H−1 and H for a toy example(reproduced from [15])

min
w,b

1

2
‖w‖2 , (3.21)

subject to: yi (〈w, x〉i − b) ≥ 1, (3.22)

where yi = 1 when xi belongs to the positive class and yi = −1 otherwise.
In the one-class problem, the origin stands for the only point in the negative class.

Thus, H is indeed the hyperplane that separates the training data from the origin with
maximal margin. The constraint becomes 〈w, x〉i − 1 ≥ 1 as the dot product of any vector
with the origin will be null.

The introduction of slack variables ξi, i = 1, . . . , n, and of a kernel function K in place
of the classic dot product leads to:

min
w,b

1

2
‖w‖2 +

1

νn ∑
i

ξi − b, (3.23)

subject to: 〈w, Φ(xi)〉 ≥ b − ξi, (3.24)

ξi ≥ 0,∀i, (3.25)

where ν is an hyperparameter that is used to weight the influence of each term in the
objective function. As already mentioned, it may be shown to be an upper bound on the
fraction of outliers (i.e. errors) and a lower bound on the fraction of support vectors at
the same time.

The solution to this problem is the saddle point of the Lagrangian:

L(w, ξ, b, α, β) =
1

2
‖w‖2 +

1

νn ∑
i

ξi − b − ∑
i

αi(〈w, Φ(xi)〉 − b + ξi) − ∑
i

βiξi, (3.26)

where αi and βi are Lagrange multipliers.
The Kuhn-Tucker conditions then lead to the following dual formulation:

min
α

1

2 ∑
ij

αiαjK(xi, xj), (3.27)

subject to: 0 ≤ αi ≤
1

νn
, (3.28)

n

∑
i=1

αi = 1; (3.29)
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where w = ∑i αiΦ(xi) [112] and K(xi, xj) =
〈
Φ(xi).Φ(xj)

〉
[76]. Finally, novelty detection

can be performed using

f (x) = sgn [〈w, Φ(x)〉 − b] (3.30)

f (x) = sgn

[

∑
i

(αiK(xi, x) − b)

]
(3.31)

as a decision function. A pattern x is then deemed to be novel if f (x) is negative.
Similar formulation can be derived for the hypersphere technique.

3.5 Conclusion

In this chapter, we have summarized the main novelty detection techniques. Tables
3.5 and 3.5 are an attempt to recapitulate the main features of the different methods,
with respect to the desired properties described in Section 3.5. For a given algorithm,
ticks and crosses respectively denote the properties about which positive and negative
remarks have been made in the present chapter for that particular algorithm. This view
is somewhat simplistic, but it gives an overview of the main advantages and drawbacks
previously mentioned for each algorithm.

As outlined in [57], hybrid systems constitute the most recent development in outlier
detection. They combine several classifiers and have been introduced as attempts to
compensate for the drawbacks of a particular algorithm with another algorithm which
may have complementary qualities. They may, of course, include more than two clas-
sifiers. Minimal redundancy should be observed as a rule, in order to avoid wasting
resources, slowing processes and increasing complexity. Moreover, the combination of
several techniques that may provide their result in different formats requires the rep-
resentation of the outputs into a common framework that allows the combination and
fusion of information, and possibly permits to handle information on the precision or
certainty of the provided classifications.

Dempster-Shafer theory seems ideally fitted for such a task. However, until recently,
the problem had not been studied in this framework. This task is undertaken in the next
chapter. Building on previous work reported in [5, 6, 7, 8], we show how to convert the
outputs of one-class classifiers such as one-class SVMs or KPCA into belief functions.
Expressing one-class and multi-class classifiers in a common framework allows the com-
bination of classifiers based on different numbers of classes, different features, different
learning algorithms, or different datasets.
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Robustness Generali-
-zation
ability

Low No.
of pa-
rameters

No. of
features

No. of
training
data

Noise in
training
data

Outliers
in
training
data

Histograms✕ X X X X

Parzen
win-
dows

✕ ✕ X X X

Parametric
density
estima-
tion

✕ X ✕ ✕ ✕ X

GMM ✕ X ✕ ✕ ✕ X

EVT ✕ ✕

kNN X(if
proto-
typing)

✕ ✕

kmeans ✕

kmedoids X

Fuzzy
clus-
tering
tech-
niques

X X X

Unsupervised
NN

X

MVE
and
Convex
Peeling

✕ X ✕

SVM X X X

KPCA X ✕ ✕ ✕ X ✕

Table 3.1: Pros and cons of the novelty detection techniques
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Low computational complexity and low
storage requirement

Training Classification

Histograms X X

Parzen windows ✕ ✕

Parametric density esti-
mation

X X

GMM X X

EVT

kNN ✕ X(if prototyping)

kmeans

kmedoids

Fuzzy clustering tech-
niques

MVE and Convex Peel-
ing

SVM ✕ X

Supervised NN

KPCA ✕ ✕

Table 3.2: Pros and cons of the novelty detection techniques
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Summary

In this chapter, we will see how the work of Chapter 2 can be used together with one-class
(and possibly other) classifiers in such a way that the outputs of the different classifiers
may be expressed in a common framework, namely in the form of belief functions. The
latter can then be compared or combined.
Let us consider a system that can only be in two possible situations: the reference state ω0,
or a condition ω1 including all other possible states. The problem under consideration is
the assessment of the hypothesis that the system is in state ω0 when the only available
information about the system is a sample of observations x1, . . . , xn of some variables,
representative of the system state, conditioned on ω0.
We suggest a three step scheme to solve this problem:

1. Build a novelty measure T from x1, . . . , xn and, given the observed sample t1, . . . , tn

of T for the training data, build a belief function that quantifies our belief in future
values of T drawn from the same distribution;

2. Build two belief functions that quantify our belief in T given that the system is in
the normal state ω0 or in any other state state ω1, respectively;

3. Reverse the conditioning so as to build a belief function that quantifies our belief in
the system state, given T = t∗.

The reader is referred to Chapter 2 for Step 1. Steps 2 and 3 are detailed in the present
chapter, and different hypotheses are taken into consideration. A GBT-based solution is
detailed first. Then, the concept of cognitive inequality is introduced and two models
based on this notion are presented. Finally, several examples of applications are given.

Résumé

Dans ce chapitre, nous expliquons comment les travaux du chapitre 2 peuvent être util-
isés avec les classifieurs à une ou plusieurs classes de manière à ce que les sorties des
différents classifieurs puissent être exprimées dans un référentiel commun, sous la forme
de fonctions de croyance. Ces dernières peuvent être ensuite combinées ou comparées.
Considérons un système qui peut se trouver dans deux situations seulement: un état
de référence ω0, ou une situation ω1 qui comprend tous les autres états possibles. Le
problème considéré est le test de l’hypothèse selon laquelle le système est dans l’état ω0

lorsque la seule information disponible sur le système est un échantillon x1, . . . , xn de
certaines variables représentatives de l’état du système, conditionné par rapport à ω0.
Nous suggérons une procédure en trois étapes:

1. Construire une mesure de nouveauté T à partir de x1, . . . , xn et, étant donnée les
valeurs observées t1, . . . , tn de T pour les données d’apprentissage, construire une
fonction de croyance qui quantifie notre croyance dans de futures valeurs de T
issues de la même distribution;

2. Construire deux fonctions de croyance qui quantifient notre croyance dans la valeur
de T sachant que le système est, respectivement, dans l’état de référence ω0 ou dans
n’importe quel autre état ω1;

3. Renverser le conditionnement afin d’obtenir la fonction de croyance sur l’état du
système connaissant la valeur T = t∗ de T.

Le lecteur est renvoyé au chapitre 2 pour la première étape. Les étapes deux et trois
sont détaillées dans le présent chapitre, et différentes hypothèses sont considérées. Une
solution basée sur le théorème de Bayes généralisé est détaillée pour commencer. Ensuite,
le concept d’inégalité cognitive est introduit, et deux modèles basés sur cette notion sont
présentés. Finalement, plusieurs exemples sont donnés.





4.1. Introduction 105

4.1 Introduction

As outlined in the previous chapter, there exist a wide variety of novelty detection al-
gorithms, none of which is best in all situations and for all types of data. In industry,
complex classification tasks such as, e.g., the sorting of letters in the post, chemical,
mechanical or other system monitoring applications, etc, are carried out by existing clas-
sifiers and show good results. However, due to the ever increasing market competition,
there is always a need to improve these results again and again. There seem to be no
point in trying to propose yet another classifier, which will just be as good as any other,
unless it is extremely application specific, and therefore not very attractive as it will not
be very (easily) evolutive. Future seems to lie in hybrid systems, that combine several
existing classifiers [57].

The combination of information is possible in many frameworks such as probability
and possibility theory, fuzzy sets theory and belief function theory. In each of these frame-
works, there exist a number of combination rules, to be chosen depending on whether
the data to be combined are independent or not, equally reliable or not, etc. However,
the application of those rules requires the information to be expressed in a common
framework, and this is what Chapter 2 was mainly concerned with.

In this chapter, we will see how the work of Chapter 2 can be used together with
one-class (and possibly other) classifiers so that the output of the different classifiers may
be expressed in a common framework, namely in the form of belief functions. The latter
can then be compared or combined. Hence, our purpose is not to propose a new novelty
detection technique but to make the most of existing classifiers.

Building on previous work reported in [5, 8], we show how to convert the outputs of
one-class classifiers such as one-class SVMs or KPCA into belief functions.

We will see that the use of belief functions allows a good exploitation of the available
information. In effect, most classifiers provide crisp answers through thresholding a
statistic representative of the state of the system under study. This leads to a loss of
information, as no assessment of the decision (e.g., distance to the threshold) is carried
out to the final output and thus to the user. The belief functions we obtain are both
representative of the value of the statistic and of the uncertainty attached to it, thus
allowing decision to be made in full knowledge.

Furthermore, expressing one-class and multi-class classifiers in a common framework
allows to provide simple solutions to different fusion problems, such as the combination
of several one-class classifiers based on different features or different learning algorithms,
or the combination of one-class and multi-class classifiers built from different sets of data.

This chapter is organized as follows. A general approach to the problem, divided in
three steps, is first presented. The reader is referred to Chapter 2 for Step 1. Steps 2 and
3 are then detailed for a first model, based on the GBT. Then, the concept of cognitive
inequality is introduced, with two definitions, and the least committed belief functions
satisfying each of this inequalities are presented. After that, two models based on the
notion of cognitive inequality are presented. Steps 2 and 3 are detailed for each of these
models. Finally, several examples of application are given.

4.2 General approach

One-class classification, or novelty detection, consists in assessing to what extent an
observation may be deemed to correspond to a given model. In other words, given a
set of observations x1, . . . , xn drawn from a given distribution, one-class classifiers are
used to determine whether an unknown, new point, comes from the same distribution or
not. Training the classifier to this task consists in building a novelty measure T ∈ T ⊆ R

as a function of x1, . . . , xn using, e.g., (3.20) or (3.16), whose value will be small in the
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region of space containing the data x1, . . . , xn, and larger as the distance to this region
increases. Thus, T will be representative of the state of a system at a given time. A new
observation is then rejected if the value of T exceeds some threshold.

The problem under consideration is the assessment of the hypothesis that a system is
in class ω0 when the only available information about the system concerns the distribu-
tion of statistic T conditioned on ω0.

Let Ω = {ω0, ω1} be the set of possible states of the system, and our frame of discern-
ment. Let x1, . . . , xn be a set of examples available for ω0, the latter being the normal or
reference state of the system under study. Additionally, let ω1 be the set of all other states,
for which no data is available. Having observed a value t∗ of T, we want to define a bba
mΩ[t∗] on Ω, that quantifies our belief about the system state given t∗. Our approach is
based on the following three-step procedure:

1. Build a novelty measure T from x1, . . . , xn and, given the observed sample t1, . . . , tn

of T for the training data, build a predictive belief function mT
∗ that quantifies our

belief in future values of T drawn from the same distribution;

2. Build two belief functions mT [ω0] and mT [ω1] that quantify our belief in T given
that the system is in the normal state ω0 or in any other state state ω1, respectively;

3. Reverse the conditioning in order to build a belief function mΩ[t∗] that quantifies
out belief in the system state, given T = t∗.

Different approaches to these three steps will be detailed in the sequel. They will all
be illustrated with the following toy example.

Example 15. (Ring data) Consider a two-dimensional data set that contains 1202 points. The
first and main part of the data set (800 points) is built as follows. The first component of the data,
x1, is uniformly distributed over [−5; 5], and the second component, x2, is such that x2

1 + x2
2 = 25.

Uniform noise is added to both components. This subset of the data is shaped as a ring. Another
402 points uniformly distributed on a circle of diameter 10 are added inside the ring, as shown in
Figure 4.1.

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

Figure 4.1: The ring data set.

4.3 Step 1: building of mT
∗

During step 1, given observations x1, . . . , xn, a novelty measure T needs to be built. Any
one-class classifier may be used for that purpose. As already mentioned, it is possible to
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use (3.20) or (3.16), but simple density estimation or any other novelty measure may
be used as well. From observations of the obtained values t1, . . . , tn of statistic T, a
predictive bba mT

∗ on future values of T drawn from the same distribution may be built.
The reader is referred to Chapter 2 for a description of how to build such a belief function.
In the sequel, and by construction, bba mT

∗ will be either a discrete or a continuous belief
function on T ⊆ R.

Example 16. The result of the application of two of the techniques of Chapter 2 on the ring data
is shown below.

Figure 4.2 shows a contour plot of statistic T = − f (x) computed using (3.20), with a
Gaussian kernel k(x, y) = exp(‖x − y‖2/(2σ2)). Parameter ν was set to 0.5, and the kernel
bandwidth was defined as 0.7 times the mean Euclidean distance between two training vectors (It
was suggested in [25] to use a half of this distance but adjusting to 0.7 times the distance gives
better results in this particular case). The source code for the calculation of the SVM is Canu et
al.’s and may be found at [19]. We can see that the support of the distribution is well approximated
by contour lines of f (x). A novelty detection rule may be implemented by rejecting patterns for
which − f (x) is higher than some threshold.
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Figure 4.2: Contour lines of the SVM novelty measure T = − f (x) for the ring data set.

Figure 4.3 shows the profile function and contour lines of pl∗ obtained from T via Kriegler and
Held’s algorithm as described in Section 2.2.3. Note that Figure 4.3 shows the contour lines of pl∗
with respect to the value of statistic T, and Figure 4.4 shows the contour lines of pl∗ with respect
to the position of the data. In the sequel, the method presented in Section 2.2.3 will be termed KH
method.

Figure 4.5 shows the profile function and contour lines of pl∗ as obtained via Cheng and Iles’
continuous confidence band as described in Section 2.2.4 (the technique described there will be
referred to as CI method). Figure 4.6 shows the position of the contour lines of pl∗ with respect to
that of the data.
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Figure 4.3: Plausibility function obtained via Kriegler and Held’s algorithm (ring data).
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Figure 4.4: Contour-lines of the plausibility function obtained by the KH method, with respect to
the position of the data (ring data).
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Figure 4.5: Plausibility function as obtained via the CI method (ring data).

0.005
0.005

0.005

0.005

0.005

0.005

0.
00

5

0.01

0.01

0.01

0.
01

0.01

0.01

0.
01

0.015

0.015

0.015

0.
01

5

0.015

0.015

0.
01

5

0.02

0.02

0.02

0.
02

0.02

0.02

0.
02

0.025

0.025

0.025

0.
02

5

0.025

0.025

0.03
0.03

0.03

0.03

0.03

0.03

0.
03

5

0.035

0.035

0.
03

5

0.035

0.035

0.
04

0.04

0.04

0.
04

0.04

0.04

0.
04

5

0.045

0.045

0.045

0.045

0.045

0.045

0.045

0.045

0.045

0.
04

0.04

0.
04

0.04

0.
03

5

0.035

0.035

0.035

0.03

0.03

0.03

0.03

0.
02

5

0.025

0.025

0.02

0.
02

0.02

0.015

0.015

0.015

0.
01

0.
01

0.005

0.005

0.
05

0.
05

0.050.05

0.05

0.05

0.
05

0.05

Contour−lines of Pl, SVM, CI

−10 −8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

Figure 4.6: Contour-lines of the plausibility function obtained by the CI method, with respect to
the position of the data (ring data).
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4.4 Step 2 and 3: Solution using the GBT

In this section, we will introduce the straight-forward most (though maybe not the best)
solution to perform Steps 2 and 3, which may be obtained through the GBT. In the sequel,
plT [ω0] and plT [ω1] will be respectively denoted plT0 and plT1 or even pl0 and pl1 where
there is no possible ambiguity. The associated bba will be respectively termed mT

0 and
mT

1 , or m0 and m1.
As we know nothing on the behaviour of T when ω1 holds, the information we have

at our disposal in this respect can be modeled with the vacuous belief function:

plT1 (A) = 1, ∀A ∈ T . (4.1)

On the other hand, mT
∗ represents our belief on T drawn from the same distribution

than those obtained when the system is in state ω0. Consequently, we can take mT
0 = mT

∗ .
Equation (1.34) thus yields:

mΩ[t∗] = {ω1}pl0(t∗) ∩©{ω0}pl1(t∗). (4.2)

Hence, from (4.1) and (4.2),

mΩ[t∗]({ω0}) = 0 (4.3)

mΩ[t∗]({ω1}) = 1 − plT0 (t∗) (4.4)

mΩ[t∗](Ω) = plT0 (t∗). (4.5)

Interpretation: If the value of T is completely plausible assuming ω0 to be the present
state (plT0 (t∗) = 1), it is not possible to say whether the system is in state ω0 or in any
other state that yields similar values of T. Thus, no value of T ever supports ω0 only,
leading to (4.3). Moreover, the nearer the values of T to those obtained under ω0, the more
plausible Ω is, hence (4.5). Finally, the more the value of T differs from those obtained
when ω0 holds, the greater the belief we have in ω1: from that we get (4.4).

Example 17. This solution is illustrated in Figures 4.7 and 4.8, for the ring data set, pl0 being
obtained via the KH algorithm (cf. Figure 4.3).

A drawback of this method is that, in the specific case where plT0 is continuous and
Bayesian, and t∗ is a singleton, then pl0(t∗) equals zero. Equation (4.4) thus becomes:

mΩ[t∗]({ω1}) = 1 − plT0 (t∗) = 1, (4.6)

and the conclusion is that we always assign full belief to ω1, without taking the value
of t∗ into account. There is a paradox there, but we argue that the problem is not in
formula (4.3-4.5). In effect, when the belief about T is represented by a probability density
function fT, it does not really make sense to assume that pl0(t) = 0 for all t ∈ T . As
an alternative, it seems more reasonable to use the plausibility function whose pignistic
transform equals fT (See Section 2.3).

Example 18. This solution is illustrated in Figures 4.9 and 4.10, for the ring data set, pl0 being
obtained via the CI method (cf. Figure 4.5).

4.5 The cognitive inequality

4.5.1 Definition 1

We considered up to now the case were the only available information is related to one of
the classes. Nevertheless, some sort of a priori information is quite often available about
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Figure 4.7: Bba on Ω knowing T = t∗, GBT solution, discrete case (ring data), for pl0 obtained via
Kriegler and Held’s algorithm.

the other class, though it may be very weak. As any piece of knowledge can be turned
into a belief function, no matter how incomplete or scarce it might be, there is no reason
not to use it when it is available.

To keep things to a general level, let us use ωa and ωb instead of ω0 and ω1 as two
different states of the considered system, and let variable T be a variable whose values
depends on the state of the system. Let pla = pl[ωa] be the belief function representing
your belief on the value of variable T when the system is in condition ωa and plb =
pl[ωb] be the belief function representing your belief on the value of variable T under the
hypothesis that the system is in condition ωb.

Suppose you know for a fact that variable T tends to be bigger when the system is
in a well-defined condition ωb than when the system is in some other condition ωa (for
example, the temperature in the oven tends to be warmer when the oven is on (ωb) than
when the oven is off (ωa)).

In the probability theory, a r.v. X is said to be greater than another r.v. Y iff

FX(x) ≤ FY(x), ∀x, (4.7)

⇔ PX((−∞; x]) ≤ PY((−∞; x]), ∀x, (4.8)

⇔ PX((x; +∞)) ≤ PY((x; +∞)), ∀x. (4.9)

In the belief function theory, there exist two distinct ways of expressing this: the first
is based on belief functions, the other on plausibility functions. We may write:

plTb ((−∞; t]) ≤ plTa ((−∞; t]), ∀t ∈ R. (4.10)

or
belTb ((−∞; t]) ≤ belTa ((−∞; t]), ∀t ∈ R. (4.11)

Note that both (4.10) and (4.11) boil down to stochastic inequality when plTa and plTb
(and therefore belTa and belTb ) are probability measures. They will thus be termed cognitive
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Figure 4.8: Contour-lines of mΩ(ω1) knowing T = t∗, GBT solution, discrete case (ring data), for
pl0 obtained via the KH method.
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Figure 4.9: Bba on Ω knowing T = t∗, GBT solution, continuous case (ring data) for pl0 obtained
via the CI method.



4.5. The cognitive inequality 113

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
1

0.995

0.995

0.995

0.99

0.
99

0.99

0.985 0.
98

5

0.985

0.98

0.98

0.98

0.975

0.
97

5

0.975

0.97

0.
97

0.97

0.965
0.

96
5

0.965

0.96 0.
96

0.
96

0.
95

5

0.
95

5

0.955

0.955

0.96

0.96

0.965

0.
96

5

0.97

0.
97

0.9750.98

0.985

0.
99

0.995

0.950.95

0.95

Contour−lines of m(ω
1
), SVM, GBT solution

Figure 4.10: Contour-lines of mΩ(ω1) knowing T = t∗, GBT solution, (ring data), for pl0 obtained
via the CI method.
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inequalities. We will now use use (4.10), which will be called type I cognitive inequality. A
second type will be defined later.

Suppose now that pla is known and that the only available information about plb is
represented by (4.10). Let us build the least committed belief function plb satisfying the
constraints enforced by this equation.

4.5.2 Determining the LCBF satisfying a cognitive inequality of type I

Case where pla is a discrete belief function on T ⊆ R

Let mT
a be a bba on T ⊆ R with a finite number of focal elements I1, . . . , In of the

form Ii = (ai, bi]. By construction, plTa (−∞; t) is a left continuous step function whose
discontinuity point a1 ≤ a2 . . . ≤ an are the lower bounds of the focal elements of mT

a ,
sorted in increasing order1.

The least committed a belief function, the greater the associated plausibility, hence
the least committed BF verifying (4.10), is the ones that maximizes plausibilities, i.e. the
one for which the equality is reached for all t. It may be expressed as follows:

mb(−∞; +∞) = pla((−∞; a1]) (4.12)

mb(ai; +∞) = pla((−∞; ai + 1]) − pla((−∞; ai]), ∀i = 1, . . . , n − 1 (4.13)

mb(an; +∞) = 1 − pla((−∞; an]) (4.14)

Proof. • In order to get plTb ((−∞; t]) = plTa ((−∞; t]), ∀t ∈ (−∞; a1], the mass pla((−∞; t1])
must be allocated to the biggest possible interval that intersects (−∞; a1], that is,
(−∞; +∞), hence we get Equation (4.12).

• So as to make sure that plTb ((−∞; t]) ≤ plTa ((−∞; t]), ∀t ∈ (a1; a2], a mass pla((−∞; a2])−
pla((−∞; a1]) must be allocated to the biggest possible interval that intersects (−∞; a2]
but not (−∞; a1], i.e. (a1; +∞), therefore:

mb(a1; +∞) = pla(−∞; a2]) − pla(−∞; a1]). (4.15)

• Again, a mass pla((−∞; a3]) − pla((−∞; a2]) must be allocated to the biggest pos-
sible interval that intersects (−∞; a3] but not (−∞; ai], i < 3, so as to ensure that
plTb ((−∞; t]) ≤ plTa ((−∞; t]), ∀t ∈ (a2; a3]. This interval is (a2; +∞), thus:

mb(a2; +∞) = pla(−∞; a3]) − pla(−∞; a2]). (4.16)

• The same reasoning holds for any interval (ai; ai+1], leading to (4.13).

• Finally, a mass pla((−∞; +∞])− pla((−∞; an]) must be allocated to the biggest pos-
sible interval that intersects (−∞; an] but not (−∞; ai], i < n, so that plTb ((−∞; t]) ≤
plTa ((−∞; t]), ∀t ∈ (an; +∞). This interval is (an; +∞), yielding Equation (4.14).

Remark 11. The focal sets are nested. Subsequently, function plb is a possibility distribution. It
increases over R, and

plb(t) = plb((−∞; t]). (4.17)

Remark 12. By misuse of notations, pl(t)=pl({t}). Similarly, whenever pl is a possibility, the
possibility measure and the possibility distribution are both denoted pl in the sequel.

Remark 13. Considering a bba ma with focal elements Ii of the form [ai, bi] would not change the
result.

1Without loss of generality, it is supposed here that the ai are all distinct.
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Link between the focal elements of ma and those of mb The function t 7→ pla((−∞; t])
is discontinuous at points ai such that (ai; bi] is a focal element of pla. The corresponding
mass is ma((ai; bi]) = pla((−∞; ai+1]) − pla((−∞; ai]). Consequently, mb may be directly
built from ma by transferring the mass allocated to each focal element (ai; bi] of ma onto
(ai; +∞).

Case where pla is a continuous belief function on T ⊆ R

Let ma be a bbd. By construction, pla((−∞; t]) is a function increasing over R, ∀t. In that
case,

Proposition 6. the least committed belief function belTa compatible with constraints (4.29) is
defined by the following bbd:

mT
b (t; +∞) =

∫ +∞

t
ma(t, v)dv (4.18)

Proof. As a belief function plT2 is less committed than another belief function plT1 iff
plT1 (A) ≥ plT2 (A), ∀A ∈ T , the least committed belief function plb satisfying (4.10) is
the one that maximizes plb under the constraint of Equation (4.10). Consequently, the
LCBF satisfying (4.10) is the one for which the equality in (4.10) is reached, if such a BF
exists. Hence we need:

plb((−∞; t]) = pla((−∞; t]), , ∀t ∈ T . (4.19)

Now, pla((−∞; t]) is the integral of bdd ma on all intervals whose intersection with
(−∞; t] is not empty. Let dt be an infinitesimal quantity. Then pla((−∞; t − dt]) is the
integral of bdd ma on all intervals whose intersection with (−∞; t − dt] is not empty.
Hence, the difference pla((−∞; t])− pla((−∞; t − dt]) is the integral of ma on all intervals
intersecting with (−∞; t] but not with (−∞; t − dt] (cf. shaded area on Figure 4.11). The
lower bound u of such intervals may vary between t − dt and t, while their upper bound
may vary between u = max(u, t − dt) and +∞.

Figure 4.11: Representation of the integration area for the plausibility function

Hence,

∆(m) = pla((−∞; t])− pla((−∞; t − dt]) (4.20)

=
∫ t

u=t−dt

∫ +∞

v=max(u,t−dt)
ma(u, v)dvdu, (4.21)

and, in this particular case, max(u, t − dt) = u.
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As we require
plb((−∞; t]) = pla((−∞; t])) (4.22)

and
plb((−∞; t − dt]) = pla((−∞; t − dt]), (4.23)

we also obviously require

plb((−∞; t])− plb((−∞; t − dt]) = pla((−∞; t])− pla((−∞; t − dt]). (4.24)

Thus, the LCBF mb that satisfies this equality is the one that allocates the amount of belief
∆(m) to the biggest possible interval that intersects with (−∞; t] but not with (−∞; t− dt],
namely (t − dt; +∞). Therefore, mb is the bbd such that

mb(t − dt, +∞) =
∫ t

u=t−dt

∫ +∞

v=max(u,t−dt)
ma(u, v)dvdu. (4.25)

When dt → 0, this becomes:

mb(t, +∞) =
∫ +∞

v=t
ma(t, v)dv. (4.26)

Subsequently, masses ma are allocated to intervals of the form (t; +∞), with t ∈ R.
It may be checked that requirement (4.10) is met:

plb((−∞; t]) =
∫ t

u=−∞
mb(u; +∞)du

=
∫ t

u=−∞

∫ +∞

v=u
ma(u, v)dvdu

= pla((−∞; t]).

(4.27)

4.5.3 Definition 2

We supposed up to now that variable T tends to be bigger when the system is in state ωb

than when the system is in state ωa. Suppose now that we want to express the opposite
hypothesis, i.e. variable T tends to be smaller when the system is in state ωb than when
the system is in state ωa.

In terms of belief functions, this statement may be expressed as follows:

plTa ((−∞; t]) ≤ plTb ((−∞; t]), ∀t ∈ R. (4.28)

Alternately, we may try to express our hypothesis with belief functions instead of plausi-
bility functions. It yields:

belTa ((−∞; t]) ≤ belTb ((−∞; t]), ∀t ∈ R,

⇔ 1 − belTa ((−∞; t]) ≥ 1 − belTb ((−∞; t]), ∀t ∈ R,

⇔ plTa ((t; +∞)) ≥ plTb ((t; +∞)), ∀t ∈ R. (4.29)

Remark 14. In the belief function theory, there exist two distinct notions of cognitive inequality,
namely (4.10) (called type I) and (4.29), which will be termed type II in the sequel.

Now, it may be shown that trying to compute the LCBF satisfying requirement (4.28)
systematically leads to the vacuous belief function. On the other end, we will show that
trying to compute the LCBF satisfying requirement (4.29) does not lead to the vacuous
belief function. Equation (4.10) and (4.29) define two forms of cognitive inequalities. The
best possible use of the available knowledge is made when the one that does not lead to
the vacuous belief function for plb is used.
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4.5.4 Determining the LCBF satisfying a cognitive inequality of type II

Case where pla is a discrete belief function on T ⊆ R

The function t 7→ pla((t; +∞)) is a right continuous step function whose discontinuity
points are the upper bounds bi of the focal intervals (ai; bi], sorted in increasing order.

The least committed bba ma satisfying (4.29) is

mT
b (−∞, +∞) = pla((bn; +∞)), (4.30)

mT
b (−∞, bi) = plTa ((bi−1, . . . , +∞)) − plTa ((bi, . . . , +∞)), (4.31)

mT
b (−∞, b1) = 1 − pla((b1; +∞)). (4.32)

Proof. As for the type I case, the idea is to try and get an equality for relation (4.29), and
to deduce bba mb from this. Note that pla((t; +∞)) is a right continuous step function
decreasing over R, and whose discontinuity points ti are the upper bounds b(i) of the
focal elements of ma, sorted in increasing order. Deriving equation (4.29) for each ti

successively leads to the above result.

Remark 15. Bba mb may directly be built from ma by transferring the masses allocated to each
focal elements (ai; bi] of ma onto (−∞; bi].

Remark 16. Bba mb is consonant and plb(t) = plb((t; +∞)) = pla((t; +∞)), ∀t ∈ R.

Case where pla is a continuous belief function on T ⊆ R

The line of reasoning of Section 4.5.4 directly extends to the case where mT
a is a bbd. In

that case,

Proposition 7. the least committed belief function belTb compatible with constraints (4.29) is
defined by the following bbd:

mT
b (−∞, t) =

∫ t

−∞
ma(u, t)du (4.33)

Proof. The proof is similar to that of the type I case. The reader is referred to appendix C
for details.

4.6 Steps 2 and 3: Solutions using the cognitive inequality

We will now introduce two solutions to the novelty detection problem using the cognitive
inequality.

4.6.1 Model 1

Description of the model

Remind that the problem under consideration is the assessment of the hypothesis that a
system is in class ω0 when the only available information about the system concerns the
distribution of statistic T conditioned on ω0.

We defined ω0 as the normal or reference state of the system under study, for which
a set x1, . . . , xn of examples is available, and ω1 is the set of all other states, for which
no data is available. During step 1, a novelty measure T was built from observations
x1, . . . , xn. Having observed a value t∗ of T, we want to define a bba mΩ[t∗] on Ω, that
quantifies our belief about the system state given t∗. We first need to built mT

0 = mT [ω0]
and mT

1 = mT [ω1].
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Step 2: Building of mT
0 and mT

1

As in the GBT solution (see Section 4.4), we will take mT
0 = mT

∗ , as mT
∗ represents

our belief on T drawn from the same distribution as those obtained from training data
collected when the system is in state ω0.

Additionally, let us suppose that, by construction, our novelty measure T tends to be
larger when ω1 holds than when ω0 is true2. This corresponds to (4.10), and pl1 may thus
be deduced from pl0 by reasoning as in Section 4.5.2, with pl0 = pla and pl1 = plb, and
m0 = ma and m1 = mb. It yields:

m1(−∞; +∞) = pl0((−∞; a1]), (4.34)

m1(ai; +∞) = pl0((−∞; ai+1]) − pl0((−∞; ai]), ∀i = 1, . . . , n − 1, (4.35)

m1(an; +∞) = 1 − pl0((−∞; an]). (4.36)

Remark 17. pl1 is the possibility distribution defined by:

pl1(t) = pl0((−∞, t]), ∀t ∈ R. (4.37)

Step 3: Building of mΩ[t]

If we follow the reasoning of Section 4.2, we should now apply the GBT to mT
0 and mT

1 in
order to obtain mΩ[t∗]. However, remember that a necessary condition for the application
of the GBT is the independence of mT

0 and mT
1 . It happens that, as we built mT

1 from mT
0 ,

they are not independent. Consequently, the conjunctive combination rule cannot be
applied here.

We need to build mT ×Ω such that:

mT ×Ω[{ω0} × T ]↓T = mT
0 (4.38)

and mT ×Ω[{ω1} × T ]↓T = mT
1 , (4.39)

and then condition it with respect to t∗ so as to get mΩ[t∗].

• Combination of m0 and m1:

Let I1 to In be the focal elements of mT
0 . To each Ii = (ai, bi] is associated I ′i , focal element

of mT
1 , such that: I ′i = (ai, = ∞). Thus,

mT ×Ω
(

Ii × {ω0} ∪ I ′i × {ω1}
)

= mT
0 (Ii). (4.40)

• Conditioning with respect to t∗ ⊆ T :

Note that |t∗| may be greater than 1 and that t∗ is not necessarily an interval. The
following relations hold:

plΩ[t∗]({ω0}) = plT0 (t∗)
plΩ[t∗]({ω1}) = plT0 (−∞, sup(t∗))

= plT1 (t∗)
plΩ[t∗](∅) = 1 − plT0 (−∞, sup(t∗))

= 1 − plT1 (t∗).

(4.41)

Hence,
mΩ[t∗](ω0) = 0
mΩ[t∗](ω1) = plT0 (−∞, sup(t∗)) − plT0 (t∗)

= plT1 (t∗) − plT0 (t∗)
mΩ[t∗](Ω) = plT0 (t∗)
mΩ[t∗](∅) = 1 − plT0 (−∞, sup(t∗))

= 1 − plT1 (t∗).

(4.42)

2This is very often true for novelty measures.



4.6. CIneq-based solutions 119

• Interpretation: This end result may be interpreted as follows.

– When the values of T are similar to those obtained when in state ω0, nothing can
be said about them being from one class or the other, and the belief is thus spread
onto Ω.

– When the values of T are smaller than those we get when in condition ω0, there
is an inconsistency with our original information according to which, when there
is a departure from state ω0, T should tend to be bigger than in state ω0. The
corresponding amount of belief is thus allocated to the empty set, reflecting this
conflict.

– When T gets bigger than its usual values when the system is in state ω0, then our
belief turns to ω1, in agreement with (4.10).

• Finally, no value of T ever supports ω0 only.

Note that normalizing yields:

mΩ[t∗](ω0) = 0

mΩ[t∗](ω1) = 1 − plT0 (t∗)
plT1 (t∗)

mΩ[t∗](Ω) =
plT0 (t∗)
plT1 (t∗)

(4.43)

Example 19. The result is illustrated in Figures 4.12 and 4.13, for the ring data set, pl0 being
obtained via Kriegler and Held’s algorithm (cf. Figure 4.3). It may be observed that there is an
improvement on the GBT solution as most of the data inside the ring induce a low mass of belief
on ω1.
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Figure 4.12: Bba on Ω knowing T = t∗, Model 1, discrete case (ring data), for pl0 obtained via
Kriegler and Held’s algorithm.

Remark 18. Note that, if pl0 is Bayesian, we may end up always deciding in favour of ω1, but
the remark of 4.4 still holds: if our information with respect to ω0 is a probability, then we should
use the belief function whose pignistic transform is this probability, and not the belief function
whose bba is this probability.
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Figure 4.13: Contour-lines of mΩ(ω1) knowing T = t∗, Model 1, discrete case (ring data), for pl0
obtained via Kriegler and Held’s algorithm.
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Example 20. The result is illustrated in Figures 4.14 and 4.15, for the ring data set, pl0 being
obtained via the CI method ((cf. Figure 4.5)). As required in this model, data for which the value
of T = − f (x) is lower than for the majority of the training data do not induce a high mass of
belief on ω1 whereas data for which the value of T is higher than for the majority of the training
data do. The qualitative information that “the value of T gets bigger for abnormal data” has
been successfully incorporated in the model, and leads to an improvement on the results obtained
by the GBT solution.
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Figure 4.14: Bba on Ω knowing T = t∗, Model 1, continuous case (ring data), for pl0 obtained via
Cheng and Iles’ confidence-band.

4.6.2 Model 2

Description of the model

In the previous model, we considered that pl0 was built directly from the training data,
and that, given the fact that T tends to be larger when ω1 holds than when ω0 is true, pl1
could be deduced from pl0 through (4.10).

Alternately, we may consider, as for the GBT solution, that we know nothing on the
behaviour of T when ω1 holds, hence the information we have at our disposal in this
respect can be modeled with the vacuous belief function:

plT1 (A) = plT [ω1](A) = 1, ∀A ⊆ R.

However, we still need to take into account the fact that T was built in such a way
that its value increases in case of departure from the normal state. Let us put it this way:
as T tends to be larger when ω1 holds than when ω0 is true, we know that values of T
smaller than those encountered in the training data do not indicate departure from the
normal state.

It is this statement, denoted S1, that we now would like to represent in terms of belief
functions. We may thus consider a frame of discernment Ω = {ω0′ , ω0′′ , ω1}, where ω0′

is the observed, normal state, for which training data are collected, and ω0′′ corresponds
to non-observed states leading to values of T smaller than those observed for the normal
state. We do not need to detect states corresponding to ω0′′ , as only an increase in the
value of T would be of concern to us. Consequently, we can write Ω = {ω0, ω1}, with
ω0 = {ω0′ , ω0′′}, and build a belief function on Ω that does not distinguish between states
ω0′ and ω0′′ .
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Figure 4.15: Contour-lines of mΩ(ω1), knowing T = t∗, Model 1, discrete case (ring data), for pl0
obtained via the CI method.
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Additionally, bba mT
∗ obtained at Step 1 represents our belief on T drawn from the

same distribution than those obtained when the system is in state ω0. Consequently, we
can take mT [ω0′ ] = mT

0′ = mT
∗ .

As explained in Section 4.5.3, statement S1 may then be turned into the following
constraint:

plT0 ((t, +∞)) ≤ plT0′ ((t, +∞)), ∀t ∈ R. (4.44)

where:

• plT0′ is the predictive plausibility function associated with the bba mT
0′ computed

in the step 1 –that represents our belief in future values of T drawn from exactly
the same distribution as the learning sample–, which corresponds to observations
of T gathered while the system was in a normal state, under some well-defined
experimental conditions EC,

• and plT0 = belT [ω0] denotes the plausibility function associated with bba mT [ω0]
on the value of T knowing that the system is in the normal state ω0.

We will now see how to solve our novelty detection problem when modeled in this
way.

Step 2: Building of mT [ω0] and mT [ω1]

Equation (4.44) defines a set of constraints that should be statisfied by plT0 . In the TBM,
the least commitment principle dictates to select the least committed belief function, among
those compatible with a set of constraints [116].

The solution to this problem has been described in Section 4.5.4. With m0′ = ma and
m0 = mb, we get, in the discrete case,

mT
0 (−∞, +∞) = pl0′((an; +∞)), (4.45)

mT
0 (−∞, ai) = plT0′ ((ai−1, . . . , +∞)) − plT0′ ((ai, . . . , +∞)), (4.46)

mT
0 (−∞, a1) = 1 − pl0′((a1; +∞)), (4.47)

and in the continuous case,

mT
0 (−∞, t) =

∫ t

−∞
m0′(u; t)du; (4.48)

(4.49)

or, equivalently, in both cases, pl0 is the possibility distribution defined by pl0(t) =
pl0′((t; +∞)), ∀t ∈ R. As already mentionned, m1 is the vacuous bba.

Special case: mT
0′ built from a confidence band Suppose now that mT

0′ was built using
the confidence band based method described in Section 2.2.3 or 2.2.4. In order to build
the least committed belief function compatible with (4.29), first observe that pl0′ satisfies

plT0′ ((t, +∞)) = 1 − belT0′ ((−∞, t]) = 1 − F(t), (4.50)

where F is the step function defined by (2.22).

Hence pl0 has a very simple expression

plT0 (t) = 1 − F(t), ∀t ∈ R, (4.51)

and plT0 (A) = supt∈A plT0 (t) for all A ⊆ R.
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Step 3: Constructing mΩ[t]

The belief function belT0 [ω0] built in the previous step quantifies our beliefs on T, given
that the system is in state ω0. As already mentioned, since no data is available regarding
state ω1, our belief on T given ω1 is vacuous, i.e.,

plT [ω1](A) = plT1 (A) = 1, ∀A ⊆ R. (4.52)

This time, m0 and m1 are independent, and the GBT therefore allows us to compute
our belief on Ω given that T ∈ t∗ for any t∗ ⊆ R. Using (1.34), we get:

mΩ[t∗]({ω0}) = 0 (4.53)

mΩ[t∗]({ω1}) = 1 − plT0 (t∗) (4.54)

mΩ[t∗](Ω) = plT0 (t∗). (4.55)

As pl0 is a possibility distribution decreasing over R, this can be rewritten as:

mΩ[t∗]({ω0}) = 0 (4.56)

mΩ[t∗]({ω1}) = 1 − plT0 (inf(t∗)) (4.57)

mΩ[t∗](Ω) = plT0 (inf(t∗)). (4.58)

In the special case where pl0′ has been calculated either from Kolmogorov’s or Cheng
and Iles’ confidence band, if t∗ = {t} (t∗ is a singleton), we get:

mΩ[t∗]({ω0}) = 0 (4.59)

mΩ[t∗]({ω1}) = F(t) (4.60)

mΩ[t∗](Ω) = 1 − F(t). (4.61)

Note that this result has, again, a simple interpretation: a large value of T supports
the hypothesis that the system is not in the normal state. The degree of support increases
as a function of t.

On the contrary, a small value of T, similar to those obtained when the system is in
normal conditions, may occur either when the system is in a normal state, or when the
system is in an abnormal state that does not affect the values of T. Therefore, small values
of T are highly plausible under both ω0 and ω1 and they do not support any specific
hypothesis.

Example 21. The result is illustrated in Figures 4.16 and 4.17, for the ring data set, pl0 being
obtained via Cheng and Iles’ confidence-band as shown in Figure 4.5. The mass of belief on ω1

increases with t. Again, the information according to which “values of T smaller than those
obtained for the training set do not indicate a departure from the normal state” has been
successfully incorporated in the model, and leads to an improvement on the results obtained by
the GBT solution.

4.7 Discussion

The use of the cognitive inequality is an obvious improvement to the simple GBT solu-
tion, as it allows the handling of additional, qualitative information. On the other hand,
it is more difficult to compare the relative quality of Models 1 and 2. Model 1 is very
simple and fairly straight-forward, but leads to a more complex solution than Model 2.
On the contrary, the latter is a little far-fetched, but leads to a very simple solution, and is
therefore very easy to use. This solution proved to show good performances in different
novelty detection applications, thus validating the model experimentally.
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Figure 4.16: Bba on Ω knowing T = t∗, Model 2, continuous case, for pl0 obtained via Cheng and
Iles’ confidence-band (ring data).
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4.8 Examples

4.8.1 Simple novelty detection: example 1

The data set considered here is the breast-cancer data obtained from the UCI machine-
learning repository [89]. The patterns in this data set belong to two classes: benign
and malignant. Each pattern consists of nine cytological characteristics graded with an
integer from 1 to 10. As in [58], a uniform noise in [−0.05, 0.05] was added to each value
to avoid numerical errors because of the discrete values. After removing patterns with
missing characteristic values, the final data set consisted of 683 patterns. This data set
was split into a training set of 300 patterns (200 benign, 100 malignant), and a test set of
383 patterns (244 benign, 139 malignant).

Assume that only data from the begnin class are available.We therefore would like to
built a classifier that helps doctors making a diagnosis, given nine cytological character-
istics of that new patient, and the distribution of a statistic T built from the same nine
characteristics measured on benign tumors on other patients.

We need to build a statistic T, that will increase with the risk that the tumor might
be malignant, i.e., when data cannot be deemed to come from the same distribution as in
the case of a benign tumor. Let us build a KPCA-based one-class classifier from the 200
benign cases of the training data, and use the value of statistic T = KRE(x) defined in
Equation 3.16 as our novelty measure.

A KPCA model is built as described in 3.4.4. The kernel bandwidth is determined
by the direct pluggin method [93][133, page 71]. Following the three points procedure
described in paragraph 4.2, and using Kriegler and Held’s algorithm and a Kolmogorov
confidence band (see Figure 4.18) as explained in Section 4.6.2, we obtain the possibility
distribution pl0(t) = 1− F(t) that represents our belief in what the next value of T should
be, if the next patient’s tumor is benign. It is represented on Figure 4.19. From this, we
deduce our belief that the patient’s tumor is malignant or not, given the obtained value
of T, as described in section 4.6.2. It is shown in Figure 4.20.
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Figure 4.18: Kolmogorov confidence band around the distribution of the value of T for a
KPCA-based classifier (Breast-cancer data).

Now suppose that, in order to take the intrinsic variability of biological measures into
account, we measure the nine cytological characteristics several times on the same tumor,
and obtain an interval [x; y] of possible values for T. The plausibility of this interval under
the hypothesis that the tumor is benign is pl0([x; y]) = pl0(x). Consequently, there is no
need to consider the triangle representation of pl0([x; y]), as it is entirely defined by its
profile function pl0(x).
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Figure 4.19: Predictive belief function on the value of T for a KPCA-based classifier
(Breast-cancer data).
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Figure 4.20: Pignistic probability function on ω1 for a KPCA-based classifier (Breast-cancer data).
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4.8.2 Simple novelty detection: example 2

Let us consider an industrial oven out of which fumes are collected and driven into a
boiler so as to heat steam up. Suppose we want to evaluate the quality of the combustion.
Experts suggested that the following variables be used:

• the percentage of O2 at boiler exit;

• the steam flow in the boiler;

• the primary air flow in the oven;

• the secondary air flow in the oven;

• the percentage of CO in the chimney.

A one-class SVM model was built from reference data (i.e., measurements taken when
the experts considered the quality of the combustion to be as good as possible). Following
the three point procedure described in paragraph 4.2, and using Kriegler and Held’s
algorithm with a Kolmogorov confidence band (see Figure 4.21) as described in Section
4.6.2, we obtain the belief function pl0(t) = 1− F(t) that represents our belief in what the
next value of T should be, if the combustion quality is still good at the next measurement
time. It is represented on Figure 4.22. From this, we deduce our belief that the combustion
quality is good or not, given the obtained value of T, as described in section 4.6.2. It is
shown in Figure 4.23.
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Figure 4.21: Kolmogorov confidence band around the distribution of the value of T for a
SVM-based classifier (Combustion data).

4.8.3 Classifier Fusion Example

Problem Description

Consider the breast-cancer data of example 4.8.1. In order to illustrate the ability of our
method to combine one-class classifier outputs with other information, we considered the
following problem. We assumed that the first six characteristics were available for benign
data only, whereas the other three characteristics were available for patterns from both
classes. Note that this is a common situation: in many applications, more measurements
are available for the class that occurs more frequently. Suppose doctors would like to
know whether the modeling of the information on malignant cases could remove part of
the uncertainty attached to each diagnosis. The problem is thus to merge:
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Figure 4.22: Predictive belief function on the value of T for a SVM-based classifier (Combustion
data).
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• the outputs of a one-class classifier trained on observations of the first six character-
istics for benign cases only (we will use the classifier built in the previous example);

• with the the outputs from a two-class classifier trained on observations of the other
three characteristics for benign and malignant cases.

Results

A two-class classifier based on characteristics 7, 8 and 9 was trained using the evidential
neural network method introduced in [39]. This method is grounded on belief function
theory, and produces for each input pattern a belief function on Ω.

For each pattern, the belief functions computed by the one-class classifier of section
4.8.1 and the above mentioned two-class classifier were combined using the TBM con-
junctive rule (1.24), and the resulting bba was transformed into a pignistic probability
function on Ω using (1.40).

Figures 4.24 and 4.25 show test estimates of the Receiver Operating Characteristic
(ROC) curves for the one-class, two-class and combined classifiers.

ROC curves are a well-known, widely-used means of representing the performance
of a classifier. In a two-class problem (faulty or normal system), they represent the
proportion α of errors detected while the system is in a normal state (called false positive)
against the proportion 1− β of faults detected when the system actually is faulty (termed
true positive). β represents the percentage of faults that are not detected and should
be. The ideal classifiers would minimize both α and β. However, it can be shown that,
whatever the classifier, α always increases when β decreases and vice versa. Hence, the
best classifier is the one that makes the best compromise, i.e., that minimizes β for a given
value of α [49].

On our example, it can be observed that, although the one-class classifier has poor
performances when considered alone, combining it with the two-class classifier does re-
sult in significantly improved performances. Such a combination has been made possible
by expressing the outputs from both classifiers in a common framework.
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Figure 4.24: Test estimates of the ROC curves for the three classifiers
(two-class classifier: dotted line; one-class classifier: dash-dotted line; combined: continuous

line) on the breast cancer problem.
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Figure 4.25: Zoom on the top left hand corner of Figure 4.24.

4.9 Conclusion

We built a solution to the problem of testing a null hypothesis under the belief function
framework. Our solution takes advantage of the facilities offered by this theory to work
with partial knowledge without addition of any assumption. It thus allows us to make a
decision when very little information is available. Together with the method developped
in Chapter 2, we thus provide the description of the whole process that leads from raw
data to the decision stage through the TBM framework.

Moreover, expressing the outputs from one-class classifiers such as one-class SVMs
or KPCA in the belief function framework makes it possible to combine them with other
information expressed in the same framework, such as other one-class classifiers, evi-
dential multi-class classifiers, or even expert opinions. This approach is expected to be
particularly useful in system diagnosis and process monitoring applications, in which
data corresponding to abnormal system states are not always available or are scarce.
Results in this application area will be reported in upcoming chapters.
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Chapter 5

A waste incineration process
monitoring application
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Summary

In this chapter, the industrial project related to this PhD thesis is described in details, as
well as the adopted technical solution.
This application concerns the monitoring of a waste incineration process. The principle
of this process is very simple: ordinary wastes are burned, and the fumes are sent into a
boiler where their heat is taken in by some steam. Cooled-down flue gas come out of the
boiler and follow a de-polluting route before they are ejected into the atmosphere. Mean-
while, the overheated steam drives a gas turbine that produces electricity. Stabilization
of the process is made complex by the important variability of the waste’s calorific value
and polluting component composition.
The incineration process is supervised from a monitoring room. Several monitoring
screens show synoptics on which appear the instant measures of several sensors spread
around the site. Measurements are renewed every 5 to 30 seconds. Operators have to
monitor up to 5000 variables permanently while carrying out other tasks at the same
time.
For these reasons, it was decided to built a Process Monitoring Assistance Tool (PMAT),
that would show a synthesis of essential information on sensors validity, combustion
quality, and process safety. It was also decided that it would be based on the principles of
one-class classification. In effect, examples of the normal –or desired– state of the system
are numerous, while possibles faults are too many, and too varied to allow the building of
a training sample. Additionally, the involved data are extremely imprecise and uncertain,
and have extremely complex correlations.
Both for financial and deadline-related reasons, the PMAT was built as an add-on to
IP21, a software already used in most of the company plants as an analysis and reporting
tool on the monitoring system. The prototype uses IP21’s database and the monitoring
statistics are stored into the same database. The user interface consists in a series of
screens that show the probability of different faults in the system. The process has
been divided into a series of subunit, each of which is monitored by a specific one-class
classifier. The division of the original process monitoring problem in a series of sub-
problems was realized in collaboration with a group of company experts.

Résumé

Dans ce chapitre, le projet industriel auquel cette thèse se rattache est décrit en détails,
ainsi que la solution adoptée.
L’application concerne la surveillance d’un système d’incinération de déchets. Le principe
de ce procédé est très simple: des déchets ordinaires sont brûlés, et les fumées sont
envoyées dans une chaudière où leur chaleur est absorbée par de la vapeur. Les fumées
refroidies subissent un procédé de dépollution avant d’être rejetées dans l’atmosphère.
Pendant ce temps, la vapeur est utilisée pour entraîner une turbine qui fabrique de
l’électricité. La stabilisation du procédé est rendue complexe par l’importante variabilité
du pouvoir calorifique des déchets, et de leur composition en polluants.
Le procédé d’incinération est supervisé à partir d’une salle de contrôle -commande. Une
série d’écrans montrent des synoptiques sur lesquels figurent les mesures instantanées
effectuées par différents capteurs répartis dans toute l’installation. Les valeurs sont re-
nouvelées toutes les 5 à 30 secondes. Les opérateurs doivent surveiller jusqu’à 5000
variables en permanence tout en effectuant d’autres tâches simultanément.
Pour toutes ces raisons, il a été décidé de construire un Outil d’Aide à la Conduite (OAC),
qui donnerait en permanence une synthèse des informations essentielles sur la validité
des capteurs, la qualité de la combustion, et la sécurité du procédé. Il a également
été décidé que cet outil se baserait sur le principe de la classification à une classe. En
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effet, les exemples de situations normales ou désirées sont nombreux, alors que les dé-
fauts sont trop nombreux et trop divers pour permettre la construction d’un ensemble
d’apprentissage. De plus, les données impliquées sont extrêmement imprécises et incer-
taines, et sont corrélées de manière extrêmement complexe.
A la fois pour des raisons financières et temporelles, le prototype de l’OAC a été con-
struit comme un simple “add-on” à IP21, un logiciel déjà utilisé dans la plupart des
usines comme outil de reporting. Le prototype utilise la base de données d’ IP21 et les
statistiques de surveillance du système sont stockées dans cette même base de données.
L’interface graphique consiste en une série d’écrans qui montrent la probabilité de dif-
férentes situations anormales et de différents défauts possibles du système. Le procédé a
été divisé en une série de sous-unités, et chacune d’entre elles est surveillée à l’aide d’un
classifieur à une classe spécifique. La division du problème originel en une série de sous-
problèmes a été effectuée en collaboration avec un groupe d’experts de la compagnie.
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5.1 Introduction

Novergie, a subsidiary of SITA (waste management division of Suez Environnement), spe-
cializes in waste incineration and promotion. The company operates 43 waste processing
units and 7 waste sorting centers. Over the last ten years, local authorities’ requirements
in terms of environmental services tightened, and new laws have been enforced. In
response, Novergie closed 37 old units since 1997, and about 20 of its plants have been
certified to comply with the ISO 4001 standards.

In addition, Novergie wants to develop a series of tools that will help optimize pro-
cesses and diagnose -or even possibly forecast- defaults. In this framework, a collabora-
tion had been established with the Centre International de Recherche sur l’Eau et l’Environnement
(CIRSEE, international centre for research on water and environment, water division
of Suez Environnement) and l’Université de Technologie de Compiègne (UTC, Compiègne,
University of Technology), in order to develop the group’s expert knowledge with respect
to process monitoring.

The first problem to be explored may be described as follows. A waste incineration
process is supervised from a monitoring room. A number of monitoring screens show
up to 24 synoptics on which appear the instant measures of the flow, pressure and tem-
perature sensors spread around the site. These represent up to 5000 variables shown as
instantaneous values (see Figure 5.1). From these measures, operators must drive the
process, in the aim of maintaining constant flow and temperature of the output steam.
At the same time, they also have to carry out the feeding of the oven in garbage, and
make current repairs and maintenance operations (drainings, calibrations, etc). A series
of alarms (lights, tones, etc) aim at assisting them with the monitoring task. Nevertheless,
it is extremely difficult to monitor such an important number of measurements while
carrying out other tasks simultaneously. In addition, the slow drift of some parameters is
difficult to detect with naked eyes when it happens, especially without a time scale. For
these reasons, a Process Monitoring Assistance Tool (PMAT), that would show a synthesis
of essential information on sensor validity, combustion quality, and process safety, would
be of precious help to the operators.

Novergie thus decided such a tool had to be developed, and this is what our work
is concerned with. The PMAT developed here is designed for the operators, and should
be a complement or an assistance to the expert. This tool will be developed as a damage
harnessing step, and should therefore have no direct interaction with the process. It
should rather be a reference with respect to normal or optimum conditions.

Previous attempts showed that a thermodynamic model of the process is extremely
difficult to establish and leads to very imprecise results. In effect, each subprocess is
difficult to model in itself, and the interactions between them are no less complex. It
was therefore decided that a statistical tool had to be developed instead: the supervised
training of monitoring statistics should be a good alternative to modeling.

Consequently, statistics representative of the state of the process must be computed.
These statistics will be based on sensor measurements and their values will be compared
to those corresponding to the normal conditions. This will allow a clear positioning of
the process with respect to normal, risky or dangerous states.

From on-line measurements, the tool will give, in real or slightly delayed time, a
synthetic image of the state of the process that should be more elaborate and synthetic
than the information currently displayed in the system monitoring room. It will allow
the detection and identification of faulty variables.

A full-scale study has been started, that aims at establishing a functional prototype of
the PMAT, and testing it on a pilot plant. This PhD work is concerned with the first phase
only, namely fault detection, and will concentrate on the oven-and-boiler subsystem.
These two units indeed constitute the core of the system, and their regulation should
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Figure 5.1: Screen shot of one of the monitoring screen
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stabilize the whole process. Limiting the approach to the incineration unit will also allow
to fit the study into the allocated time (three year PhD project).

The project involves the selection of the variables to be monitored, the elaboration
of monitoring statistics, the determination of normal and abnormal ranges for these
statistics, and finally, the building and test of the prototype.

5.2 The waste incineration process

Waste incineration is a thermic process that includes the combustion of the waste and
the cleaning of flue gas. It produces three types of residue: clinker, ashes, and flue
gas cleaning residue (FGCR). The combustion generated heat is promoted in the form
of energy (electricity and heat production).

Combustion is a matter degradation, namely an oxidation, with 5 types of emissions:

• Water;

• Gas: CO, CO2, NOx, SO2, HCl;

• Mineral dust (ashes);

• Heavy metals: lead, copper, mercury, cadmium, nickel, arsenic;

• Organic molecules: carbon, chlorinated organic compound.

The incineration process may be separated into 3 steps:

1. Waste combustion;

2. Energetic promotion;

3. Flue gas purification.

A global balance sheet is represented in Figure 5.2.

To each ton of household refuse correspond 3 to 500 kWh of electricity, but 25% of the
original weight comes back out in the form of solid residue (clinker and FGCR).

5.2.1 Waste combustion

On their arrival on the site, wastes are weighted and dumped into a pit. An operator
driven grab then picks up the garbage and drops it into a hopper that feeds the oven.
A pushrod then moves them onto a metallic conveyor belt that allows them to move
forward inside the oven. The conveyor belt is made of a series of bars that can turn
around on themselves to move the waste so they will be regularly spread on the belt. The
combustion is fanned by the blowing of previously warmed up air through the conveyor
belt. This first air provision is termed primary air.

There are four zones along the belt (i.e., along the oven. See Figure 5.3). The first one
is the drying zone, where the water contained in the waste evaporates. The second is
called gasification zone. The light gases of the waste are burned there. The third zone is
where the combustion actually happens. The last zone serves for the cooling down of the
clinker. Additional air –or secondary air– is blown up on the third zone to help a complete
gas combustion. A temperature of 850˚C must be maintained on the fumes for at least 2
seconds to allow perfect combustion. Whenever the temperature drops under 850˚C, a
gas burner lights up in order to maintain a total combustion. Clinker are collected at the
exit of the oven. They are then transported by conveyor belt into a specific storage area.
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Figure 5.2: Global balance sheet of a waste incineration process.

5.2.2 Energetic promotion

The boilers capture the heat from the waste combustion. In the boiler, a thermic exchange
occurs between the combustion fumes and some water. The fumes temperature drops
from 1000 down to 200˚C while 400˚C, 45 bar steam is produced, and then used to drive
a turbine and produce electricity. The steam collected out of the turbine is condensed in
aero-condensers, and the obtained water is then sent back into the system.

5.2.3 Flue gas purification

There exist a number of flue gas purification technologies. The one that is used in the
process considered in this study is termed dry treatment route (see Figure 5.4). The fumes
first go through an electro-filter that eliminates flying ashes and dusts. Sodium bicarbon-
ate and activated charcoal are then blown into the system, that will capture most of the
pollutants, mercury, dioxins and furans in particular. Finally, heavy metals are trapped
into a fabric-filter.

The standards for atmosphere fume rejection are very strict: fume purification is
therefore a key element of the process. The main components of the fumes in the chimney
may be listed as follows:

• N2 = 70%;

• H2O = 13 to 16%;

• O2 = 7 to 10%;

• CO2 = 8 to 11%;
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Figure 5.3: The four oven combustion zones.
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Figure 5.4: Fumes treatment route
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• Dusts: < 5 mg/Nm3;

• HCl : < 10 mg/Nm3;

• NOx : < 200 mg/Nm3;

• SO2 : < 25 mg/Nm3.

5.2.4 Pilot plant

The chosen pilot plant is that of Villers-St-Paul (France). Household refuse and so-called
banal industrial waste are incinerated on the site in two ovens of a capacity of 11 t/h each,
leading to two boilers that can produce 32 t/h of steam each at a pressure of 45 bars. The
energetic promotion is carried out by a 14 MW turboalternator. A dry treatment route
allows the cleaning up of the fumes. A total of 35,000 tons of steam and 70,000 MWh are
sold out every year. Another 40,000 tons of clinker and 4,400 tons of FGCR-RSC (RSC:
Residual Sodium Chemicals) are promoted each year. At the same time, 2000 tons of
FGCR a year are sent to a landfill for environmentally hazardous waste.

5.3 The process monitoring assistance tool (PMAT)

The PMAT project was born from the observation of the process. Indeed, waste having
a very variable calorific value, a perfect control of the combustion is extremely difficult.
However, it is important to obtain a regular overheated steam flow in order to be able
to produce electricity. As already mentioned, for an optimal combustion and a good
monitoring of the whole process, 5000 variables must be permanently supervised.

These variables are shown as instantaneous values on a series of synoptics. A number
of alarms are set on key measurements to assist the operators. Nevertheless, quite a few
malfunctions are detected very late, or even only during the plant’s annual maintenance
shutdown.

The aim of the PMAT is to show a synthesis of essential information on sensor valid-
ity, combustion quality, and process safety and stability. Its main objective is the early
detection of process malfunctions such as leaks, sensor deviations, process deviations,
clogging, and corrosion.

The tool will be developed as a statistic-based process monitoring system. It will
allow the comparison of the current state of the system with past states through a model
built from labelled observations. The building of monitoring statistics for this problem is
a one-class classification problem in that it is not possible to establish an exhaustive and
well labeled default set for training, while examples of the normal state are numerous. A
previous feasibility study highlighted the highly non linear correlation of the variables to
be monitored. Hence, classical linear process monitoring algorithms are not sufficiently
efficient to fulfill the desired objectives. It was thus chosen to test kernel based one-
class classifiers such as kernel density estimation, kernel principal component analysis
and support vector machines. Kernel density estimation was very quickly ruled out for
computational issues.

In the next chapter, we will see how KPCA and SVM based one-class classifiers can
be used together with belief functions to obtain the desired system. First, we will explain
the mathematical construction of the monitoring statistics. Then, the parameter tuning
phase will be described. Finally, results will be shown and discussed.
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Summary

The prototype of the Process Monitoring Assistance Tool (PMAT) was built based on
SVM-founded one-class classification. Observations of the statistic T = − f (x), opposite
of the output function f (x) of the SVM, was used to build a belief function, using a
Kolmogorov confidence band and Kriegler and Held’s algorithm, as described in Chapter
2. The obtained belief function was used for novelty detection following the three steps
procedure proposed in Chapter 4, Section 4.6.2.
The prototype was tested both on real and simulated faults and showed very good perfor-
mances. It was then implemented on-line, and proved to detect faults much earlier than
human operators, allowing an important gain both in time and money. However, the
high variance of the obtained pignistic probability of fault made its interpretation difficult
for the operators, and several solutions were proposed to solve the issue. Computational
problems were encountered and limited the size of the training samples.
An attempt to work with KPCA-based algorithms encountered even more important
computational problems and had to be given up. However, it seemed to lead to less
variability in the pignistic probability of fault, and was thus kept as a prospect for the
future.
Nevertheless, the obtained results are extremely promising. It was decided that specifica-
tions should be written for a complete re-implementation of the algorithms. Meanwhile,
the scope of the PMAT is to be extended to parts of the process other than the oven and
boiler subunit. Finally, after a second series of full-scale tests and fine-tunings, including
in particular a comparison of the results obtained with SVM and KPCA-based algorithms,
the PMAT will be deployed in all waste incineration plants of the company.

Résumé

Le prototype de l’OAC se base sur un algorithme de classification à une classe alliant
SVM et fonctions de croyance. Une série d’observations de la statistique T = − f (x),
opposée de la sortie f (x) du SVM, a été utilisée pour construire une fonction de croy-
ance, à l’aide d’une bande de confiance de Kolmogorov et de l’algorithme de Kriegler et
Held, comme indiqué au chapitre 2. La fonction de croyance obtenue est utilisée pour la
détection de nouveauté via la procédure en trois étapes décrite au chapitre 4.
Le prototype a été testé à la fois sur des défauts réels et simulés et montre de bonnes
performances. Il a ensuite été implémenté en ligne, et détecte les défauts bien plus tôt
que les opérateurs humains, ce qui a permis un gain important de temps et d’argent.
Malheureusement, la grande variabilité de la probabilité pignistique de défaut obtenue
au départ rendait son interprétation difficile pour les opérateurs, et différentes solutions
ont dû être proposées et testées pour résoudre le problème. Une solution satisfaisante a
finalement été obtenue. Des problèmes de mémoire ont été rencontrés et limitent la taille
des ensembles d’apprentissage.
Une tentative de travail avec des algorithmes basés sur la KPCA a échoué à cause de
problèmes de mémoire plus importants encore. Toutefois, il semble que les résultats
obtenus aient une variabilité moins importante que ceux basés sur les SVM, et la solution
a donc été gardée en mémoire pour de futures expériences complémentaires.
Malgré tout, les résultats obtenus sont prometteurs. Il a été décidé qu’un cahier des
charges devait être mis en place pour une réimplémentation complète des algorithmes.
Dans le même temps, le spectre de l’OAC doit être étendu aux parties du procédé autres
que la sous-unité four-chaudière. Enfin, après une seconde série de tests à grande échelle
et de réglages fin des paramètres, incluant notamment une comparaison et une tentative
de combinaison des algorithmes basés que les SVM et la KPCA, l’OAC sera déployé dans
toutes les usines de la compagnie.
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6.1 Structure and implementation of the PMAT

6.1.1 General structure of the PMAT

The PMAT aims at monitoring the waste incineration process through a number of on-
line measurements. The variables to be monitored have been selected by a group of
experts through an extensive analysis of the possible problems and what variables they
were more likely to affect. Table 6.11 summarizes the conclusions of the experts2. The
variables were divided into a series of groups. Each group gathers the variables that may
contain information about a specific point to be monitored. A point may be understood
here as a subprocess, the quality of which should be permanently evaluated, or as a
potential problem that may arise and whose likeliness should also be regularly evaluated.
The PMAT will thus be divided into subunits, and the monitoring of each of the above
points will be performed by a different unit of the PMAT. To each unit thus corresponds a
specific group of variables to be monitored, that is to say, a specific classification problem.

Hence, for each group of variables, a classifier has to be built to monitor the associated
subprocess or potential problem. Let us term observation a vector containing the simulta-
neous values of the variables in one group at instant i. Let us denote P the distribution
of the observations when the process is in normal working conditions. The associated
classifier must be able to separate observations coming from distribution P from other
observations.

For each group of variables, it is thus necessary to label the observations as corre-
sponding to normal or faulty working conditions. A one-class classifier must then be
trained on the data labelled as normal. This training operation is carried out off-line.
Then, the classifier is set on-line, and classifies each new observation as it is collected.
The result of this classification is finally represented on screen together with that of
observations associated with other groups of variables. These results must also be stored
in a database.

The physical structure of the PMAT therefore needs to allow the execution of both
off-line and on-line tasks.

The off-line tasks may be listed as follows:

• Allow a user to set labels on past data, and register these labels in the database;

• Extract from the database the data that are labelled as “normal” for a given group
of variables;

• Build a model out of these data (training phase).

The on-line tasks are:

• Use the parameters of this model to monitor the process in real time, that is to say,
classify an observation as normal or faulty (classification phase);

• Store the result of this classification in the database;

• Graphically display this result on the screen.

All these tasks must of course be performed for each unit of the PMAT. Labelling
and training should be initiated by the user. Classification must then be automatically
launched at a user defined frequency.

1In fact, this table only shows the groups of variables that will be monitored through one-class
classification. Other, simpler tests where used to monitor other (smaller) groups of variables. These are
listed in Appendix A.1.

2For a better understanding of the table, please note that the economizer, desuperheater and superheater
No.1 and 2 are internal elements of the boiler. The upper chamber is a special point in the boiler where the
temperature is measured to serve as a reference for process monitoring.
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No.
Subprocess or potential problem to

be monitored
Associated variables

1
Combustion quality or sensor drift
amongst those positioned in the oven.

%O2 (boiler exit), Steam flow (boiler),
Primary air flow(oven), Secondary air
flow (oven), %CO (chimney)

2

Clogging of the boiler, leak in the
boiler or sensor drift amongst those
positioned in the boiler.

Steam temperature at different points
in the boiler (5 measures)

3

Clogging of the boiler, leak in the
boiler or sensor drift amongst those
positioned in the boiler.

Flue gas temperature at different
points in the boiler (6 measures)

4
Clogging of or leak in the boiler (local-
ization of the clogging or leak)

Steam temperature at economizer en-
trance, Steam temperature at econo-
mizer exit, Flue gas temperature at
economizer entrance, Flue gas temper-
ature at economizer exit

5

Clogging of or leak in the boiler (local-
ization of the clogging or leak) or bad
steam cooling

Steam temperature at superheater 1
entrance, Steam temperature at super-
heater 1 exit, Flue gas temperature at
superheater 1 entrance, Flue gas tem-
perature at superheater 1 exit

6

Clogging of or leak in the boiler (local-
ization of the clogging or leak) or bad
steam cooling

Steam temperature at superheater 2
entrance, Steam temperature at super-
heater 2 exit, Flue gas temperature at
superheater 2 entrance, Flue gas tem-
perature at superheater 2 exit

7
Clogging of the boiler or upper cham-
ber sensor(s) drift

Steam flow, Steam temperature at
boiler exit, Upper chamber tempera-
ture, sensor No. 1

8
Clogging of the boiler or upper cham-
ber sensor(s) drift

Steam flow, Steam temperature at
boiler exit, Upper chamber tempera-
ture, sensor No. 2

9 Loss of pressure
Boiler depressurization, Flue gas flow,
Extractor fan intensity, Total air flow

10 Parasite air entrance in the oven

Flue gas flow, Steam flow, Primary air
flow, Secondary air flow, % O2 (chim-
ney), 1st extractor fan intensity

11 Steam cooling

Cooling water flow, Steam flow, Desu-
perheating temperature, Steam tem-
perature at boiler exit, Upper chamber
temperature No. 1, Upper chamber
temperature No. 2

Table 6.1: Variables to be monitored and associated process points
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6.1.2 Implementation of the PMAT

The prototype of the PMAT was developed as an add-on to IP21, a database management
software package already used in most of Novergie’s plants. IP21 allows the collection and
storage of an important number of variables. The data are then available for a posteriori
analysis of the process and reporting.

The core of the software is a real-time database connected to the control-command
server. It is built out of records that have a number of functions and can carry out a
number of tasks, just like objects in an object-oriented programming language.

To this database, data processing and graphical representation units may be added.
It was thus decided that the prototype of the PMAT would be added to the core of the
database in a similar way. It would therefore be able to work directly on the information
contained in the database, and the information it would produce would be stored in the
database as well.

Hence, the prototype of the PMAT is also made out of a number of IP21-records.
Each of these records is a subcomponent of the prototype with its own functions. Some
are hidden to the user who interacts with them through a graphical interface. On the
other hand, the access to some other functions requires the user to work directly in IP21
and manipulate the associated record. Figure 6.1 summarizes the general architecture of
the prototype, and Figure 6.2 shows a single unit.

The tasks listed in Section 6.1.1 are represented on Figure 6.1. As already mentioned,
they may be divided between off-line and on-line tasks. The off-line tasks should only be
executed upon user request, while the on-line task should be executed automatically at
some user-defined frequency. They have been implemented as follows:

• Labelling is carried out by the user through a specific graphical interface.

• Training is initiated by the user through that same interface. The user action in fact
activates an IP21 record that:

– activates another IP21 record that extracts the normal data from the database
and writes them into a .csv file; this task is performed via a SQL+ request;

– launches a C stand-alone application that reads the data from the .csv file and
does the actual training of the classifier. It then writes the result into a .csv file
that contains the necessary information for classification.

• Classification is then launched once and for all by the user. It activates an IP21
record which:

– Activates another IP21 record, which gets each new observation on-the-fly and
writes it into a .csv file; this task is performed via a SQL+ request;

– Launches a C stand-alone application that reads the observation from the .csv
file, gets the result of the training from the .csv file created during the training
phase, and performs the actual classification task; it then writes the result into
a .csv file;

– At some user defined frequency, the record automatically reactivates itself and
performs the above two points again.

• The result of classification is then shown on screen and refreshed at the same user
defined frequency.

• Simultaneously, it is written into the database.

There are specific IP21 records associated to specific training and classification C
stand-alone applications for each unit of the PMAT. The application is robust towards
missing data. The corresponding classifier simply produces a NaN (not a number) result.
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Figure 6.1: Physical structure of the PMAT (general organization)
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Figure 6.2: A single unit of the PMAT
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6.1.3 Classifiers implemented in the PMAT

The classifiers implemented in the PMAT are one-class classifiers from whose result is
then built a belief function on the state of the system (normal or faulty) via the methodol-
ogy presented in Sections 4.2 and 4.6.2.

Hence, for each unit of the PMAT, a classifier is built from observations made when
the process was in normal working conditions. This classifier uses a particular statistic
for classification. The distribution of this statistic corresponding to observations labelled
as normal is then used for the construction of a belief function on the distribution of
the statistic when the system is in normal working conditions. This is done via the
building of a Kolmogorov confidence band around the cdf of the statistic, and using
Kriegler and Held’s algorithm to determine the equivalent belief function m, as described
in Section 2.2.3. Finally, a belief function m′ on the state of the system is deduced from
m via the methodology described in Section 4.6.2. The results stored into the database
and presented on screen are the pignistic probabilities of fault associated with the belief
functions obtained for each unit of the PMAT.

The one-class classifiers used for the prototype are Gaelle Loosli’s Matlab implemen-
tation of SVM [75], and Roman Rosipal’s implementation of KPCA [104].

Both these codes were embedded in some additional Matlab code to allow correct
interfacing with IP21 and automatic reading of the necessary data and parameters. As
already mentioned, data are fed to the training algorithm via a .csv file. Another .csv
file is used to provide the user defined parameters (e.g. parameters C and h for a SVM).
For the sake of clarity, the .csv parameter file specific to each training algorithm does not
appear in Figure 6.1; it is shown in Figure 6.2. Finally, the results are written in a last .csv
file before it is copied into the database via some IP21-record.

In the sequel, we will describe how parameters were tuned for each unit of the PMAT
and analyze the quality of the obtained classification results.

6.2 Parameter tuning

6.2.1 Case study examples

We will explain how parameters were set on two case study examples. The same pro-
cedure was repeated over each group of variables that needed monitoring, i.e., for each
unit of the PMAT.

Example 22. Our first case study example is a group of variables considered by the expert as
being representative of the quality of the combustion. It encloses:

• the percentage of O2 in the air at the exit of the boiler,

• the primary air flow,

• the secondary air flow,

• the steam flow,

• and the quantity of CO in the chimney.

The corresponding PMAT unit will be termed combustion quality unit.

This example was chosen as a key element of the process. Indeed, the quality of the
combustion conditions the quality of everything else in the process: a good combustion
allows a steady output steam flow (hence good electricity production), low pollutant
rates in the flue gas, etc. The monitoring of this group of variables is thus one of the most
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important tasks the PMAT will have to carry out. For the same reasons, this example was
also the one the experts used to define labelling rules, which are not described in this
report, as they are process-specific, if not plant-specific.

Example 23. The second case study example simply includes five measures of fumes temperature
taken in different key-elements of the boiler.

Test and training set selection

Two data sets where used to build the classifier:

• A training set made out of about 5000 observations selected over a 12 weeks period.
These observations were selected as corresponding to an expert-defined acceptable
working-order of the process for a desired output steam flow of 32 t/h. The exact
number of observations varied depending on the PMAT unit to be tested as, at the
same time step, some variables may be valid while other are not.

• A test set made out of 3000 to 5000 observations –depending on the PMAT unit to
be tested– selected over a 12 week period as well. This test set did not overlap the
training set. Observations were labelled as normal (corresponding to an acceptable
working order of the process) or faulty (abnormal), to allow a later evaluation of
the classifier’s performances. Additionally, a series of artificial faults were inserted
(and labelled as system faults) to cover for possible faults that needed be detected
but for which no real example was available in the data base.

Simulation of faults

On site fault simulation For obvious safety and environmental reasons, it was not
possible to make the process actually go wrong and collect the corresponding data. Based
on expert knowledge and experience of past faults on other sites, it was thus decided to
manipulate the sensors in such a way that the returned measurements would correspond
to those of a faulty situation.

It would have been interesting to be able to decalibrate some of the sensors to sim-
ulate, e.g., slow drifts. However, most of them were too fragile to allow that sort of
manipulation without undergoing the risk of a real damage. Moreover, recalibration
would have required a considerable amount of time. Hence, it was decided to change
some of the sensor scales, based on HART protocol3.

Example 24. For example, it was possible to simulate a leak in the boiler by modifying the scale of
the water flow sensor at the entrance of the boiler. The water entrance flow therefore seemed lower
than it actually was, while the steam output flow –whose associated sensor had not been modified–
kept its normal value. This made things look as though more steam was produced than the boiler
was fed with in water, hence suggesting a leak from the flue gas circuit of the boiler into the steam
circuit (or a decalibration or drift of the sensors, or an increase in the permanent draining of the
boiler).

Matlab simulations: Not all sensors could be manipulated, hence a number of nu-
merical simulations were carried out under Matlab. Three types of sensor faults were
simulated in this way: complete breakdown, decalibration and slow drift. Figure 6.3
shows the original signal (a), a complete breakdown (b), a decalibration (c), and a slow

3HART (Highway Addressable Remote Transducer) protocol allows the communication of a sensor with
compatible instrumentation. It allows dialog between transmitters and regulation gates. Communication
through a modem gives access to all the sensor properties.
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drift (d) for a temperature sensor. Faults (b) and (c) should obviously be detected in-
stantly. The PMAT should also be able to detect fault (d) a long time before the human
operator.
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Figure 6.3: Matlab default simulation
original signal (a), complete breakdown (b), decalibration (c), and slow drift (d)

6.2.2 SVM-based classification

In the case of the SVM-based classifier, only two parameters needed tuning:

Parameter C: It is the equivalent of the smoothing parameter (νn)−1 of the decision
function f defined in Equation 3.20. It influences the way misclassified training points
are penalized. Heuristic assessment shows that, for one-class SVMs, there is a threshold
above which classification results are good provided the other parameters are properly
set, and increasing values of C do not change the results. For values of C under that
threshold, classification results are generally quite poor. Hence, it suffices to find this
threshold experimentally and use a value of C greater than or equal to that threshold
value.

Parameter h: It denotes the kernel bandwidth. If h is too large, the frontier will be too
loose, and too many points will be accepted inside the frontier. On the other hand, if h
is too small, the frontier will be too tight and the generalization capacity of the classifier
will be poor. It was suggested in [25] that, for SVMs, the default value for h was chosen
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as half the mean Euclidean distance between two training vectors. However, this being
an empirical rule, we only used it as a starting point to try and adjust the value of h.

Parameter tuning

The evaluation of the system performance was mainly based on two statistics, namely
the type I and type II errors described in Section 3.2. Recall that the type I error, or false
negative rate, α, is the probability of detecting a fault when the system is in the normal
state and the type II error, or false positive rate, β, is the probability of not detecting the
fault when the system is in a faulty state.

The values of these two statistics were evaluated on the test data set for a number of
pairs (C, h).

First, it was necessary to calculate the false positive and false negative rates (α and
β) for the test data, on a series of classifiers set with different pairs (C, h). The results
are shown in Tables 6.2 to 6.3. It was decided that, for the calculation of α and β, we
would consider a fault to be detected if the pignistic probability of fault was above some
threshold tpig. This threshold value needed to be fixed before the experiment could start,
which would allow calculating the desired values of α and β.

Figure 6.4 shows the value of the pignistic probability of fault with respect to the
value of the SVM function − f for C = 100, and h = 1.4128, both for training (continuous
line) and test points (dotted line). The aspect of the curve was similar for other values
of C and h. It shows that, for values of − f that are not in the range of values obtained
for the training set, the pignistic probability of fault increases drastically, in a very abrupt
manner. Additionally, the greater values of − f obtained for training data induce high
values of the pignistic probability of fault, hence the fault detection threshold tpig should
be set above those values in order to avoid a number of type I errors. A slower slope
would have allowed more choice for the value of tpig, and more freedom of choice to the
experts for the compromise between type I and type II error rates.

The obtained results lead us to try two values of tpig only, that is to say, 0.9 and 0.95.
Two tables were thus obtained, namely Tables 6.2 and 6.3.

It can be observed that the best possible false negative rate is between 2 and 10%,
leading to a false alarm rate of about 30% on the test set.

Then, the system experts selected the pairs (C, h) they considered acceptable, and a
complete ROC-curve was established for the performances of the fault detection system
when used with each of these parameter pairs. Finally, the chosen pair was manually
selected from these curves by the system experts.

Figure 6.5 shows the obtained ROC-curves. The selected pair was (C, h) = (200, 1.1886),
with a threshold tpig = 0.95.

Discussion

The obtained performance on the test set might not seem outstanding. Nevertheless,
they constitute a great improvement on human system monitoring (until then considered
the best existing solution), as will be shown in Section 6.3. The system experts thus
considered these results as satisfying and helpful. Moreover, for computational time
issues, the training data set was reduced to a minimum size for the parameter tuning
operations. Once the range of the possible pairs of parameters reduced, it would have
been interesting to see whether the performance could be improved by a larger training
set. However, experts were missing time to label a greater number of observations during
the tests. Better performance can thus be expected from the final tool, after the training
set will have been enlarged.

Another issue is that the desired output steam flow is in fact not constant, and may
vary between 25 and 32 t/h. First tests included observations corresponding to that full
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tpig = 0.95 C

h 90 95 100 120 150

0.3 α = 0.1986 0.5174
β = 0.2751 0.2349

0.5 α = 0.0941 0.1045 0.0941 0.4669
β = 0.247 0.2851 0.3414 0.241

0.7 α = 0.1951 0.2108 0.1185 0.1429 0.0418
β = 0.2992 0.3233 0.2972 0.3956 0.3454

0.8 α = 0.0819 0.0453 0.0366 0.054 0.1812
β = 0.3072 0.3635 0.3153 0.3153 0.3052

0.9 α = 0.3589 0.3589 0.3589 0.3589 0.3589
β = 0.2952 0.2952 0.2952 0.2952 0.2952

1 α = 0.0139 0.1446 0.1115 0.1655 0.0767
β = 0.3313 0.3855 0.3876 0.3454 0.3434

1.15 α = 0.2091 0.0662 0.5 0.1899 0.1063
β = 0.4578 0.3855 0.3494 0.3474 0.3253

1.1886 (
√

1.4128) α = 0.0592 0.0366 0.2247 0.1341 0.0139
β = 0.3474 0.3373 0.3655 0.3534 0.4418

1.3 α = 0.2578 0.2003 0.1028 0.2056 0.7021
β = 0.2952 0.3695 0.3574 0.4699 0.3876

1.4128 (default) α = 0.1359 0.3031 0.2352 0.0401 0.0226
β = 0.2691 0.3213 0.3012 0.4378 0.3253

1.5 α = 0.0296 0.0436 0.0697 0.0192 0.0192
β = 0.3554 0.3373 0.4416 0.3514 0.3514

1.6 α = 0.0192 0.0192 0.0192
β = 0.3574 0.3574 0.3574

1.7 α = 0.0314 0.0314 0.0314
β = 0.4378 0.4378 0.4378

1.8 α = 0.0976 0.0052 0.0557 0.0174 0.0557
β = 0.3012 0.4197 0.3534 0.4096 0.3032

1.9 α = 0.1272 0.1272 0.1272 0.1272 0.1272
β = 0.3032 0.3032 0.3032 0.3032 0.3032

1.996 (= 1.41282) α = 0.0366 0.0889 0.0889 0.0087 0.0122
β = 0.3715 0.3916 0.3916 0.3695 0.4518

2 α = 0.047 0.047 0.047
β = 0.3916 0.3916 0.3916

Table 6.2: Values of α and β obtained on the test data set for tpig = 0.95 and varying values of C
and h.
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tpig = 0.9 C

h 50 80 90 95 100 120 150 170 200 300 1000

0.3 α = 0.7003
β = 0.1807

0.5 α = 0.0662 0.0889 0.1446 0.1063 0.1394 0.1359 0.5679 0.1603 0.7143 0.0209 0.0209
β = 0.2129 0.2932 0.2209 0.2289 0.255 0.3153 0.1526 0.259 0.1225 0.3916 0.3916

0.7 α = 0.1725 0.7735 0.3937 0.3415 0.2021 0.2787 0.0941 0.0488 0.1324 0.2962
β = 0.2831 0.1727 0.243 0.257 0.239 0.3373 0.2932 0.2952 0.2108 0.257

0.8 α = 0.2108 0.0854 0.122 0.1115 0.0889 0.108 0.3711 0.108 0.108 0.3206 0.3206
β = 0.2791 0.3474 0.247 0.3333 0.247 0.2631 0.2309 0.2711 0.2912 0.2108 0.2108

0.9 α = 0.6829 0.6829 0.6829 0.6829 0.6829 0.6829
β = 0.1747 0.1747 0.1747 0.1747 0.1747 0.1747

1 α = 0.4582 0.5958 0.0174 0.2753 0.2596 0.4111 0.2561 0.1794 0.0976 0.9686 0.9686
β = 0.2912 0.1667 0.3032 0.3394 0.3434 0.243 0.3052 0.2651 0.3735 0.2329 0.2329

1.15 α = 0.1272 0.1167 0.7474 0.1341 0.9425 0.3554 0.4721 0.223 0.4599 0.5105
β = 0.2851 0.2189 0.2932 0.3253 0.1827 0.2651 0.1968 0.2651 0.239 0.1908

1.1886(=
√

1.4128) α = 0.399 0.2753 0.1429 0.0592 0.7003 0.2578 0.0244 0.5035 0.0801 0.1289 0.1289
β = 0.1285 0.2831 0.2731 0.2972 0.2289 0.3072 0.4217 0.1245 0.2209 0.2771 0.2771

1.3 α = 0.2021 0.1307 0.6916 0.5192 0.1951 0.5174 0.9094 0.101 0.101 0.101 0.101
β = 0.2229 0.2972 0.1727 0.2329 0.2932 0.3635 0.2711 0.259 0.259 0.259 0.259

1.4128(default) α = 0.0087 0.054 0.3484 0.8693 0.7125 0.0906 0.0453 0.1324 0.2021 0.1638 0.1638
β = 0.4839 0.3173 0.1747 0.1446 0.1647 0.3855 0.2912 0.3373 0.2791 0.3454 0.3454

1.5 α = 0.5453 0.1655 0.0418 0.0592 0.2509 0.1045 0.1045 0.1045
β = 0.1707 0.3755 0.3032 0.3173 0.3133 0.2791 0.2791 0.2791

1.6 α = 0.0244 0.0244 0.0244 0.0244
β = 0.3112 0.3112 0.3112 0.3112

1.7 α = 0.0941 0.0941 0.0941 0.0941
β = 0.3896 0.3896 0.3896 0.3896

1.8 α = 0.2247 0.0244 0.5749 0.0192 0.1341 0.0418 0.2404 0.1098 0.054 0.054
β = 0.2229 0.3253 0.1466 0.3876 0.2912 0.3574 0.2149 0.2671 0.3092 0.3092

1.9 α = 0.0941 0.6498 0.6498 0.6498 0.6498
β = 0.3795 0.1606 0.1606 0.1606 0.1606

1.996(= 1.41282) α = 0.4721 0.0296 0.0592 0.1829 0.1829 0.0226 0.0209 0.2021 0.0331 0.1498 0.1376
β = 0.1245 0.3916 0.3273 0.2711 0.2711 0.3394 0.4357 0.3072 0.3735 0.2892 0.3233

2 α = 0.0836 0.0836 0.0836
β = 0.3735 0.3735 0.3735

Table 6.3: Values of α and β obtained on the test data set for tpig = 0.9 and varying values of C and h.
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Figure 6.4: BetP(ω1) = g(− f )
Value of the pignistic probability of fault with respect to the value of the SVM’s function − f for

C = 100, and h = 1.4128.

range of possible output steam flow, both in the training and test sets. However, the
obtained performances in fault detection were very poor. We thus decided to work on a
single value of the desired output steam flow, and chose the most common value, namely
32 t/h. Observations later showed that a classifier built in these conditions works well
in an interval of 5 t/h centered on the targeted value of the output steam flow. It will
therefore be necessary to train a classifier for a series of intervals of the desired output
steam flow, and automatically select the parameter settings of the classifier according to
the current desired output steam flow. The proposed intervals are [25,28], [28,30], and
[30,32] t/h.

6.2.3 KPCA-based classification

In the case of the KPCA-based classifier, only two parameters needed tuning:

Parameter h: it denotes the kernel bandwidth. It allows smoothing the limit around the
training points outside of which a test point will be deemed to be novel. If h is too large,
the frontier will be too loose, and too many points will be accepted inside the frontier.
On the other hand, if h is too small, the frontier will be too tight and the generalization
capacity of the classifier will be poor. Many algorithms are described in the literature
for an automated, data-dependent, choice of h. A comparison of the different techniques
may be found in [93, 94, 133]. We used the direct plug-in method described, e.g., in
[133], as it has small time and memory requirement. Then again, this was only used as a
starting point to try and adjust the value of h.

Parameter p: it denotes the number of selected principal components. There exist a
number of algorithms that allow an automatic selection of the principal components to



6.2. Parameter tuning 163

(a) (b)

(c) (d)

Figure 6.5: Parameter selections
ROC-curves for parameters (a) (C, h) = (90, 1.5), (b) (C, h) = (100, 1.6), (c) (C, h) = (200, 1.8), (d)

(C, h) = (90, 1). Each curve represents, for the corresponding set of parameters, the portion α
(abscissa) of errors detected while the system is in a normal state (called false positive) against
the portion 1 − β (ordinate) of faults detected when the system actually is faulty (termed true

positive). The best classifier is the one that maximizes 1 − β for a given value of alpha.
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be retained. Amongst others, the cumulative percent variance 4, the average eigenvalue
5, the variance of the reconstruction error 6 [131] can be mentioned. However, most of
these algorithms have been designed for simple PCA. We used the average eigenvalue
algorithm as it is easy to adapt to the kernel PCA case, computationally inexpensive, and
gave good results on a number of classical toy examples. This parameter was always set
automatically.

Parameter tuning

The evaluation of the system performance was based once again on the type I and type II
errors. The value of these two statistics where evaluated on the test data set for a number
of values of h, p being set automatically, and for the same values (0.9 and 0.95) of the fault
detection threshold tPig as in the SVM case.

Discussion

The results were obtained with a training set restricted to only 2,000 observations. For
a greater number of data, the memory requirements exceeded the computer capacity
and the program had to stop. The obtained results may thus be improved by increasing
the number of training data and working with a better optimized version of the KPCA
algorithm. However, whatever the novelty detection statistic used with the KPCA model
(T2, SPE or KRE, see Section 3.4.4), its computation involves all training points, thus
making the computation time very long.

Whenming, Cairong and Li’s sequential algorithm [137] for KPCA does not include
the methodology for calculating T2, SPE or KRE in a sequential manner as well, but the
way to do it is fairly straight-forward from their work. However, it requires the storage
of a number of intermediate results. Writing and reading them from a file or a database
slows the calculation down and finally leads to a similar problem to the one encountered
with the non sequential version.

Computational problems might thus be a provisional limitation to the use of PCA in
real life process monitoring in the case where the non kernel version is not sufficient to
model the process variables correlations. However, our work was not concerned with
optimizing algorithms and it might be possible to get around the difficulty by giving it
more thought.

6.3 Results

Once a satisfying parameter set had been chosen, the classifiers were installed on-line
and a period of observation of their performance in real-life monitoring of the system
started. Operator detected faults were checked against the classifiers’ statistics. The clas-
sifiers showed good performance and proved to detect faults much earlier than human
operators. This part was left in the hands of process experts and operators, who will
be the final users. Implementation choices were thus made with an engineering and
practical eye. The evaluation of the results was more qualitative than quantitative, and
mainly based on a comparison between what could be done with the PMAT and what
was usually done without it.

4The percent variance captured by the first p PCs is measured and the value of p that allows retaining say
80% of the variance is selected.

5This criterion accepts all PCs corresponding to eigenvalues greater than the average eigenvalue. The
reason is that the PC contributing less than an average variable is insignificant.

6This approach consists in calculating the variance of the reconstruction error (VRE, defined by Qin and
Dunia [97]) for each possible value of p, and then selecting the value of p that minimizes the VRE.
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Results for the SVM-based classifier

The three types of sensor or process faults described in Section 6.2.1 and shown in Figure
6.3, namely sensor breakdown, sensor decalibration, and slow drift, were tested for each
monitored group of variables. Faults were simulated for each case, and, whenever pos-
sible, past (extracted from the database) or current real faults were also used to test the
classifier. A few examples of the results are given below.

Sensor breakdown The detection of the realistic simulation of a sensor breakdown
was instantaneous. In such a case, the sensor indicates a constant value that equals its
maximum or minimum range (see Figure 6.3(b)). Consider the data of example 22 (see
Section 6.2.1). A SVM based novelty detector was built from these variables and the
associated pignistic probability of fault was computed. A breakdown was simulated on
the sensor that measures the percentage of O2. Figure 6.6 shows the faulty signal (top)
and the pignistic probability of fault (bottom) at the same time steps. It can be observed
that the fault is correctly detected.

Now consider the data of example 23 (see Section 6.2.1). Again, a SVM based novelty
detector was built from these variables and the associated pignistic probability of fault
was computed. A sensor breakdown was simulated on the first temperature, and the
simulated points were tested. Figure 6.7 shows the faulty signal (top) together with the
pignistic probability of fault (bottom) at the same time steps. The pignistic probability of
fault associated with faulty points is always 1, hence leaving no doubt with respect to the
occurrence of a fault.

Sensor decalibration Sensor decalibration corresponds to a sudden drop or increase in
the mean of the sensor measurements. Consider again the data of example 22, Section
6.2.1. Successive decalibrations (at time steps 1000 and 2000) were simulated on the
sensor that measures the percentage of O2. Their amplitude was, respectively, of 1%
and 0.5% of O2 (respectively 7 and 15% of the mean value of the percentage of of O2

for training data). The SVM based novelty detector built in the previous paragraph
was used to compute the associated pignistic probability of fault. Figure 6.8 shows
the faulty signal (top) and the pignistic probability of fault (bottom) at the same time
steps. It can be observed that a decalibration of 1% is correctly detected, but 0.5% is not
enough and remains undetected. Figure 6.9 shows the same for the data of example 23,
Section 6.2.1, the decalibration being simulated on the first temperature. Here again, a
first decalibration of 25˚C (occuring at time step 1000) is not detected, but a decalibration
of 50˚C at time step 2000 is detected, and the pignistic probability of fault reaches 0.99.
Further decalibration of the sensor leads to a probability of fault of 1.

Another form of visualisation of the results will now be introduced. Suppose two
successive 10 degree drops of the steam temperature (about 3 times its standard devia-
tion) happen in a group of 4 steam temperatures. Each observation may be represented
by a point in a 4 dimensional space. Figure 6.10 represents test data in the first three
temperatures 3-D space. 4112 observations are shown, 1000 of which were recorded be-
fore any drop in temperature happened, 1000 after the first drop (and before the second),
1000 additional observations after the second drop, and another 1112 observations after
the situation got back to normal. The pignistic probability of fault attached to each point
is represented by a color scale, and the color of the point itself. A pignistic probability
of fault in the [0.5;0.6] range is represented by a very light grey point, the [0.6;0.7] range
yields a slightly darker grey point, etc. Black indicates a near certainty of fault. It can
be observed that, for non faulty points (right and bottom-most points), the pignistic
probability of fault is low at the core of the data set and increases towards it edges. This
is similar to what happens with the training points, and shows that the classifier behaves
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Figure 6.6: Sensor breakdown detection, combustion data (Example 22, Section 6.2.1)
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Figure 6.7: Sensor breakdown detection, fumes data (Example 23, Section 6.2.1)
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Figure 6.8: Sensor decalibration detection, combustion data (Example 22, Section 6.2.1).
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Figure 6.9: Sensor decalibration detection, fumes data (Example 23, Section 6.2.1).
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as expected. As for the faulty points (left and front-most two clusters), the associated
pignistic probability of fault is always 1. Both drops are instantly detected, and the
pignistic probability of fault immediately reaches 1. The return to normal situation is
immediately detected as well, and the pignistic probability of fault drops instantly.
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Figure 6.10: Sensor decalibration detection, steam data.
The pignistic probability of fault attached to each point is represented by a color scale, and the
color of the point itself. A pignistic probability of fault in the [0.5;0.6] range is represented by a

dark red point, the [0.6;0.7] range yields a light red point, etc. Dark blue indicates a near
certainty of fault.

Slow drift detection Let us come back again to example 22, Section 6.2.1. A slow drift
was simulated on the sensor that measures the percentage of O2. The drift was about
0.06% O2 during the first ten hours (starting at time step 1000), and then it was 0.03% O2

an hour (from time step 2000 onwards). The previously built SVM-based novelty detector
was used to compute the associated pignistic probability of fault, and the fault was
detected after 90 hours, when it reached 0.3% O2 (5% of the mean value for training data).
Figure 6.11 shows the faulty signal (top) and the pignistic probability of fault (bottom) at
the same time steps. It can be observed that the fault is correctly detected. Figure 6.12
shows the same for the data of example 23, Section 6.2.1, the fault being simulated on the
first temperature. The simulated fault was a slow drift of the steam temperature at some
specific point in the boiler. The drift occurred at a rate of about 0.76 degrees an hour (0.1%
of the mean value for training data) for the first ten hours (starting at time step 1000) and
then at a rate of 3.8 degrees an hour (from time step 2000 onwards). It was successfully
detected when the difference in the mean temperature reached 19 degrees.

Similarly, a slow drift of the steam temperature at some specific point in the boiler
was successfully detected by an SVM-based classifier built on four steam temperatures.
Figure 6.13 shows the points represented in the first three dimensions.

The best performance was obtained for a drift simulated on a particular steam temper-
ature at a rate of about 2.3 degrees an hour (1% of the mean value for training data), which
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Figure 6.11: Slow drift detection, combustion data (Example 22, Section 6.2.1).
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Figure 6.12: Slow drift detection, fumes data (Example 23, Section 6.2.1).
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Figure 6.13: Slow drift detection, steam data.
The pignistic probability of fault attached to each point is represented by a color scale, and the
color of the point itself. A pignistic probability of fault in the [0.5;0.6] range is represented by a

dark red point, the [0.6;0.7] range yields a light red point, etc. Dark blue indicates a near
certainty of fault.

was successfully detected by an SVM based classifier built on four steam temperatures.
Detection occurred when the difference in the mean temperature reached 10 degrees,
which took 5 hours. According to the experts, this result is highly satisfactory in a process
monitoring point of view, and would never have been achieved manually.

Detection of real faults Later, real drifts appeared in the process and were successfully
detected by the PMAT system.

A difference of 40 degrees of gas combustion temperature in the boiler due to a sensor
deviation was successfully detected within an hour. Though this measurement is vital
for the process and therefore regularly overseen, such a difference is never detected by
the human eye before it reaches 100 degrees, which might take several days. In this
particular case, the operators –who did not have access to the PMAT yet– noticed the
fault only one week after the PMAT indicator showed it, and the sensor was changed
thereafter. This temperature being a key element of the process regulation, and used in
many regulation loops, this result of the PMAT was considered highly satisfactory. Figure
6.14 is a screen shot that shows the evolution of the temperature and that of the pignistic
probability of fault calculated from a group of variables representative of the process
quality (steam flow, steam temperature at boiler exit, upper chamber temperature (sensor
No. 2)). Note that the calculation of the pignistic probability of fault from this group of
variables only takes the upper chamber temperature No. 2 into account (cf Table 6.1,
PMAT unit No. 8). Another classifier was built with the same variables but using sensor
No. 1 instead of sensor No. 2. In this way, the fault was identified: it was not the upper
chamber temperature sensor No.1 that had an increasing drift nor the process that was
going wrong (in this case, both classifiers would have detected a fault) but the upper
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temperature chamber No.2 that had a decreasing drift and should be either recalibrated
or replaced.

Figure 6.14: Detection of a drift of the upper chamber sensor No.2.
The top most line is the pignistic probability of fault, and the gas combustion temperature as

measured by sensor 1 (working correctly) and sensor 2 (faulty). The fault starts at the time
pointed by the arrow below the figure.

Another real drift, consisting in a 10 degrees drop in the flue gas temperature at the
exit of the boiler (undetermined cause), was also successfully detected in less than 30
minutes. Figure 6.15 shows the evolution of the temperature and that of the pignistic
probability of fault calculated from a group of variables representative of the heat ex-
change quality in the boiler (cooling water flow, steam flow, desuperheating temperature,
steam temperature at boiler exit, upper chamber temperature No. 1, upper chamber
temperature No. 2).

Figure 6.15: Detection of a 10 degree drop of the flue gas temperature.
The figure shows the pignistic probability of fault (beige, top most) line, the faulty temperature

(pink, second line from top), the upper chamber temperature as measured by sensor 1 and
sensor 2 (third and fourth lines from top). The fault starts at the time pointed by the arrow below

the figure.

As a third example, it may be mentioned that a drop in the output steam flow due to
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a bad distribution of the waste on the oven’s conveyor belt (presence of heaps) was again
successfully detected. Unfortunately, a screen shot is not available for this third example
of real fault. The behaviour of the PMAT when this fault occurred may be described
as follows. First peaks appeared in the pignistic probability of fault 45 minutes before
the drop was detected by the operators, and the pignistic probability of fault reached its
maximum value (of 0.99) 15 minutes before the drop was detected by the operators. The
probability of fault then started decreasing nearly three hours later, 10 minutes before the
situation went back to normal.

Interpretability of the indicators: The important variance of the pignistic probabil-
ity of fault over time (when the process was in a non faulty state) made its interpretation
difficult for the operators. This phenomenon may be observed in all the above figures.
It was difficult for people outside the statistician community to understand the fact that
this value varied as much as the measures it was built from, but only a threshold overrun
would really imply that the process was in a faulty state. Moreover, this important
variance lead to a number of false alarms that could be avoided. It was thus suggested to
carry out a CUSUM test on the mean of the pignistic probability of fault to smoothen the
results [14]. It is the CUSUM statistic that was finally used for graphical representation
in the PMAT, to the satisfaction of the operators.

Two other solutions were suggested for this problem:

• Modification of the sampling selection period: as treating a point every 5 seconds
would be too computationally demanding and would not be relevant (the process
variations being much slower) the PMAT does not works with direct measurements
but with mean values of the measurements, calculated over a 6 minutes period.
This period was chosen in collaboration with process experts in such a way that
the process variations would not be hidden. Sampling periods of 10, 20 and 30
minutes where tested as well, but the resulting pignistic probability of fault was not
smoothened sufficiently until 20 and 30 minutes periods were used, which also hid
the main process variations and therefore was not interesting in terms of process
monitoring.

• A (possibly weighted) combination of the belief function obtained at each time step
with that obtained at previous time step would smoothen the results and allow the
direct use of the pignistic probability of fault as an indicator (instead of a CUSUM
of this probability), making the interpretation easier. This idea is based on the fact
that a fault rarely appears for a very short period of time. More precisely, a fault is
less plausible if there was no fault at the previous time step. This solution has not
be implemented in the PMAT yet, but has already been tested off-line. Figure 6.16
shows the result of different types of combinations or other means of smoothing
the pignistic probability of fault over time. The upper subplot shows:

1. In continuous line, the orignal signal, i.e., the pignistic probability of fault as
obtained from the belief function on the state of the system calculated at each
time step using the methodology presented in Section 4.2 and 4.6.2.;

2. In dash-dotted line, the signal obtained by averaging the weights correspond-
ing to the last ten obtained bba, and then computing BetP(ω1);

3. In dotted line, the signal obtained by performing a weighted conjunctive com-
bination of the last ten obtained bba, i.e. by combining the last bba with the
ten previous ones, each being discounted by a factor 1 − exp(−γ∆(ti)), where
∆(ti) is the time difference (in number of time steps) between the calculation
of the last bba and the ith before the last [125].
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The two above solutions for smoothing the pignistic probability curve show promis-
ing results. However, further investigation would be necessary to compare them
and to find the best time frame over which to perform the averaging or the weighted
combination. The lower subplot of Figure 6.16 shows the result (alarm time) of a
CUSUM test on the mean of the original signal. This solution is the one that is
currently implemented in the PMAT.
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Figure 6.16: Attempts in smoothing the pignistic probability of fault

Discussion

PMAT versus human detection: A sensor breakdown is obvious, and is instantly de-
tected by the human eye if the sensor measurement is represented over time. However,
outside the PMAT, it is not the case for most of the variables to be monitored. Hence, a
few minutes of observation is necessary to detect a sensor breakdown, going up to half
and hour for measures with low variance and slow evolution. The operators very rarely
have time to observe the same variable for several minutes, not to mention do a regular
check of each variable. The PMAT is thus useful in this case to compensate for the lack
of human time. A very simple CUSUM test is most of the time sufficient to monitor a
single sensor, but a more complex (SVM or KPCA-based) novelty detector allows the
monitoring of several sensors at the same time, and the checking of both process and
sensor faults simultaneously. Fault location may be allowed by cross-checking several
detectors or by human expertise once the occurrence of a fault has been outlined by the
PMAT.
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Sensor decalibration is more difficult to detect for the human eye. It is impossible to
detect without a time scale, and extremely difficult to detect even with a time scale if it is
quite small. Moreover, it again requires the operators to have a look at the screen before
the decalibration disappears from the represented time scale. The PMAT will thus be of
great use to improve the quality and earliness of maintenance interventions.

Finally, slow drifts are difficult and sometimes impossible to detect for the human
eye. In any case, they can only be detected manually when they get quite important,
which is often too late to prevent damaging the installation, decrease pollution rates or
avoid loosing money. The main usefulness of the PMAT thus lies in fault detection time
shortening, especially for slow drifts.

Labelling: Several relabellings of the data were necessary to obtain reasonable val-
ues of the type I and type II errors on the test set. At first, labels were often too strict,
leading to over-training and bad generalization capacity of the classifier. This resulted
in high values of the pignistic probability of fault. Labelling was improved until the
pignistic probability of fault took values which varied over its full range, from 0.5 to 17.

Interpretability: It was greatly improved by the implementation of a CUSUM test
on the mean of the pignistic probability of fault. However, it can, and will, be made even
better by the implementation of a weighted combination. The operators will be consulted
on the choice of this combination.

Quality of the results: All simulated faults were successfully detected. This result
can perhaps be nuanced with the fact that engineers simulated faults that could not be
detected by the human eye but which were maybe still quite important on a statistical
scale, i.e., the deviation represented several times the standard deviation of the monitored
variable. However, the engineers considered these deviations as realistic enough. The
waste incineration process being quite an unstable one, –due to the non homogeneity of
the wastes leading to an unsteady calorific value of the material to be burnt–, normal
variations of the process are quite important and cannot allow the detection of much
smaller deviations than those simulated without generating an important number of so-
called false alarms. Additionally, such small deviations are not of real importance for the
process and cannot be avoided.

As shown by the parameter tuning results, a rate of 30% undetected faults is to be
expected. Some process deviation indeed did not lead to any variation in the pignistic
probability of fault but were detected by the human eye when analyzing the process data
a posteriori. Then again, these faults were not detected by the operators at the time of
occurrence. In spite of these missed alarms, and according to the operators, the PMAT
proves useful on an every day basis by detecting many faults early or detecting faults
which would have otherwise remained unnoticed.

Results for the KPCA-based classifier

The KPCA-based algorithm was first tested on the case study examples of paragraph
6.2.1. As already mentioned, classification through the KPCA-based algorithm was slow
because the calculation of the novelty detection statistic implies all training points. The
calculation could only be set on-line every minute. However, the pignistic probability of
fault calculated from this statistic had much smaller variance than that calculated from
the SVM-based algorithm, thus making it much easier to interpret for the operators. The

7The pignistic probability of fault cannot drop below 0.5 as no prior class probability was introduced for
classes ω0 and ω1, and there is always some evidence in favour of ω1.
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KPCA and SVM-based algorithms nevertheless allowed the detection of the same process
faults over the observation window, and a graphical representation of their means over a
short period of time would have shown fairly parallel curves.

The KPCA-based solution was thus momentarily abandoned with a strong recom-
mendation that further research be done to quicken the computations. It was not tested
on other cases.

6.4 Conclusion

The prototype has been validated, though there is a lot of additional work to be done to
improve the implementation of the KPCA-based algorithm and the user interface. Once
the KPCA-based algorithm will be fully functional, a combination of the SVM and KPCA-
based algorithm should be tested to check if it improves the results.



Conclusion and Perspectives

In this report, we addressed the problem of monitoring a waste incineration process,
which may be brought down to a one-class classification problem. The particularity
of such an application is the fact that it involves numerous, but unreliable data, with
particularly complex correlations. This makes it all the more complex, which explains
why no solution had yet been implemented. The ever growing competition in the waste
promotion industry, together with the drastic hardening of anti-pollution standards, lead
Suez Environnement to make a new attempt to solve the issue via a collaboration with
Compiègne University. Our approach to the problem is based on belief function theory,
and, more precisely, on the Transferable Belief Model, a framework chosen for its ability
to handle imprecision and uncertainty.

First, we introduced new methods for the construction of belief functions from raw
data. We showed how to approximate the distribution of continuous variables with
discrete belief functions, and, whenever possible, how to obtain more precise results with
continuous belief functions. We established two different ways of tackling the problem.
The first approach is based on Hacking’s principle, and on previous work of Denœux
reported in [41]. The second approach, which can be argued to be more in line with
the two-level (credal, pignistic) structure of the TBM, is based on the notion of pignistic
probability distribution.

These schemes proved to carry the imprecision of the data in an interesting way, and
lead to much reduced variability in final classification decisions, especially in comparison
with techniques that do not take the size of the training sample into account. However,
it is not yet quite clear which of these methods is best appropriate. In effect, the first
method presents the advantage of allowing an entirely non-parametric modeling of the
problem, while the second technique does not. On the other hand, this last technique
seems to find better justifications in the ground of the TBM.

Then, introducing the notion of cognitive inequality, we demonstrated how these
techniques can be used together with one-class classifiers to detect novelty in a reliable
way, while keeping track of the uncertainty attached to the decision. More generally,
we explained how these methodologies could be used to combine the output of different
classifiers so as to obtain better performances. Then again, we suggested three possible
models and it is not clear which is best. As already mentioned in Chapter 4, the use of the
cognitive inequality is an obvious improvement to the simple GBT solution, as it allows
the handling of additional, qualitative information. However, the latter model remains
interesting in cases where no hypothesis can be made on the monotonicity of statistic T.
On the other hand, it is more difficult to compare the relative quality of Models 1 and 2.
Model 1 is simpler, but leads to a more complex solution than Model 2. The latter may
be more difficult to justify, but it leads to a very simple solution, and was experimentally
validated on some examples.

Using the tools developed in this thesis, other aspects of novelty detection and infor-
mation fusion could be explored. First, the technique has mainly been applied to SVM
and KPCA-based algorithms. It would be interesting to try and compare the perfor-
mances of as many one-class classifiers as possible, now that they can all be expressed in
the same framework. Furthermore, the conditions in which the combination of classifiers
will bring an improvement in the overall classification performances could be studied.
In other words, we could try and characterize whether it is worth combining classifiers
based on different features, different data sets, different classes, different numbers of
classes, different algorithms, etc. The form of combination best appropriate to each case
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would need to be specified.
Finally, our theoretical contributions were tested on a full-scale prototype in a waste

incineration plant and proved to yield satisfying results. However, some improvements
could be brought to the system, and additional work remains to be done.

To begin with, the computational performances of the prototype could be greatly
improved by a complete recoding, paying attention to computational efficiency, memory
requirement, etc, and trying to minimize all storage and calculation power costs. Algo-
rithms based on KPCA could then be tested more exhaustively. Moreover, there is a lot to
gain in trying to find clear graphical representation, which would make belief functions
easily interpretable to the neophyte, and would help the expert make decisions quickly.
Then, in view of the results, it would be interesting to further explore the problem of
smoothing the obtained pignistic probability of fault. As we have seen, smoothing indeed
allows avoiding a number of false alarms. It can be done, e.g., by combining or averaging
the belief functions on the state of the system obtained from times i − t to i. Tests could
thus be carried out to find the best time frame, ensuring sufficient smoothing while
retaining enough information so that small faults would not be hidden. Finally, the
prototype of the process monitoring assistance tool should be extended to parts of the
plant other than the oven and boiler units, before the final version of the tool can be
developed. It will then be possible to test it on other types of thermodynamic systems, or
other industrial processes altogether.

As a conclusion, there are a number of possible improvements and perspectives to
the work accomplished during this three-year project, both on the theoretical and on
the application sides. Nevertheless, what has already been achieved shows promising
results. Suez Environnement made the decision to go on with the project, and an engineer
has recently been recruited for the next phase. Meanwhile, the PMAT is used as it is on
an everyday basis, and the staff makes good use of the information it provides.
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No.
Subprocess or potential

problem to be moni-

tored

Associated variables Action

12
Sensor drift or parasite
air entrance

% O2 at boiler exit, % O2

in chimney

Calculate the difference
between the two mea-
sures (using 30 minute
sliding means). Possibly
do a CUSUM test on the
mean of the difference
value.

13 Water or steam leak
Sum over an hour of the
water flow, Sum over an
hour of the steam flow

Calculate the difference
between the two
measures. Possibly
do a CUSUM test on the
mean of the difference
value.

14

Water level in water tank
(global steadiness of the
boiler activity)

Water tank level
CUSUM test on the vari-
ance of the measure

15
Steadiness of O2 flow,
value of O2 flow

O2 flow, O2 flow upper
threshold, O2 flow lower
threshold

Calculate amplitude and
frequency of thresholds
overruns

16

Steadiness of CO flow,
value of CO flow (sensor
dirt or bad combustion)

CO flow, CO flow upper
threshold

Calculate amplitude and
frequency of thresholds
overruns

17
Bad combustion or bad
process monitoring

Burner gas start

Calculate frequency of
burner start and aver-
age time length during
which the burners are
on.

18

Assessment of the relia-
bility of the main sensors
(not listed here)

CUSUM test on the
mean or variance of
the measured value. A
change may indicate
either a sensor fault
or a system fault.
Determination of the
cause requires cross-
checking with other
classifiers.

Table A.1: Variables to be monitored other than those mentioned in 6.1, associated process
points, and action to be taken.



Appendix B

Intuitive justification of expressions
(2.48), (2.57) and (2.58)

In addition to the formal proof given in Section 2.2.4, a fairly intuitive justification of
expressions (2.48), (2.57) and (2.58) may be given: for instance, bel([x, y]) represents the
sum of masses on all the intervals included in [x; y].

bel([x, y]) =
∫

[a;b]⊆[x;y]
f (b)δ(a − F

−1
(F(b)))dbda. (B.1)

Let us first show that this expression may be expressed as a function of b only (or a
only).

From (2.41-2.43), it is easy to see that the focal elements [a, b] of m are intervals such
that:

b = (F)−1 ◦ F(a), (B.2)

⇔ a = F
−1 ◦ F(b), (B.3)

⇔ F(a) = F(b). (B.4)

Let us denote:

x
′
= (F)−1(F(x)), (B.5)

and (B.6)

y
′
= F

−1
(F(y)). (B.7)

If x′ > y and y′ < x, then there isn’t any focal interval [a; b] included in [x; y] and
bel([x; y]) = 0.

Now, note that, if x
′ ≤ y and y

′ ≥ x, any (focal) interval [a, b] (as defined in B.2)
whose upper-bound b is smaller than x

′
= (F)−1(F(x)) is not included in [x, y], as its

lower bound is smaller than x. Moreover, any interval [a, b] verifying (B.2) and whose

lower-bound a is greater than y
′
= F

−1
(F(y)) is not included in [x, y] either, as its upper

bound is greater than y (see Figure B).
Finally, note that y

′ ≤ y, x
′ ≥ x, and, if x

′ ≤ y and y
′ ≥ x,

a ∈ (−∞; y′)
a ∈ [x; y]

}
⇒ a ∈ [x; y′), (B.8)

and that
b ∈ (x′; ∞)
b ∈ [x; y]

}
⇒ b ∈ (x′; y]. (B.9)

From (B.8) and (B.9), we may write

bel([x; y]) =
∫

b∈(x′;y]
f (b)db =

∫

a∈[x;y′)
f (a)da. (B.10)

Now let us show that this may be expressed as a function of F, F, x and y.
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Figure B.1: Calculation of the least committed bel associated with a continuous confidence band

The following relation holds:

F(y) =
∫

b⊆(−∞;y]
f (b)db =

∫

b⊆(−∞;x′)∪[x′,y]
f (b)db (B.11)

Similarly,

F(x) =
∫

a⊆(−∞;x]
f (a)da =

∫

b⊆(−∞;x′]
f (b)db (B.12)

Hence, F(y) − F(x) =
∫

b⊆[x′,y]
f (b)db = bel[x, y].

Similar arguments may be developed for the expressions of pl and q.



Appendix C

Proof of Proposition 7

Reminder: Proposition 7 reads: The least committed belief function belT1 compatible
with constraints (4.29) is defined by the following bbd:

mT
1 (−∞, t) =

∫ t

−∞
m0(u; t)du

Proof. As a belief function plT2 is less committed than another belief function plT1 iff
plT1 (A) ≥ plT2 (A), ∀A ∈T , the least committed belief function pl1 satisfying 4.29 is the
one that maximizes pl1 under the constraint of Equation (4.29). Consequently, the LCBF
satisfying 4.29 is the one for which the equality in (4.29) is reached. Hence we need:

pl1[t; +∞) = pl0[t; +∞), , ∀t ∈ T . (C.1)

Now, pl0([t; +∞)) is the integral of bdd m0 on all intervals whose intersection with
[t; +∞) is not empty. Let dt be an infinitesimal quantity. Then pl0([t − dt; +∞)) is the
integral of bdd m0 on all intervals whose intersection with [t − dt; +∞) is not empty.
Hence, the difference pl0([t − dt; +∞))− pl0([t; +∞)) is the integral of m0 on all intervals
intersecting with [t − dt; +∞)) but not with [t; +∞)) (cf. shaded area on Figure C). The
lower bound u of such intervals may vary between −∞ and t, while their upper bound
may vary between max(u, t − dt) and t.

Figure C.1: Representation of pl0([t − dt; +∞)) and pl0([t; +∞))

Hence,

∆(m) = pl0([t − dt; +∞)) − pl0([t; +∞)) =
∫ t

u=−∞

∫ t

v=max(u,t−dt)
m0(u; v)dvdu. (C.2)

As we require

pl1([t − dt; +∞)) = pl0([t − dt; +∞)) (C.3)

and

pl1([t; +∞)) = pl0([t; +∞)), (C.4)
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we also obviously require

pl1([t − dt; +∞)) − pl1([t; +∞)) = pl0([t − dt; +∞)) − pl0([t; +∞)). (C.5)

Thus, the LCBF m1 that satisfies this equality is the one that allocates the amount of belief
∆(m) to the biggest possible interval that intersects with [t− dt; +∞) but not with [t; +∞),
namely (−∞; t). Therefore, m1 is the bbd such that

m1(−∞; t) =
∫ t

u=−∞

∫ t

v=max(u,t−dt)
m0(u; v)dvdu. (C.6)

When dt → 0, this becomes:

m1(−∞; t) =
∫ t

u=−∞
m0(u; t)du. (C.7)

Subsequently, masses m1 are allocated to intervals of the form (−∞; t), with t ∈ R.
It may be checked that requirement (4.29) is met:

pl1([t; +∞)) =
∫ ∞

v=−∞
m1(−∞, v)dv

=
∫ ∞

v=−∞

∫ t

u=−∞
m0(u, v)dvdu

=
∫ t

u=−∞

∫ ∞

v=−∞
m0(u, v)dudv, as u and v are independant

=
∫ t

u=−∞

∫ ∞

v=max(u,−∞)
m0(u, v)dudv, as m0 is defined for v ≥ u

= pl0([t; ∞))

(C.8)



Titre Détection de nouveauté dans le cadre de la théorie des fonctions de croyance.
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