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Abstract

The Transferable Belief Model is a subjectivist model of uncertainty in which an

agent’s beliefs at a given time are modeled using the formalism of belief functions.

Belief functions that enter the model are usually either elicited from experts, or must

be constructed from observation data. There are, however, few simple and opera-

tional methods available for building belief functions from data. Such a method is

proposed in this paper. More precisely, we tackle the problem of quantifying beliefs

held by an agent about the realization of a discrete random variable X with unknown

probability distribution PX , having observed a realization of an independent, identi-

cally distributed random sample with the same distribution. The solution is obtained

using simultaneous confidence intervals for multinomial proportions, several of which

have been proposed in the statistical literature. The proposed solution verifies two

“reasonable” properties with respect to PX : it is less committed than PX with some

user-defined probability, and it converges towards PX in probability as the size of the

sample tends to infinity. A general formulation is given, and a useful approximation

with a simple analytical expression is presented, in the important special case where

the domain of X is ordered.

Keywords: Dempster-Shafer Theory, Evidence Theory, Transferable Belief Model,

Multinomial Proportions, Confidence Intervals



1 Introduction

Since its foundation in the late 1960’s and in the 1970’s [6, 23, 29], the Dempster-Shafer

theory of belief functions has been widely used as a conceptual framework for modeling

partial knowledge and reasoning under uncertainty. Solving a real-world problem in

this framework typically involves two steps: modeling each piece of information using

a belief function on a suitable domain, and manipulating the resulting belief functions

using such operations as marginalization, vacuous extension, and Dempster’s rule of

combination. Whereas many tools have been developed for the latter step (including,

e.g., algorithms for propagation of evidence in belief function networks [26][27], and the

Generalized Bayesian theorem (GBT) for inverting conditional beliefs [31]), modeling

initial information using belief functions is still a challenge in many applications.

In practice, the two main sources of partial knowledge are human experts and

observation data. Methods for the elicitation of belief functions from experts have

been proposed by Wong and Lingras [41], Bryson and Mobolurin [4] and Dubois et al.

[11], among others. In essence, these methods elicit weak information from the experts

(such as preference relations [41], belief ratio intervals [4], or pignistic probabilities

[32, 11]), and build a belief function that is consistent with this information.

In most applications, however, a significant part of the available information comes

from statistical data, and it is crucial to be able to model such information in the

belief functions framework. The first application of belief functions was indeed statis-

tical inference about parametric models [6][7][8]. Shafer [24] describes several distinct

approaches to this problem, among which the approach initially proposed by Demp-

ster, based on pivotal quantities, the likelihood-based approach exposed in Shafer’s

book [23] (see also the discussions in [37] and [40]), and Smets’ method based on the

GBT. Principles of statistical inference within the theory of Hints, an interpretation

of Dempster-Shafer theory closely related to Dempster’s model, are exposed in [19,

chapter 9].

The specific problem addressed in this paper is the following. We consider a pop-

ulation Ω, each element ω of which is described by a discrete observable characteristic

x ∈ X = {ξ1, . . . , ξK}. Individuals are randomly sampled from Ω according to some

probability measure µ. The mapping X : ω → x is thus a random variable, with
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unknown probability distribution1
PX defined by PX(A) = µ(X−1(A)) for all A ⊆ X .

Having drawn n elements with replacement (or without replacement in the case of

an infinite population), we have observed a realization x1, . . . , xn of an independent,

identically distributed (iid) random sample X1, . . . , Xn with parent distribution PX .

We want to assess our degrees of belief concerning the realization of X that will be

observed when we shortly draw an additional individual from Ω. A classical paradigm

for this problem is that of an urn containing balls of different colors. Having observed

the colors of n balls randomly taken from the urn with replacement, we want to assess

our beliefs concerning the color of the next ball.

The conceptual framework adopted in this paper will be based on the Transferable

Belief Model (TBM), a nonprobabilistic, subjectivist interpretation of the Dempster-

Shafer theory of belief functions [35]. We shall thus assume the beliefs of a rational

agent to be representable by a belief function, independently from any underlying

probabilistic model (a major difference with Dempster’s original model [30]). In par-

ticular, we shall not regard a belief function as the lower envelope of a family of

probability distributions, a view that is known to be incompatible with Dempster’s

rule of combination and, consequently, with the TBM [25][30]. We shall, however,

for the particular problem at hand, define a certain form of consistency between the

belief function of interest and a lower probability measure, as will be shown below.

Basic knowledge of the mathematics of belief functions and their interpretation in the

TBM will be assumed in this paper. The reader is referred to Shafer’s book [23] and

to recent presentations of the TBM [33] for complete coverings of these topics.

The problem of inference from binomial and, more generally, multinomial data was

originally addressed in the belief function framework by Dempster [6, 9, 8]. Dempster’s

solution was later recovered by Kohlas and Monney [19, page 261] in the Hint Theory

framework (an interpretation of Dempster-Shafer theory close to Dempster’s model),

and in the TBM framework [32]. This solution will first be briefly recalled in Section

2, together with an alternative approach, the imprecise Dirichlet model, introduced by

Walley [38] in the imprecise probability framework (Walley’s solution happens to be a

1In this paper, the symbol P will be used to denote probability distributions of random variables

and, more generally, probabilities interpreted as long-term frequencies of events in repeatable random

experiments.
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belief function). Our method will then be introduced in Section 3, and an approximate

analytical solution for the case of ordered data will be presented in Section 4. Finally,

Section 5 will conclude the paper.

2 Review of previous work

2.1 Dempster’s approach

Binomial case

Belief functions were introduced by Dempster as part of a statistical inference frame-

work proposed as an alternative to Bayesian methods and to Fisher’s fiducial method

[6]. One of the first applications of this new approach concerned binomial sampling

with a continuous parameter p, and general multinomial sampling with a finite num-

ber of contemplated hypotheses [6]. The case of trinomial sampling was treated in a

later paper [8], and some mathematical problems arising in the context of the general

multinomial sampling model were studied in [10].

The main results concerning the binomial sampling model will first be summarized.

Our presentation will be inspired from [1, chapter 9]. Let X1, . . . , Xn be an iid sample

with parent variable X ∈ X = {0, 1} following a Bernoulli distribution B(p) with

parameter p ∈ P = [0, 1]. A random variable Wi uniformly distributed on W = [0, 1]

is supposed to underlie each observation Xi, with

Xi = 1 ⇔ Wi ≤ p . (1)

The uniform distribution of Wi can be thought of as modeling random sampling from

an infinite population assimilated to the interval [0, 1]. Note also that this “trick”

is commonly used to simulate binomial sampling using computer random number

generators.

Equation (1) defines a multivalued mapping from W to X × P, which maps any

w ∈ W to {1} × [w, 1] ∪ {0} × [0, w]. This mapping constrains the possible values of

the triplet (Xi,Wi, p), and can alternatively be represented by a logical belief function

(i.e., a belief function with a single focal set) mΘ
i on the joint space Θ = X ×W ×P.

Now, the uniform probability distribution of Wi defines a Bayesian belief function
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mW
i . Belief functions mΘ

i and mW
i , i = 1, . . . , n are the components of the graphical

model shown in Figure 1. In this graph, variables are represented by circular nodes,

belief functions on a single variable are represented by rectangular nodes, and belief

functions on a product space are represented by diamond-shaped nodes; each belief

function node is connected by an undirected edge to each variable node in its domain

(see, e.g., [27]).

Having observed a realization xi of each Xi, a belief function on P can be obtained

by combining each belief function in the model using Dempster’s rule, conditioning

by Xi = xi for each i = 1, . . . , n, and marginalizing on p. The result is a continuous

belief function2 on P with the following mass density function:

mP(a, b) = n!
(N−1)!(n−N−1)!a

N−1(1 − b)n−N−1 0 < N < n

mP(0, b) = n(1 − b)n−1 N = 0

mP(a, 1) = nan−1 N = n,

(2)

for all a ≤ b, with N =
∑n

i=1 xi.

The prediction problem can now be handled by defining a new variable X following

a Bernoulli distribution B(p), with associated uniform random variable W . This

defines the graphical model of Figure 2. The marginal bba induced about X may be

shown [6] to be:

mX ({1}) =
N

n + 1
=

p̂

1 + 1/n
(3)

mX ({0}) =
n − N

n + 1
=

1 − p̂

1 + 1/n
(4)

mX (X ) =
1

n + 1
, (5)

where p̂ = N/n.

Multinomial case

The above approach can be extended to the general multinomial case as follows. Let

us now assume that X is discrete variable with (unordered) values in X = {ξ1, . . . , ξk},
and let pk = P(X = ξk). We observe a realization of an iid sample X1, . . . , Xn from

X, and we want to make inference statements regarding the parameter vector p =

(p1, . . . , pK). In that case, the underlying population from which random sampling

2For a recent account of continuous belief functions, see [34].
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takes place cannot be ordered as in the binomial case, because the modalities of X

are no longer ordered: we have a “structure of the second kind” using the terminology

introduced in [6]. The approach proposed by Dempster is then to assume uniform

sampling from a K − 1 dimensional simplex SK . Using barycentric coordinates, the

general point of such a simplex can be represented by a K-tuple of real numbers

(α1, . . . , αK) where αk ≥ 0 for k = 1, . . . ,K and
∑K

k=1 αk = 1. A random drawing of

X may be created by drawing a random vector W = (W1, . . . ,WK) from a uniform

distribution over SK , and declaring that X = ξk for some k ∈ {1, . . . ,K} if

pk

Wk
≥ p`

W`
, ∀` 6= k.

Coming back to the iid sample X1, . . . , Xn, we can proceed exactly as above, and

associate a random vector Wi to each Xi. Marginal belief functions about p and a new

observation X may then theoretically be obtained as in the binomial case. However,

the calculations are now much more complex. Dempster studied the trinomial case

in [8] (without providing the equivalent of (3)-(5)), and he presented some results

pertaining to the general case in [10]. However, the application of these results to

compute the marginal belief function of X has proved, so far and to our knowledge,

mathematically intractable.

Justification in the TBM

The introduction of the pivotal variables Wi may be argued to be artificial and some-

what arbitrary (see, e.g., the discussion in [8] and [1, page 252]). In [32], Smets

attempted to solve the multinomial probability estimation problem by deducing the

form of the belief function mX×P on X ×P from first principles, without resorting to

pivotal quantities.

The main requirement imposed by Smets is the Hacking Frequency Principle [15],

which equates the degree of belief of an event to its probability (long run frequency),

when the latter is known. As shown in [32], this principle entails that the focal sets

of mX×P are of the form
⋃K

k=1{ξk} × Ak, where A1, . . . , AK is a partition of P.

In the binomial case, the focal sets of mX×P are thus of the form {0}×A∪{0}×A

for some A ⊂ [0, 1]. Using a simple argument, Smets showed that, for any focal set, A
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is of the form [0, a) for some a ∈ [0, 1]. By applying once again the Hacking’s principle,

he then deduced directly the form of the belief density function mP in (2), and the

marginal belief function mX in (3)-(5).

Using a similar line of reasoning, the form of the focal sets in the trinomial case

(K = 3) could be obtained. However, the problem again quickly proved to be analyt-

ically intractable, and no formula such as (2) and (3)-(5) were given, even for the case

K = 3.

2.2 The imprecise Dirichlet model

In this review of previous work, it is worth mentioning the imprecise Dirichlet model

(IDM) introduced by Walley [38, 3]. This model was proposed in the imprecise prob-

ability framework [39], which is distinct from the TBM [30]. However, it turns out to

yield a belief function on X when applied to our problem, which is the reason why it

is mentioned here.

In short, the IDM extends Bayesian inference as follows. In the Bayesian setting,

the conjugate prior probability distribution of parameter p = (p1, . . . , pK) in the

multinomial model is the Dirichlet (s, t) distribution, where t = (t1, . . . , tK) is an

element of the interior of the unit simplex S(1,K), and s > 0 is a hyperparameter

determining the influence of the prior distribution on posterior probabilities. The

predictive probability distribution on X, based on an iid random sample X1, . . . , Xn

and a prior Dirichlet (s, t) distribution is:

p(ξk|N, t, s) =
Nk + stk

n + s
,

where Nk =
∑n

i=1 1ξk
(Xi) denote the number of observations in category ξk, and

N = (N1, . . . , NK). Assume now that we no longer take a single prior Dirichlet

distribution, but the set of all Dirichlet (s, t) distributions with t ∈ S(1,K). The

family of all corresponding predictive distributions on X is then characterized by the

following lower probability measure:

P (A|N, s) =
N(A)

n + s
, ∀A ⊆ X ,

with N(A) =
∑

ξk∈A Nk. It happens that P (·|N, s) is a belief function, with corre-
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sponding bba:

mX ({ξk}|N, s) =
Nk

n + s
=

p̂k

1 + s/n
, k = 1, . . . ,K,

mX (X|N, s) =
s

s + n
,

with p̂k = Nk/n. We observe that, with s = 1, this solution is identical to Dempster’s

solution (3)-(5) in the binomial case.

This approach was extended by Utkin [36] to the case of imprecise observations.

2.3 Discussion

Dempster’s approach outlined in Section 2.1 seems well founded theoretically. It pro-

vides a usable solution at least in the binomial case, and maybe for K = 3 (although

this solution does not seem to have been fully worked out in that case). However, this

approach seems to become quickly analytically intractable for larger K, essentially be-

cause of the difficulty to manipulate belief functions over continuous multidimensional

spaces.

The IDM approach does lead to a simple belief function in the general multinomial

case. However, whereas this approach is well founded in the imprecise probability set-

ting, its justification in the TBM framework is unclear. It is based on the assumption

that one’s prior knowledge on the probability distribution of X is represented by a

family of Dirichlet distributions, an assumption which can hardly be justified in the

TBM, where each piece of knowledge is assumed to be represented by a belief function.

The approach proposed in this paper, which was also applied in a possibilistic

framework [20], is fundamentally different. First of all, our objective will be more

limited, in that we shall only attempt to build a belief function regarding a future

observation X, given past observations X1, . . . , Xn, without expliciting our beliefs on

P. Hence, belief functions will not be used as a tool for parametric inference (for

which frequentist confidence regions will be employed), but as a tool for prediction.

As mentioned aboved, another feature of our approach is that it will be essentially

based on frequentist analysis. Given an iid random sample Xn = (X1, . . . , Xn) with

parent probability distribution PX , we want to produce a belief function on X , noted

belX [Xn], in such a way that the inequality belX [Xn] ≤ PX will hold in the long run
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at least in 100(1 − α) % of cases (i.e., for a fraction 100(1 − α) of the samples). For

a given realization xn = (x1, . . . , xn), we shall thus obtain a belief function belX [xn],

which will be guaranteed to have been obtained by a method yielding a belief function

less committed than the probability measure PX in 100(1 − α) % of cases. As will

be shown below, such a belief function can easily be computed from multinomial

confidence regions, and it has a simple interpretation.

This method will be presented in detail in the rest of this paper.

3 Exploiting multinomial confidence regions

3.1 Basic principles

Let us assume that we have an urn with balls of different colors, noted X = {ξ1, . . . , ξK}.
The set X is given, but neither the number of balls, nor the proportions of balls of

different colors are known. Let X denote the color of a ball taken randomly from

the urn. As before, the probability distribution of X is noted PX . For each A ⊆ X ,

PX(A) represents the long run frequency of the event X ∈ A, which is simply equal

in this example to the proportion of balls with color in A contained in the urn. This

quantity is constant (it depends only on the experimental setting), but unknown.

Assume that we will shortly draw a ball from this urn, and we want to model our

beliefs regarding its color by a belief function belX . If we know the composition of the

urn, and hence the underlying long run frequency distribution PX , it is reasonable to

postulate belX = PX . As remarked by Hacking [15], this “frequency principle” seems

very natural.

Let us now assume that we do not know the composition of the urn, but we have

drawn n balls with replacement. We have thus observed a realization of an iid random

sample Xn = (X1, . . . , Xn), with parent distribution PX . Let belX [Xn] denote a belief

function constructed using Xn. Which properties should be satisfied by belX [Xn] ?

First, it seems natural to impose that belX [Xn] become closer to PX as n → ∞,

which can be seen as a weak form of Hacking’s frequency principle. Loosely speaking,

a sample of infinite size is equivalent to knowledge of the distribution of X, hence the

belief function should asymptotically become identical to PX . This translates to the
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following requirement:

Requirement R1:

∀A ⊆ X , belX [Xn](A)
P−→ PX(A), as n → ∞, (6)

where
P−→ denotes convergence in probability.

For finite n, what kind of relationship should be imposed between belX [Xn] and

PX ? Since we have less information than in the asymptotic case, it seems natural

to impose that belX [Xn] be less committed than PX , as a consequence of the Least

Commitment Principle, which plays a central role in the TBM [31]. We should then

have belX [Xn] ≤ PX . This requirement, however, appears to be much too stringent.

Having observed a positive count nk for a certain value ξk of X, we can rule out 0

as a possible value for pk. However, neither the total number of balls, nor an upper

bound of it, are given. Consequently, any arbitrarily small value ε remains possible,

unlikely as it may be. The above requirement would then lead to belX [Xn](A) = 0,

for any strict subset A of X , i.e., to the vacuous belief function.

As a less stringent requirement, we propose to impose that the inequality belX [Xn] ≤
PX be satisfied only “in most cases”. Assuming that the random experiment that con-

sists of drawing n balls from the urn is repeated indefinitely, we would like belX [Xn]

to be less committed than P “most of the time”, i.e. with at least some prescribed

long run frequency 1 − α, where α ∈ (0, 1) is an arbitrarily small positive number.

More formally, this can be expressed by the following second requirement:

Requirement R2:

P(belX [Xn] ≤ PX) ≥ 1 − α. (7)

Equation (7) can alternatively be written:

P
(
belX [Xn](A) ≤ PX(A),∀A ⊂ X

)
≥ 1 − α.

It should be quite clear that, in this expression, as in (6), PX denotes the parent prob-

ability distribution of X, which is constant but unknown. The quantity belX [Xn](A)

is random, as it is a function of the random sample Xn.
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A belief function satisfying requirements R1 and R2 will be called a predictive belief

function at confidence level 1 − α.

In the following, we shall examine methods for deriving such belief functions from

multinomial confidence regions. Some definitions and results regarding these confi-

dence regions will first be recalled in the following section.

3.2 Multinomial confidence regions

The main building block of our approach to constructing belief functions is composed

of methods for building confidence regions on multinomial parameters. Given an iid

sample X1, . . . , Xn of a discrete random variable X taking values in X = {ξ1, . . . , ξK},
let Nk =

∑n
i=1 1ξk

(Xi) denote the number of observations in category ξk. The random

vector N = (N1, . . . , NK) has a multinomial distribution with parameters n and p =

(p1, . . . , pK), with pk = PX({ξk}).
Let S(N) be a random subset of the parameter space P = {p = (p1, . . . , pK) ∈

[0, 1]K | ∑K
k=1 pk = 1}. S(N) is said to be a confidence region for p at confidence

level 1 − α, if

P(S(N) 3 p) ≥ 1 − α,

i.e., the random region S(N) contains the constant parameter vector p with probability

(long-run frequency) 1−α. It is an asymptotic confidence region if the above inequality

only holds in the limit as n → ∞.

The problem of finding confidence regions for multinomial proportions has received

considerable attention in the statistical literature from the 1960’s [22] [14] up to these

days [12] [28] [21] [13] [17]. Of particular interest are simultaneous confidence intervals,

i.e., regions defined as a Cartesian product of intervals:

S(N) = [P−
1 , P+

1 ] × . . . × [P−
K , P+

K ],

which have easy interpretation. Such asymptotic confidence regions were proposed by

Quesenberry and Hurst [22], and Goodman [14]. The first solution is defined as:

P−
k =

a + 2Nk −
√

∆k

2(n + a)
(8)

P+
k =

a + 2Nk +
√

∆k

2(n + a)
, (9)
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where a is the quantile of order 1 − α of the chi-square distribution with one degree

of freedom, and

∆k = a

(
a +

4Nk(n − Nk)

n

)
.

It can easily be checked that the classical confidence interval on binomial p is recovered

as a special case when K = 2. For K > 2, Goodman remarked that the above

confidence region is too conservative, and showed that a could be replaced by b, the

quantile of order 1 − α/K of the chi-square distribution with one degree of freedom.

Note that we have P−
k

P−→ pk and P+
k

P−→ pk as n → +∞, for k = 1, . . . ,K.

Other simple analytical expressions were suggested in [12], while more complex

computer procedures were proposed in [28][17], and bootstrap methods were presented

in [13, 18]. The quality of a confidence region may be measured by its volume and its

coverage probability P(p ∈ S(N)). An asymptotic confidence region is conservative

if its coverage probability for finite n is greater than the prescribed confidence level.

Among conservative confidence regions, it is desirable to find one with as small a vol-

ume as possible. Although bootstrap methods may yield smaller regions, particularly

for small sample sizes, Goodman’s intervals have been found to be good enough in

most practical applications [21].

Example 1 The following example is taken from [21]. A sample of 220 psychiatric

patients were categorized as either neurotic, depressed, schizophrenic or having a

personality disorder. The observed counts were n = (91, 49, 37, 43). The Goodman

confidence intervals at confidence level 1 − α = 0.95 are given in Table 1.

3.3 From multinomial confidence regions to lower probabilities

A confidence region S(N) for multinomial proportions such as reviewed in Section 3.2

is usually interpreted as defining a set of plausible values for the vector parameter

p. However, since each value of p specifies a unique probability measure of X , it is

clear that S(N) can equivalently be seen as defining a family of probability measures3.

Such a family, obtained by bounding the probability of each singleton, is called a set

3To keep the notation as simple as possible, the same symbol S(N) will be used to denote both

the set of parameter values p and the set of probability measures.
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of probability intervals in [5]. Note that we have [14]:

P+
k ≤ 1 −

∑

6̀=k

P−
k (10)

and

P−
k ≥ 1 −

∑

6̀=k

P+
k . (11)

Consequently, this set of probability intervals is reachable, using the terminology in-

troduced in [5].

Let P− and P+ denote, respectively, the lower and upper envelopes of S(N),

defined as P−(A) = minP∈S(N) P (A) and P +(A) = maxP∈S(N) P (A). For all strict

nonempty subset A of X , we have [5]:

P−(A) = max


 ∑

ξk∈A

P−
k , 1 −

∑

ξk 6∈A

P+
k


 (12)

P+(A) = min


 ∑

ξk∈A

P+
k , 1 −

∑

ξk 6∈A

P−
k


 . (13)

Note that we have, as a direct consequence of the above formula:

P+(A) = 1 − P−(A), ∀A ⊆ X .

Hence, the lower probability measure P − is sufficient to characterize S(N):

S(N) = {P | P− ≤ P}.

By construction, we have

P(PX ∈ S(N)) = P(P− ≤ PX) ≥ 1 − α, (14)

and it is clear that P−(A)
P−→ PX(A) as n → ∞, for all A ⊆ X . Hence, P− verifies our

two requirements R1 and R2. Unfortunately, P− is not, in general, a belief function,

except for the cases K = 2 and K = 3 (see Section 3.4 below). This can be shown by

the following counterexample.

Example 2 Let us return to the confidence region computed in Example 1. The

corresponding lower probabilities are shown in Table 2. As shown by Shafer [23], a

mapping f : 2X → [0, 1] is a belief function iff its Möbius inverse, defined as:

m(A) =
∑

B⊆A

(−1)|A\B|f(B), ∀A ⊆ X ,
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is a basic belief assignment (bba), i.e., if m(A) ≥ 0 for all A, and
∑

A⊆X m(A) = 1. The

Möbius inverse of P−, shown in Table 2, assigns a negative value to X . Consequently,

P− is not a belief function.

Before proposing in the next section a way to construct a belief function from P −,

we shall conclude this section by noticing that P −, although not a belief function,

possesses a weaker property: as shown by Campos et al. [5], sets of probability

intervals are Choquet capacities of order two, i.e., we have

P−(A ∪ B) ≥ P−(A) + P−(B) − P−(A ∩ B), ∀A,B ⊆ X . (15)

3.4 From lower probabilities to predictive belief functions

The case K = 2

When K = 2, the lower probability measure P − defined above is actually a belief

function. Its bba is simply equal to:

mX ({ξ1}) = P−
1

mX ({ξ2}) = P−
2

mX (X ) = 1 − P−
1 − P−

2 ,

with P−
1 and P−

2 defined by (8). If we note N = N1, we have the expressions:

mX ({ξ1}) =
a + 2N −

√
∆

2(n + a)

mX ({ξ2}) =
a + 2(n − N) −

√
∆

2(n + a)

mX (X ) =
2
√

∆

2(n + a)
,

where a is the quantile of order 1 − α of the chi-square distribution with one degree

of freedom (which is also equal to u2
1−α/2, the square of the normal quantile of order

1 − α/2), and

∆ = a

(
a +

4N(n − N)

n

)
.
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Using the classical approximation of binomial confidence intervals, it is easy to show

that:

mX ({ξ1}) ∼ p̂ − u1−α/2

√
p̂(1 − p̂)

n
(16)

mX ({ξ2}) ∼ 1 − p̂ − u1−α/2

√
p̂(1 − p̂)

n
(17)

mX (X ) ∼ 2u1−α/2

√
p̂(1 − p̂)

n
, (18)

where, as before, p̂ = N/n, and ∼ denotes asymptotic equivalence. It is interesting

to compare these expressions with (3)-(5). We can see that the mass mX (X ) tends

towards 0 as n−1/2 in our approach, whereas it has the higher convergence rate of n−1

in Dempster’s solution. Our solution is thus more conservative (even for small n),

which seems to be the price to pay to statisfy requirement R2.

Example 3 To illustrate the nature of these two solutions, we generated 100 real-

izations of a binomial random variable with p = 0.3 and n = 30. This simulates 100

repetitions of the random experiment consisting in drawing 30 balls, with replacement,

from an urn containing 30 % of white balls. We thus obtained 100 predictive belief

functions at confidence level 1 − α = 0.95, and 100 belief functions using Dempster’s

approach. These belief functions are plotted in Figure 3 in the three-dimensional

probability simplex. Each belief function is represented as a point in an equilateral

triangle using barycentric coordinates, with the lower left corner corresponding to

{ξ1} (say, the elementary event consisting in drawing a white ball), the lower right

corner corresponding to {ξ2}, and the upper corner corresponding to X . The orthog-

onal distance to the lower side of the triangle is thus proportional to mX (Ω), while

the distances to the right-hand and left-hand sides are proportional to mX ({ξ1})
and mX ({ξ2}), respectively. The grey region corresponds to the set of belief func-

tions belX less committed that PX , i.e., such that belX ({ξ1}) ≤ P({ξ1}) = 0.3 and

belX ({ξ2}) ≤ P({ξ2}) = 0.7. We can verify that, out of the 100 predictive belief func-

tions mX∗, about 95% satisfy this property, which is an experimental verification of

requirement R2. Dempster’s belief functions are more specific (they are closer to the

lower side of the rectangle in the graphical representation), but most of them are more

committed than PX : requirement R2 is not satisfied in this approach. Figure 4 shows

14



the result of a similar numerical experiment repeated with n = 100. As expected, the

belief functions computed by each of the two methods get closer to PX as n increases,

which is a consequence of requirement R1 being satisfied by the two approaches.

The case K = 3

When K = 3, P− is again a belief function. To prove this assertion, let us consider

the Möbius inverse of P− in this case. We have

mX ({ξk}) = P−
k , k = 1, 2, 3

mX ({ξ1, ξ2}) = P−({ξ1, ξ2}) − P−({ξ1}) − P−({ξ2})

= 1 − P+
3 − P−

1 − P−
2

mX ({ξ1, ξ3}) = P−({ξ1, ξ3}) − P−({ξ1}) − P−({ξ3})

= 1 − P+
2 − P−

1 − P−
3

mX ({ξ2, ξ3}) = P−({ξ2, ξ3}) − P−({ξ2}) − P−({ξ3})

= 1 − P+
1 − P−

2 − P−
3

mX (X ) = 1 −
3∑

k=1

m({ξk}) −
∑

k 6=`

m({ξk, ξ`})

= 1 −
3∑

k=1

P−
k − (1 − P +

3 − P−
1 − P−

2 ) − (1 − P +
2 − P−

1 − P−
3 )

−(1 − P +
1 − P−

2 − P−
3 )

=
3∑

k=1

(P+
k + P−

k ) − 2

=
3∑

k=1

b + 2Nk

n + b
− 2 =

b

n + b
,

where b is, as before, the quantile of order 1−α/3 of the chi-square distribution with

one degree of freedom. The masses assigned to pairs {ξk, ξ`} are positive because

of (10), and all other masses are obviously positive. Consequently, P − is a belief

function.
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Example 4 Let us consider an urn containing ball of three different colors, denoted

ξ1, ξ2 and ξ3 (say, black, white and red). We have drawn 100 balls with replacement,

of which 20 were black, 30 were white and 50 were red. Let X denote the color of the

next ball to be drawn from the urn. What is our belief regarding the value of X ?

We have the counts N1 = 20, N2 = 30 and N3 = 50. The bounds of the Goodman

confidence intervals, at confidence level 99 % are:

P−
1 = 0.1087 P +

1 = 0.3389

P−
2 = 0.1858 P +

2 = 0.4459

P−
3 = 0.3592 P +

3 = 0.6408,

and we have b = χ2
1,1−0.01/3 = 8.6154. We thus obtain the following bba:

mX ({ξ1}) = 0.1087, mX ({ξ2}) = 0.1858, mX ({ξ3}) = 0.3592

mX ({ξ1, ξ2}) = 1 − 0.6408 − 0.1087 − 0.1858 = 0.0647

mX ({ξ1, ξ3}) = 1 − 0.4459 − 0.1087 − 0.3592 = 0.0862

mX ({ξ2, ξ3}) = 1 − 0.3389 − 0.1858 − 0.3592 = 0.1161

mX (X ) =
8.6154

100 + 8.6154
= 0.0793.

The case K > 3

When K > 3, P− is no longer guaranteed to be a belief function, as shown by Example

2 above. We thus have to approximate P− by a belief function satisfying requirements

R1 and R2.

Let BX (P−) denote the set of belief functions belX on X verifying belX ≤ P−. As

a consequence of (14), we have, for any belX ∈ BX (P−):

P(belX ≤ PX) ≥ P(P− ≤ PX) ≥ 1 − α.

Every element of B thus complies with requirement R2 expressed by (7). However,

most elements of BX (P−) (such as, e.g., the vacuous belief function) will generally

not be very informative, and it seems natural to concentrate on the most committed

elements of BX (P−). Since there is not a single most specific element in BX (P−), a
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good solution can be found by maximizing a specificity criterion such as the sum of

belief degrees4 belX (A) for all A ⊆ X , under the constraints belX (A) ≤ PX(A), for all

A ⊆ X . Let J(mX ) denote this criterion. We have

J(mX ) =
∑

A⊆X

belX (A) (19)

=
∑

A⊆X

∑

B⊆A

mX (B) (20)

=
∑

B⊆X

mX (B) |{A ⊆ X , B ⊆ A}| (21)

= 2K
∑

B⊆X

2−|B|mX (B) , (22)

where | · | denotes cardinality. We then have to solve the following linear program:

max
mX

J(mX ) (23)

under the constraints:

∑

B⊆A

mX (B) ≤ P−(A), ∀A ⊂ X , (24)

∑

A⊆X

mX (A) = 1, (25)

mX (A) ≥ 0, ∀A ⊆ X . (26)

Any belief function belX∗
n solution to the above linear programming problem obvi-

ously satisfies requirement R2. The following proposition states that it also satisfies

R1.

Proposition 1 Let belX∗
n , n = 1, . . . ,∞ be a sequence of solutions of linear program

(23)-(26). We have:

belX∗
n

P−→ PX as n → ∞.

Proof. See Appendix A.

Solving linear program (23)-(26) is thus a way to construct a predictive belief

function, as illustrated by the next example. Note that the uniqueness of the solution

is not guaranteed, which is not important in practice, since all the solutions may be

regarded as equivalent.

4A similar criterion was proposed by Baroni and Vicig [2] and by Hall and Lawry [16] for approx-

imating a lower probability measure by a belief function.
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Example 5 Table 3 shows optimal belief and mass functions, at confidence level 0.95,

obtained for the data of Example 1 using a standard linear programming algorithm

(we used the Matlab Optimization Toolbox). The value of the objective function for

this solution is J(mX∗) = 6.4825.

Note that the applicability of the method is obviously limited to moderate values

of K (up to 10-15), since both the number of variables and the number of constraints

grow exponentially with K. For large K or when computation speed is an issue,

however, it may be sufficient to compute suboptimal solutions.

This can be done, for instance, using the Iterative Rescaling Method (IRM) de-

scribed in [16], which heuristically transforms the Möbius inversion of P − into a bba,

by replacing each negative mass m(A) < 0 by zero, and rescaling masses assigned to

relevant subsets of A. The result of this algorithm for the psychiatric data are shown

in the last two columns of Table 3. In that particular case, the obtained solution

happens to be optimal, since the value of J for this solution is the same as the one

computed in Example 5. However, the IRM provides only an approximation to the

optimum in the general case.

Although the IRM algorithm may allow to find good approximations for moderate

values of K, its time and space complexity is still exponential as a function of K (it

involves a loop over the subsets of X ). Much more drastic approximations may be

obtained by limiting the search to a restricted parametrized family of belief functions

BX
0 (P−) ⊂ BX (P−). The simplest such family is perhaps the set of belief functions

whose focal elements are taken among the singletons and X : in that case, the optimal

solution is mX◦
n introduced in Appendix B, defined by:

mX◦
n ({ξk}) = P−

k , k = 1, . . . ,K (27)

mX◦
n (X ) = 1 −

K∑

k=1

P−
k , (28)

which can easily be shown to statisfy requirements R1 and R2.

Example 6 For the psychiatric data of Example 1, we have mX◦
n ({ξ1}) = 0.33,

mX◦
n ({ξ2}) = 0.16, mX◦

n ({ξ3}) = 0.11, mX◦
n ({ξ4}) = 0.14, and mX◦

n (X ) = 0.26. The

value of the objective function is J(mX◦
n ) = 6.2296. This solution is thus not optimal,
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but it can be considered as an approximation of mX∗.

In general, richer families of belief functions could be considered (e.g., by con-

straining the size of the focal sets). When the elements of X are ordered, it is quite

natural to consider belief functions whose focal elements are intervals, since the corre-

sponding basic belief masses can easily be represented and interpreted. In that case,

the optimal solution has a simple analytical expression, as will be shown in the next

section.

4 Approximation in the case of ordered data

4.1 Definitions

We assume in this section that a meaningful ordering5 has been defined among the

elements of X . By convention, we shall assume that ξ1 < . . . < ξK .

Let Ak,r denote the subset {ξk, . . . , ξr}, for 1 ≤ k ≤ r ≤ K and let I denote the

set of intervals of X : I = {Ak,r, 1 ≤ k ≤ r ≤ K}. These intervals may be represented

graphically as in Figure 5, in which each interval Ak,r appears at the intersection of

row k and column r of a two-dimensional table. In this representation, the singletons

are located on the main diagonal, the intervals of length 2 on the second diagonal,

etc.

By imposing that the focal sets of m be taken in I, one reduces the number of

basic belief numbers from 2K − 1 to K(K + 1)/2. Let mX denote such a bba, and

5One could argue that this assumption is, to some extent, contradictory with the use of the

multinomial model, which does not assume any order among the outcomes. However, there are cases

where a natural ordering exists and makes sense to the user, in particular for graphical representations,

but this knowledge may not easily be incorporated into a statistical model. This happens, for instance,

when a quantitative variable is discretized by defining a finite number of classes. The multinomial

model is then still a common choice, as it makes minimal assumptions. This situation is considered

in this section.
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belX the corresponding belief function. We have:

mX (Ak,r) =




belX ({ξk}) if k = r

belX (Ak,r) − belX (Ak+1,r) − belX (Ak,r−1) if r = k + 1,

belX (Ak,r) − belX (Ak+1,r) − belX (Ak,r−1) + belX (Ak+1,r−1) if r > k + 1,

(29)

If there exists a bba mX∗ verifying belX∗(Ak,r) = P−(Ak,r) for all Ak,r ∈ I, we then

have necessarily:

mX∗(Ak,r) =





P−
k if k = r

P−(Ak,r) − P−(Ak+1,r) − P−(Ak,r−1) if r = k + 1,

P−(Ak,r) − P−(Ak+1,r) − P−(Ak,r−1) + P−(Ak+1,r−1) if r > k + 1,

(30)

mX∗(B) = 0, ∀B 6∈ I . (31)

In the following, we will show that mX∗ defined by (30)-(31) is indeed a valid bba

(i.e., it defines a belief function), and that it is optimal according to criterion J defined

by (19), in the set of bbas with focal elements in I.

4.2 Properties of m
X∗

Proposition 2 The function defined by (30)-(31) is a valid bba.

Proof. As a consequence of (15), we have mX∗(Ak,r) ≥ 0, ∀r ≥ k. We then have to

prove that
K∑

k=1

K∑

r=k

mX∗(Ak,r) = 1 .

In this sum, each term is a linear combination of lower probabilities P −(Ak,r). Each

value P−(Ak,r) appears:

• with a + sign in mX∗(Ak,r);

• with a − sign in mX∗(Ak−1,r) if k > 1;

• with a − sign in mX∗(Ak,r+1) if r < K;

• with a + sign in mX∗(Ak−1,r+1) if k > 1 and r < K.
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The sum of these terms is equal to 0, except for k = 1 and r = K. Consequently, we

have
K∑

k=1

K∑

r=k

mX∗(Ak,r) = P−(A1,K) = 1 .

�

We will now show that mX∗ defined above belongs to BX (P−), and that the

associated belief function belX∗ coincides with P− on the intervals of X .

Proposition 3 Let belX∗ be the belief function associated with mX∗ defined by (30)-

(31). We have:

belX∗(Ak,r) = P−(Ak,r), ∀Ak,r ∈ I, (32)

belX∗(A) ≤ P−(A), ∀A ∈ 2X . (33)

Proof. We first prove (32) by induction on the length of the interval ` = r − k + 1.

Obviously, (32) is true for ` = 1, since, by definition belX∗(Ak,k) = m({ξk}) = P−
k . It

is also true for ` = 2, since

belX∗(Ak,k+1) = m({ξk}) + m({ξk+1}) + m(Ak,k+1)

= P−
k + P−

k+1 + P−(Ak,k+1) − P−
k − P−

k+1

= P−(Ak,k+1).

Let us now consider two indices k and r such that r − k + 1 ≥ 3, and let us assume

that (32) is true for all ` < r − k + 1. It is easy to see that

belX∗(Ak,r) = belX∗(Ak,r−1) + belX∗(Ak+1,r) − belX∗(Ak+1,r−1) + mX∗(Ak,r) (34)

Because (32) is true for all intervals smaller than Ak,r, we can replace belX∗ by P−

in the first three terms in the right-hand side of (34). Replacing the last term by its

definition using (30), we have

belX∗(Ak,r) = P−(Ak,r−1) + P−(Ak+1,r) − P−(Ak+1,r−1)+

(
P−(Ak,r) − P−(Ak+1,r) − P−(Ak,r−1) + P−(Ak+1,r−1)

)
= P−(Ak,r), (35)

which completes the proof of (32).
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To show (33), we remark that any arbitrary nonempty subset A of X may be

written as the union of Q disjoint intervals:

A =

Q⋃

q=1

Akq ,rq
.

Since the focal sets of mX∗ are intervals, all focal sets included in A are included in

one of the Akq ,rq
. Consequently, we have

belX∗(A) =

Q∑

q=1

belX∗(Akq ,rq
),

which implies that

belX∗(A) =

Q∑

q=1

P−(Akq ,rq
)

Now, since the Akq ,rq
are disjoint, we have, as a consequence of (15):

P−(A) ≥
Q∑

q=1

P−(Akq ,rq
).

Hence, belX∗(A) ≤ P−(A), which establishes the result. �

Finally, the following proposition states that mX∗ is optimal (according to criterion

J defined by (19)), in the set of all bbas with focal elements in I.

Proposition 4 mX∗ defined by (30)-(31) is the unique solution to the linear program

(23)-(26), under the additional constraints

mX (A) = 0, ∀A 6∈ I .

Proof. We have seen in the proof of Proposition 3 that any A ⊆ X is either an interval,

or a union of disjoint intervals, and belX (A) can then be written as the sum of the

beliefs given to the disjoint intervals (assuming that the focal elements of belX are

intervals). Consequently, J(mX ) can be written as a linear combination of belX (Ak,r)

for all Ak,r ∈ I:

J(mX ) =

K∑

k=1

K∑

r=k

αk,rbel
X (Ak,r),

where the αk,r are positive coefficients. Since belX (Ak,r) ≤ P−(Ak,r) for all k, r, it is

clear that J is maximum for mX = mX∗, which is the only bba satisfying belX∗(Ak,r) =

P−(Ak,r) for all k, r. �
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Example 7 Table 4 shows categorized data6 concerning January precipitation in Ari-

zona (in inches), recorded during the period 1895-2004, together with the estimated

probabilities of each class, and Goodman simultaneous confidence intervals at con-

fidence level 0.95. Based on this data, what is our belief that the precipitation in

Arizona next january will exceed, say, 2.25 inches? The masses mX∗(Ak,r) are given

numerically in Table 5 and graphically in Figure 6 (where each mass is represented by

a circle with proportional area), using the representation of Figure 5. The same infor-

mation is depicted differently in Figure 7, showing on the y-axis the masses given to

intervals whose bounds are read on the x-axis, together with the plausibility contour

function ξ → plX∗({ξ}), and the upper bounds of the multinomial confidence intervals

(by construction, the lower bounds p−k are equal to the masses mX∗({ξk}) given to

the singletons). It may be noted that the plausibility values are significantly higher

than the upper bounds of the multinomial confidence intervals, which reflects a loss

of information due to the approximation of a set of probability intervals by a belief

function. Using the data in Table 5, the answer to the above question can easily be

computed; we have:

bel(X ≥ 2.25) = belX∗({ξ5, ξ6})

= mX∗({ξ5}) + mX∗({ξ6}) + mX∗({ξ5, ξ6})

= 0.020 + 0.035 + 0 = 0.055,

and

pl(X ≥ 2.25) = plX∗({ξ5, ξ6}) = 0.020 + 0.035 + 0.012 + 0.14 + 0.11 = 0.317 .

5 Conclusion

We have proposed a method for quantifying, in the belief functions framework, the

uncertainty concerning a discrete random variable X with unknown probability dis-

tribution PX , based on a realization of an iid sample from the same distribution. The

6The Arizona precipitation data have been obtained from the web page of the National Climatic

Data Center, National Oceanic and Atmospheric Administration (NOAA), at the following address:

http://www.ncdc.noaa.gov/oa/ncdc.html.
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proposed solution verifies two “reasonable” properties with respect to PX : it is less

committed than PX with some user-defined probability, and it converges towards PX

in probability as the size of the sample tends to infinity.

This solution is obtained by searching for the most committed belief function

that is less committed than the lower probability measure induced by simultaneous

confidence intervals on multinomial parameters, at a given confidence level. This can

be formalized as a linear programming problem, which can be solved using standard

iterative procedures. However, an analytic expression has been given in the case of

ordered data, under the additional constraint that all focal elements are intervals.

Although the resulting belief function is deduced from a lower probability measure,

their semantics are different: the lower probability defines a set of “plausible” values

for PX , given the data, whereas the belief function is interpreted as quantifying beliefs

held by a rational agent, as assumed in the TBM framework. It might be argued that

the imprecise probability measure induced by the confidence intervals is an equally

good characterization of the uncertainty on X. However, this lower probability is not

a belief function; consequently, it cannot be combined with other pieces of information

expressed in the belief function framework. Its transformation into a belief function

is thus needed if ones adopts the TBM as a model of uncertain reasoning.

In this paper, only the case of a discrete random variable X has been considered.

The method can be applied to the continuous case by discretizing the sample values

(which is a form of coarsening), and vacuously extending the obtained belief function.

A specific method designed for the continuous case is under study.
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A Proof of Proposition 1

Let us introduce the basic belief assignment mX◦
n defined as

mX◦
n ({ξk}) = P−

k , k = 1, . . . ,K (36)

mX◦
n (X ) = 1 −

K∑

k=1

P−
k , (37)

and let belX◦
n denote the corresponding belief function (mX◦

n is a valid bba, since
∑K

k=1 P−
k ≤ 1). We have

belX◦
n ({ξk}) = P−({ξk}), k = 1, . . . ,K,

and

belX◦
n (A) =

∑

ξk∈A

P−
k ≤ P−(A).

Hence, belX◦
n ≤ P−. Since mX∗

n maximizes J , we thus have J(mX◦
n ) ≤ J(mX∗

n ).

Additionally, it is clear that mX◦
n ({ξk}) P−→ pk for all k and, consequently, mX◦

n (X )
P−→

0. Hence, J(mX◦
n )

P−→ 2K−1. Now, the unconstrained maximum of J is obtained

when the mass is distributed to singletons, hence J(mX∗
n ) ≤ 2K−1. We thus have

J(mX◦
n ) ≤ J(mX∗

n ) ≤ 2K−1 and, consequently, J(mX∗
n )

P−→ 2K−1. From this, it is

easy to see that
K∑

k=1

mX∗
n ({ξk}) P−→ 1.

Now, we have also
K∑

k=1

P−
k

P−→ 1.

Hence,
K∑

k=1

(P−
k − mX∗

n ({ξk})) P−→ 0.

Since P−
k ≥ mX∗

n ({ξk}), this implies that (P−
k −mX∗

n ({ξk})) P−→ 0 for all k, or, equiva-

lently, mX∗
n ({ξk}) P−→ P−

k , for all k. Since P−
k

P−→ pk, we thus have mX∗
n ({ξk}) P−→ pk,

for all k, which implies that mX∗
n (A)

P−→ PX(A) for all A ⊆ X . �
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Tables

Table 1: Goodman simultaneous confidence intervals for Example 1, at confidence

level 1 − α = 0.95.

Diagnosis Nk/n P−
k P+

k

Neurotic 0.41 0.33 0.50

Depressed 0.22 0.16 0.30

Schizophrenic 0.17 0.11 0.24

Personality disorder 0.20 0.14 0.27

Table 2: Lower probabilities induced by the confidence intervals of Table 1, and

corresponding Möbius inverse. The ξk are the four mental diseases, in the order in

which they appear in Table 1.

A P−(A) m−(A)

{ξ1} 0.33 0.33

{ξ2} 0.16 0.16

{ξ1, ξ2} 0.50 0

{ξ3} 0.11 0.11

{ξ1, ξ3} 0.45 0

{ξ2, ξ3} 0.28 0

{ξ1, ξ2, ξ3} 0.73 0.12

{ξ4} 0.14 0.14

{ξ1, ξ4} 0.47 0

{ξ2, ξ4} 0.30 0

{ξ1, ξ2, ξ4} 0.76 0.13

{ξ3, ξ4} 0.25 0

{ξ1, ξ3, ξ4} 0.70 0.11

{ξ2, ξ3, ξ4} 0.50 0.090

X 1 −0.20
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Table 3: Belief and mass functions, at confidence level 0.95, for the data of Example

1. The solution (mX∗(A), belX∗(A)) was obtained using a linear program solver. The

solution (mX†(A), belX†(A)) was computed using the IRM algorithm.

A P−(A) belX∗(A) mX∗(A) belX†(A) mX†(A)

{ξ1} 0.33 0.33 0.33 0.33 0.33

{ξ2} 0.16 0.14 0.14 0.16 0.16

{ξ1, ξ2} 0.50 0.50 0.021 0.50 0

{ξ3} 0.11 0.097 0.097 0.11 0.11

{ξ1, ξ3} 0.45 0.45 0.020 0.45 0

{ξ2, ξ3} 0.28 0.28 0.036 0.28 0

{ξ1, ξ2, ξ3} 0.73 0.69 0.040 0.68 0.067

{ξ4} 0.14 0.12 0.12 0.14 0.14

{ξ1, ξ4} 0.47 0.47 0.02 0.47 0

{ξ2, ξ4} 0.30 0.30 0.035 0.30 0

{ξ1, ξ2, ξ4} 0.76 0.72 0.045 0.70 0.072

{ξ3, ξ4} 0.25 0.25 0.035 0.25 0

{ξ1, ξ3, ξ4} 0.70 0.66 0.038 0.65 0.064

{ξ2, ξ3, ξ4} 0.50 0.48 0.019 0.46 0.050

X 1 1 0 1 0

Table 4: Arizona January precipitation data, with simultaneous 95 % confidence

intervals. The bounds of the class intervals are in inches.

class ξk Nk Nk/n P−
k P+

k

< 0.75 48 0.44 0.32 0.56

[0.75, 1.25) 17 0.15 0.085 0.27

[1.25, 1.75) 19 0.17 0.098 0.29

[1.75, 2.25) 11 0.10 0.047 0.20

[2.25, 2.75) 6 0.055 0.020 0.14

≥ 2.75 9 0.082 0.035 0.18
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Table 5: Basic belief masses for the precipitation data, using the representation ex-

plained in Figure 5. Masses are given to intervals Ak,r = {ξk, . . . , ξr} with r ≥ k.

Each cell at the intersection of row k and colums r contains m(Ak,r).

1 2 3 4 5 6

1 0.32 0 0 0.13 0.11 0

2 - 0.085 0 0 0.012 0.14

3 - - 0.098 0 0 0

4 - - - 0.047 0 0

5 - - - - 0.020 0

6 - - - - - 0.035
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Figures

…
…

Figure 1: Graphical model for binomial inference in Dempster’s approach.
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…
…

Figure 2: Graphical model for binomial inference in Dempster’s approach, with one

additional variable X to be predicted.
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Figure 3: Results of the experiment of Example 3 with n = 30: predictive belief

functions at confidence level 1 − α = 0.95 (×), and belief functions computed using

Dempster’s method (+). Each belief function is represented as a point in barycentric

coordinates, with the lower left corner corresponding to {ξ1}, the lower right corner

corresponding to {ξ2}, and the upper corner corresponding to X . Some random noise

was added to avoid the superposition of points corresponding to the same value of X.
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Figure 4: Results of the experiment of Example 3 with n = 100: predictive belief

functions at confidence level 1 − α = 0.95 (×), and belief functions computed using

Dempster’s method (+). Each belief function is represented as a point in barycentric

coordinates, with the lower left corner corresponding to {ξ1}, the lower right corner

corresponding to {ξ2}, and the upper corner corresponding to X . Some random noise

was added to avoid the superposition of points corresponding to the same value of X.
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Figure 5: Representation of intervals of X = {ξ1, . . . , ξK}, with K = 5. Each cell at

the intersection of row k and column r corresponds to interval Ak,r = {ξk, . . . , ξr}.
The singletons are located on the main diagonal, the intervals of length 2 on the second

upper diagonal, etc. The frame A1,K = X corresponds to the upper right corner.
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Figure 6: Graphical representation of the basic belief assignment given in Table 5.

Each mass is proportional to the area of the circle.
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Figure 7: Alternative representation of the basic belief assignment given in Table 5

and in Figure 6. Each mass given to a singleton is represented by a filled square, and

each mass given to an interval Ak,` is represented by a horizontal line ranging from ξk

to ξ`. The circles and the triangles represent, respectively, the plausibilities and the

upper probabilities of the singletons.
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