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What is the Theory of belief functions?

A formal framework for representing and reasoning from
partial (uncertain, imprecise) information. Also known as
Dempster-Shafer theory or Evidence theory.
Introduced by Dempster (1968) and Shafer (1976), further
developed by Smets (Transferable Belief Model) and
others.
The theory of belief functions extends both the
set-membership and probabilistic approaches to uncertain
reasoning:

A belief function may be viewed both as a generalized set
and as a non additive measure;
Extension of probabilistic notions (conditioning,
marginalization) and set-theoretic notions (intersection,
union, inclusion, etc.).
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Links with other theories of uncertainty

The theory of belief functions also has links with other
contemporary theories of uncertainty, including:

Random sets;
Imprecise probabilities;
Possibility theory;
Rough sets.

Purpose of these talk:
Brief introduction or reminder on belief functions
emphasizing some of the known relationships with other
theories;
Presentation of some new results concerning the
manipulation of belief functions in very large universes.
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Mass function

Let X be a variable taking values in a finite domain Ω,
called the frame of discernment.
We collect a piece of evidence (information) about X .
This piece of evidence has different interpretations
θ1, . . . , θr with corresponding subjective probabilities
p1, . . . ,pr .
If interpretation θi holds, we only know that X ∈ Ai for
some Ai ⊆ Ω, and nothing more. Let Ai = Γ(θi).
The probability that the evidence means exactly that X ∈ A
is m(A) =

∑
{i|Ai =A} pi .

Function m : 2Ω → [0,1] is called a mass function with
focal sets A1, . . . ,Ar .
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Example

A murder has been committed. There are three suspects:
Ω = {Peter , John,Mary}.
A witness saw the murderer going away, but he is
short-sighted and he only saw that it was a man. We know
that the witness is drunk 20 % of the time.
Two interpretations:

1 θ1= the witness was not drunk, p1 = 0.8;
2 θ2= the witness was drunk, p2 = 0.2.

We have Γ(θ1) = {Peter , John} and Γ(θ2) = Ω, hence

m({Peter , John}) = 0.8, m(Ω) = 0.2
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Mass functions
Special cases

m is said to be:
categorical if it has only one focal set; it is then equivalent
to a set.
Bayesian if all focal sets are singletons; it is is equivalent to
a probability distribution.

A mass function can thus be seen as
a generalized set, or as
a generalized probability distribution.

Thierry Denœux Theory of belief functions 8/ 63



Introduction to belief functions
Some links with related theories

Belief functions in very large frames

Mass functions
Belief and plausibility functions
Combination rules

Mass function
Comparison with the random set framework

Each mass function m on Ω can thus be seen associated a
triple (Θ,P, Γ), where Γ is a multi-valued mapping from Θ
to 2Ω \ {∅}.
This formally defines a random set: mass functions are
thus exactly equivalent to random sets from a
mathematical point of view.
However, they have different interpretations:

Random set view: a random mechanism generates each
set A with chance m(A). Example: taking a handful of balls
from an urn.
Belief function view: a given piece of evidence supports
different hypotheses with different subjective probabilities.
Example: taking a single ball from an urn and partially
observing the result.
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Belief function
Definition and interpretation

The belief function induced by m is defined as

bel(A) =
∑
B⊆A

m(B), ∀A ⊆ Ω.

bel(A) can be seen as the probability that the evidence
can be interpreted as implying that X ∈ A:

bel(A) = P({θ ∈ Θ|Γ(θ) ⊆ A}.

It can thus be interpreted as:
a total degree of support in A provided by the item of
evidence;
a measure of our total belief committed to A after receiving
that item of evidence.
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Belief function
Characterization

Function bel : 2Ω → [0,1] is a completely monotone
capacity: it verifies bel(∅) = 0, bel(Ω) = 1 and

bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1bel

(⋂
i∈I

Ai

)
.

for any k ≥ 2 and for any family A1, . . . ,Ak in 2Ω.
Conversely, to any completely monotone capacity bel
corresponds a unique mass function m such that:

m(A) =
∑
∅6=B⊆A

(−1)|A|−|B|bel(B), ∀A ⊆ Ω.
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Plausibility function

The plausibility function is defined by

pl(A) = 1− bel(A) =
∑

B∩A6=∅

m(B)

Interpretation:
degree to which the evidence is not contradictory with A:
probability that A cannot be refuted by the available
evidence.

m, bel et pl are thus three equivalent representations of
a piece of evidence or, equivalently,
a state of belief induced by this evidence.

If m is Bayesian, then bel = pl is a probability measure.
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Dempster’s rule
Murder example continued

The first item of evidence gave us:
m1({Peter , John}) = 0.8, m1(Ω) = 0.2.
New piece of evidence: a blond hair has been found.
There is a probability 0.6 that the room has been cleaned
before the crime: m2({John,Mary}) = 0.6, m2(Ω) = 0.4.
How to combine these two pieces of evidence?
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Dempster’s rule
Justification

(Θ1, P1)

ΩΓ1

drunk

not drunk Peter

John

Mary

(Θ2, P2)

Γ2

cleaned

not cleaned

If θ1 ∈ Θ1 and θ2 ∈ Θ2 both hold,
then X ∈ Γ1(θ1) ∩ Γ2(θ2).
If the two pieces of evidence are
independent, then this happens with
probability P1({θ1})P2({θ2}).
If Γ1(θ1) ∩ Γ2(θ2) = ∅, we know that
the pair of interpretations (θ1, θ2) is
impossible.
The joint probability distribution on
Θ1 ×Θ2 must be conditioned,
eliminating such pairs.
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Dempster’s rule
Expression and example

(m1 ⊕m2)(A) =

∑
B∩C=A m1(B)m2(C)∑
B∩C 6=∅m1(B)m2(C)

, ∀A 6= ∅

{Peter , John} Ω
0.8 0.2

{John,Mary} {John} {John,Mary}
0.6 0.48 0.12
Ω {Peter , John} Ω

0.4 0.32 0.08
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Dempster’s rule
Properties

Commutativity, associativity. Neutral element: mΩ.
Generalization of intersection: if mA and mB are
categorical mass functions and A ∩ B 6= ∅, then

mA ⊕mB = mA∩B

Generalization of probabilistic conditioning: if m is a
Bayesian mass function and mA is a categorical mass
function, then m ⊕mA is a Bayesian mass function that
corresponding to the conditioning of m by A.
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Dempster’s rule
Incompatibility with the imprecise probability interpretation

To each mass function m on Ω can be associated a set
P(m) of compatible probability measures such that
P(A) ≥ bel(A) for all A ⊆ Ω. We then have:

bel(A) = inf
P∈P

P(A) and pl(A) = sup
P∈P

P(A).

However, m ⊕mA does not correspond to
{P(·|A),P ∈ P(m)}.
Consequently, the imprecise probability interpretation of
belief functions is not compatible with Dempster’s rule and
the DS model is not an imprecise probability model.
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Possibility theory

When the focal sets of m are nested (A1 ⊂ A2 ⊂ . . . ⊂ An ),
m is said to be consonant.
pl is then a possibility measure:

pl(A ∪ B) = max (pl(A),pl(B))

for all A,B ⊆ Ω and bel is the dual necessity measure.
Conversely, to any possibility distribution π corresponds a
consonant mass function whose focal sets are the α-cuts
of π.
The theory of belief function is thus, in a sense, more
general than possibility theory.
However, consonance is not preserved by Dempster’s rule,
and the minimum rule of possibility theory has no obvious
interpretation from the point of view of belief functions.
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Fuzzification of belief functions
Fuzzy mass functions

Continuing the murder example, assume that we receive a
third item of evidence that tells us that “the murderer is tall”.
Such “fuzzy” evidence may be represented by a probability
space (Θ,2Θ) and a mapping Γ from Θ to the set [0,1]Ω of
normal fuzzy subsets of Ω.
F̃i = Γ(θi) defines a possibility distribution that constraints
the value of X if interpretation θi holds.
This framework induces a mass function with fuzzy focal
sets Γ(Θ) = {F̃1, . . . , F̃n}, such that m(F̃i) = P

(
Γ−1(F̃i)

)
.
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Fuzzification of belief functions
Fuzzy belief and plausibility functions

Functions bel and pl may be defined as

pl(Ã) =
n∑

i=1

Π(Ã|F̃i)m(F̃i) ∀Ã ∈ [0,1]Ω,

bel(Ã) =
n∑

i=1

N(Ã|F̃i)m(F̃i), ∀Ã ∈ [0,1]Ω,

where Π(Ã|F̃i) = maxω∈Ω min(Ã(ω), F̃i(ω)) is the possibility
of Ã given F̃i and N(Ã|F̃i) = 1− Π(A|Fi) is the necessity of
Ã given F̃i .
The above expressions reduce to the standard definitions
when Ã and F̃i are crisp.
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Comparison between the two approaches

A possibility distribution π with corresponding fuzzy set F̃
may then be viewed as

a crisp consonant mass function with focal sets αF̃ , or as
a fuzzy categorical mass function such that m(F̃ ) = 1.

The corresponding plausibility functions coincide on 2Ω,
since

pl(A) = max
ω∈Ω

min(A(ω),Fi(ω)) = max
ω∈A

min F (ω)

for all A ⊆ Ω.
Under the latter view, the belief function and possibility
frameworks are special cases of a more general model.
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Some references

The relationship between rough sets and belief functions have
been studied by several authors, e.g.:

D. Dubois and H. Prade
Rough fuzzy sets and fuzzy rough sets. International Journal of
General Systems, 17, 191-208, 1990

Y. Y. Yao and P. J. Lingras
Interpretations of belief functions in the theory of rough sets.
Information sciences, 104, 81-106, 1998

W.-Z. Wu, Y. Leung and W.-X. Zhang
Connections between rough set theory and Dempster-Shafer
theory of evidence. International Journal of General Systems,
Vol. 31 (4), pp. 405-430, 2002.
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Pawlak rough sets

Let R be an equivalence relation on Ω. Any A ⊆ Ω may be
approximated by a (Pawlak) rough set defined by:

R(A) = {ω ∈ Ω|[ω]R ⊆ A}

R(A) = {ω ∈ Ω|[ω]R ∩ A 6= ∅}

Let P be a probability measure on (Ω/R,2Ω/R). The
corresponding inner and outer measures are defined by:

P(A) = P(R(A)), P(A) = P(R(A)), ∀A ⊆ Ω.

P is a belief function and P is the dual plausibility function.
The focal sets are the equivalence classes of R, and
m(F ) = P(F ) for all F ∈ Ω/R.
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Interval rough sets
Definition

The classical Pawlak rough set model thus corresponds to
a special class of belief functions, whose focal sets form a
partition of Ω.
To establish a connection between rough sets and general
belief functions, we need a more general notion: interval
rough set.
Let Θ and Ω be two finite sets and R ∈ Θ× Ω. R is called
an interval relation if, for all θ ∈ Θ,
ΓR(θ) = {ω ∈ Ω|(θ, ω) ∈ R} 6= ∅.
Any A ⊆ Ω may be approximated in Θ by an interval rough
set defined by:

R(A) = {θ ∈ Θ|ΓR(θ) ⊆ A}

R(A) = {θ ∈ Θ|ΓR(θ) ∩ A 6= ∅}
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Interval rough sets
Correspondence with belief functions

Let P be a probability measure on (Θ,2Θ). Then, the
multi-valued mapping ΓR defines belief and plausibility
functions defined as:

bel(A) = P(R(A)), pl(A) = P(R(A)), ∀A ⊆ Ω.

Conversely, any belief function on Ω can be seen as being
induced by:

an interval relation R between a set Θ and Ω (qualitative
component);
a probability measure P on Θ (quantitative component).
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Rough belief functions
Definitions

Let m be a mass function on Ω and R an equivalence
relation on Ω. The quotient space Ω/R is called a
coarsening of Ω.
The inner and outer approximations of m can be defined
as:

m(A) =
∑

{B⊆Ω|R(B)=A}

m(B), m(A) =
∑

{B⊆Ω|R(B)=A}

m(B).

m is a specialization of m: m ⊆ m and m is a
generalization of m: m ⊆ m.

Thierry Denœux Theory of belief functions 30/ 63



Introduction to belief functions
Some links with related theories

Belief functions in very large frames

Fuzzy sets and possibility theory
Rough sets

Rough belief functions
Application

m and m my be expressed without loss of information in
the coarsening Ω/R, making it possible to perform
approximate computations with reduced complexity.
In particular:

m1 ∩©m2 ⊆ m1 ∩©m2 ⊆ m1 ∩©m2,

where ∩© denotes Dempster’s rule without normalization
and

pl(A) ≤ pl(A) ≤ pl(A), A ⊆ Ω.
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Rough belief functions
Case of consonant belief functions

Let m be a consonant mass function. It is equivalent to a
possibility distribution π, itself equivalent to a fuzzy subset
of Ω.
It can be shown that the lower and upper approximations of
m induced by an equivalence relation R are consonant and
correspond to the rough fuzzy set (π, π) defined by:

π(ω) = min
ω′∈[ω]R

π(ω′), π(ω) = max
ω′∈[ω]R

π(ω′)

A rough consonant mass function is thus equivalent to a
rough fuzzy set.
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Rough fuzzy belief functions

It is also possible to mix up the three frameworks of belief
functions, fuzzy sets and rough sets.
Let m be a fuzzy mass function with fuzzy focal sets
{F̃1, . . . , F̃n} and R an equivalence relation on Ω.
A rough approximation of m can be defined as the pair of
fuzzy mass functions (m,m) defined by

m(Ã) =
∑

{i|R(F̃i )=Ã}

m(F̃i), m(Ã) =
∑

{i|R(F̃i )=Ã}

m(F̃i),

where (R(F̃i),R(F̃i)) is the rough fuzzy set approximating
F̃i .
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Conclusion on the links with related theories

The belief function, fuzzy and rough frameworks are not
competing but complementary theories that model different
aspects of imperfect information:

Belief functions adequately model uncertainty induced by
partial evidence;
Fuzzy sets represent vagueness of concepts as typically
expressed by natural language;
Rough sets model indiscernibility due to coarseness of
representation.

The three formalisms can be mixed up to build more
general models of imperfect information.
Are the most complex models needed in real applications?
This remains to be demonstrated (to my knowledge).
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Complexity of evidential reasoning

In the worst case, representing beliefs on a finite frame of
discernment of size K requires the storage of 2K − 1
numbers, and operations on belief functions have
exponential complexity.
In most applications of DS theory, the frame of
discernment is usually of moderate size (less than 100).
Can we address more complex problems, e.g., in machine
learning, involving considerably larger frames of
discernment?
Examples of such problems:

Multi-label classification (Denœux, Art. Intell., 2010);
Ensemble clustering (Masson and Denœux, IJAR, 2011).
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Belief functions on very large frames
General Approach

Outline of the approach:
1 Consider a partial ordering ≤ of the frame Ω such that

(Ω,≤) is a lattice.
2 Define the set of propositions as the set I ⊂ 2Ω of intervals

of that lattice.
3 Define m, bel and pl as functions from I to [0,1] (this is

possible because (I,⊆) has a lattice structure).

As the cardinality of I is at most proportional to |Ω|2, all the
operations of Dempster-Shafer theory can be performed in
polynomial time (instead of exponential when working in
(2Ω,⊆)).
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Multi-label classification

In some problems, learning instances may belong to
several classes at the same time.
For instance, in image retrieval, an image may belong to
several semantic classes such as “beach”, “urban”,
“mountain”, etc.
If Θ = {θ1, . . . , θc} denotes the set of classes, the class
label of an instance may be represented by a variable y
taking values in Ω = 2Θ.
Expressing partial knowledge of y in the Dempster-Shafer
framework may imply storing 22c

numbers.

c 2 3 4 5 6 7 8
22c

16 256 65536 4.3e9 1.8e19 3.4e38 1.2e77
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Multi-label classification

The frame of discernment is Ω = 2Θ, where Θ is the set of
classes.
The natural ordering in 2Θ is ⊆, and (2Θ,⊆) is a (Boolean)
lattice.

Θ

A

B

C

The intervals of (2Θ,⊆) are
sets of subsets of Θ of the form:

[A,B] = {C ⊆ Θ|A ⊆ C ⊆ B}

for A ⊆ B ⊆ Θ.
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Example (diagnosis)

Let Θ = {a,b, c,d} be a set of faults.
Item of evidence 1→ a is surely present and {b, c} may
also be present, with confidence 0.7:

m1([{a}, {a,b, c}]) = 0.7, m1([∅Θ,Θ]) = 0.3

Item of evidence 2→ c is surely present and either faults
{a,b} (with confidence 0.8) or faults {a,d} (with
confidence 0.2) may also be present:

m2([{c}, {a,b, c}]) = 0.8, m2([{c}, {a, c,d}]) = 0.2
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Example
Combination by Dempster’s rule

[{a}, {a,b, c}] [∅Θ,Θ]
0.7 0.3

[{c}, {a,b, c}] [{a, c}, {a,b, c}] [{c}, {a,b, c}]
0.8 0.56 0.24

[{c}, {a, c,d}] [{a, c}, {a, c}] [{c}, {a, c,d}]
0.2 0.14 0.06

Based on this evidence, what is our belief that
Fault a is present: bel([{a},Θ]) = 0.56 + 0.14 = 0.70;
Fault d is not present: bel([∅Θ, {d}]) =
bel([∅Θ, {a,b, c}]) = 0.56 + 0.14 + 0.24 = 0.94.
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Multi-label classification
Imprecise labels

Let us consider a learning set of the form:

L = {(x1, [A1,B1]), . . . , (xn, [An,Bn])}

where
xi ∈ Rp is a feature vector for instance i
Ai is the set of classes that certainly apply to instance i ;
Bi is the set of classes that possibly apply to that instance.

In a multi-expert context, Ai may be the set of classes
assigned to instance i by all experts, and Bi the set of
classes assigned by some experts.
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Multi-label evidential k -NN rule
Construction of mass functions

Let Nk (x) be the set of k nearest neighbors of a new
instance x, according to some distance measure d .
Let xi ∈ Nk (x) with label [Ai ,Bi ]. This item of evidence can
be described by the following mass function in (I,⊆):

mi([Ai ,Bi ]) = ϕ (di) ,

mi([∅Θ,Θ]) = 1− ϕ (di) ,

where ϕ is a decreasing function from [0,+∞) to [0,1]
such that limd→+∞ ϕ(d) = 0.
The k mass functions are combined using Dempster’s rule:

m =
⊕

xi∈Nk (x)

mi
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Multi-label evidential k -NN rule
Decision

Let Ŷ be the predicted label set for instance x.

To decide whether to include in Ŷ each class θ ∈ Θ or not,
we compute

the degree of belief bel([{θ},Θ]) that the true label set Y
contains θ, and
the degree of belief bel([∅, {θ}]) that it does not contain θ.

We then define Ŷ as

Ŷ = {θ ∈ Θ | bel([{θ},Θ]) ≥ bel([∅, {θ}])}.

Other method: find the set of labels Ŷ with the largest
plausibility (linear programming problem).
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Example: emotions data (Trohidis et al. 2008)

Problem: Predict the emotions generated by a song.
593 songs were annotated by experts according to the
emotions they generate.
The emotions were: amazed-surprise, happy-pleased,
relaxing-calm, quiet-still, sad-lonely and angry-fearful.
Each song was described by 72 features and labeled with
one or several emotions (classes).
The dataset was split in a training set of 391 instances and
a test set of 202 instances.
Evaluation of results:

Acc =
1
n

n∑
i=1

|Yi ∩ Ŷi |
|Yi ∪ Ŷi |
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Problem statement

Clustering may be defined as the
search for a partition of a set E of n
objects.
The natural frame of discernment for
this problem is the set P(E) of
partitions of E , with size sn.
Expressing such evidence in the
Dempster-Shafer framework implies
working with sets of partitions.

n 3 4 5 6 7
sn 5 15 52 203 876
2sn 23 32768 4.5e15 1.3e61 5.0e263
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Lattice of partitions of a finite set

1/2/3

12/3 1/23 13/2

123

A partition p is said to be finer than
a partition p′ (or, equivalently p′ is
coarser than p) if the clusters of p
can be obtained by splitting those of
p′; we write p � p′.
The poset (P(E),�) is a lattice.
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Lattices of partition intervals (n = 3)

1/2/3

12/3 1/23 13/2

123

= [1/2/3,123] 

 

{1/2/3} {12/3} {13/2} {23/1} {123}

[1/2/3,12/3] [1/2/3,23/1] [13/2,123] [23/1,123][1/2/3,13/2] [12/3,123]

13 partition intervals < 25 = 32 sets of partitions.
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Ensemble clustering

Ensemble clustering aims at combining the outputs of
several clustering algorithms (“clusterers”) to form a single
clustering structure (crisp or fuzzy partition, hierarchy).
This problem can be addressed using evidential reasoning
by assuming that:

There exists a “true” partition p∗;
Each clusterer provides evidence about p∗;
The evidence from multiple clusterers can be combined to
draw plausible conclusions about p∗.

To implement this scheme, we need to manipulate
Dempster-Shafer mass functions, the focal elements of
which are sets of partitions.
This is feasible by restricting ourselves to intervals of the
lattice (P(E),�).
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Method
Mass construction and combination

Compute r partitions p1, . . . ,pr with large numbers of
clusters using, e.g., the FCM algorithm.
For each partition pk , compute a validity index αk .
The evidence from clusterer k can be represented as a
mass function {

mk ([pk ,pE ]) = αk
mk ([p0,pE ]) = 1− αk ,

where pE is the coarsest partition.
The r mass functions are combined using Dempster’s rule:

m = m1 ⊕ . . .⊕mr
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Method
Exploitation of the results

Let pij denote the partition with (n − 1) clusters, in which
objects i and j are clustered together.
The interval [pij ,pE ] is the set of all partitions in which
objects i and j are clustered together.
The degree of belief in the hypothesis that i and j belong to
the same cluster is then:

Belij = bel([pij ,pE ]) =
∑

[p
k
,pk ]⊆[pij ,pE ]

m([p
k
,pk ])

Matrix Bel = (Belij) can be considered as a new similarity
matrix and can be processed by, e.g., a hierarchical
clustering algorithm.
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Results
Individual partitions
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Synthesis
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)

Gaussian data, 8 features, 5 clusters
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)
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Distributed clustering
Method

Here, each clusterer provides a partition pk that tends to
be coarser than the true partition p∗.
The output from clusterer k can be represented as a mass
function {

mk ([p0,pk ]) = αk
mk ([p0,pE ]) = 1− αk .

As before, the mass functions are combined and
synthesized in the form of a similarity matrix.
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Distributed clustering
Consensus
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Conclusion

The exponential complexity of operations in the theory of
belief functions has long been prevented its application to
very large frames of discernment.
When the frame of discernment has a lattice structure, it is
possible to restrict the set of events to intervals in that
lattice.
This approach drastically reduces the complexity of the
Dempster-Shafer calculus and makes it possible to define
and manipulate belief functions in very large frames.
This approach opens the way to the application of
Dempster-Shafer theory to computationally demanding
Machine Learning tasks such as multi-label classification
and ensemble clustering.
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