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Cluster Analysis
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Hard and soft clustering

Hard clustering: no representation of uncertainty. Each object is assigned to
one and only one group. Group membership is represented by
binary variables uj such that uy = 1 if object i belongs to group
k and uy = 0 otherwise.

Fuzzy clustering: each object has a degree of membership uy € [0, 1] to each
group, with S"¢_, ux = 1. The u’s can be interpreted as
probabilities.

Possibilistic clustering: the uj, are free to take any value in [0, 1]¢. Each
number uj is interpreted as a degree of possibility that object i
belongs to group k.
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Hard and soft clustering (continued)

Rough clustering: each cluster wy is characterized by a lower approximation
wy and an upper approximation wy, with w, C w; the
membership of object i to cluster k is described by a pair
(Uy Uik) € {0,1}2, with uy, < T, Zli:1 Uy <1and
>kt Uik > 1.

Thierry Denceux

Evidential clustering

ISIS 2017, Daegu 4/77



Clustering and belief functions

clustering structure  uncertainty framework

fuzzy partition probability theory
possibilistic partition possibility theory
rough partition (rough) sets
? belief functions

@ As belief functions extend probabilities, possibilities and sets, could the
theory of belief functions provide a more general and flexible framework
for cluster analysis?

@ Objectives:

o Unify the various approaches to clustering
@ Achieve a richer and more accurate representation of uncertainty
e New clustering algorithms and new tools to compare and combine clustering

structures.
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Outline

e Theory of belief functions: a brief introduction

@ Evidential clustering
@ Credal partition
@ Summarization of a credal partition
@ Relational representation of a credal partition

© Aigorithms
@ EVCLUS
@ Handling a large number of clusters
@ Constrained evidential clustering

e Comparing and combining the results of soft clustering algorithms

@ Credal Rand index
@ Combining clustering structures
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Theory of belief functions: a brief introduction
Outline

e Theory of belief functions: a brief introduction
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.
Mass function

Definition

@ Let Q be a question of interest, and Q2 be a finite set of possible answers,
one and only one of which is true.

@ Evidence about Q can be represented by a mass function m from 2% to

[0, 1] such that
> m(A) =1
ACQ

@ The subsets A of Q such that
m(A) # 0 are called the focal sets
of m.

@ If m(0) =0, mis said to be
normalized (usually assumed).
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Theory of belief functions: a brief introduction

@ Consider a road scene analysis application. Let Q concern the type of
object in some region of the image, and Q = {G,R, T, O, S},
corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky

@ Assume that a lidar sensor (laser telemeter) returns the information that
the object is either a Tree or an Obstacle, but we there is a probability
p = 0.1 that the information is not reliable (because, e.g., the sensor is
out of order).

@ This uncertain evidence can be represented by the following mass
function mon Q,

m({T,0}) =09, m(Q)=0.1
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.
Mass function

Interpretation

@ The meaning of the evidence is uncertain: it points to several subsets of
Q, with different degrees of support.

@ Each mass m(A) is a measure of the support given exactly to A, and to
no more specific subset.

@ In particular, m(Q) is a measure of lack of information (ignorance).

@ The vacuous mass function defined by m,(Q2) = 1 represents total lack of
information (complete ignorance).
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Theory of belief functions: a brief introduction

Belief and plausibility functions

Given a normalized mass function m,
we can define

@ Tshe degree of belief in B as

Bel(B) = >~ m(A)

ACB
@ The degree of plausibility of B as
PI(B) = 1 — Bel(B)

= > m(A).

ANB#(

Interpretation: Bel(B) measures the total support given to B, while PI(A)
measures the lack of support given to B.
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Two-dimensional representation

@ The uncertainty on a proposition B is represented by two numbers:
Bel(B) and PI(B), with Bel(B) < PI(B).

@ The intervals [Bel(B), PI(B)] have maximum length when m is the
vacuous mass function. Then,

[Bel(B), PI(B)] = [0,1]

for all subset B of Q, except () and Q.

@ The intervals [Bel(B), PI(B)] are reduced to points when the focal sets of
m are singletons (m is then said to be Bayesian); then,

Bel(B) = PI(B)

for all B, and Bel is a probability measure.
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Logical/Consonant mass function

@ If m has only one focal set, it is said to be logical.

@ If the focal sets of m are nested (A1 C Ao C ... C A, ), mis said to be
consonant.

@ Plis then a possibility measure, i.e.,
PI(AU B) = max(PI(A), PI(B))

forall A,B C Q.

@ We have
PI(A) = max Pl({w}) forall AC Q.
we
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b
Dempster’s rule

@ Let my and m. be two mass functions induced by independent pieces of
evidence.

@ Their orthogonal sum is the mass function my © m, defined by

A
T 11—k

(my & m2)(A) > m(B)mz(C)

BNC=A

forall A # () and (my & my)(0) = 0, where

K= Z m1(B)m2(C)

BNC=0

is the degree of conflict.
@ @ is commutative, associative, and m; is its single neutral element.
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Belief-probability transformation

@ It may be useful to transform a mass function m into a probability
distribution for approximation or decision-making.

@ Plausibility-probability transformation

_ PI{w))
Prl) = = BIl{a)

@ Property:
Pmygm, = Pm; D Pm,
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.
Decision

@ Given a normalized mass function m, how to select an element or a
subset of Q?

@ Several solutions: for instance, choose w with the largest degree of belief
Bel({w}) or the largest plausibility P/({w}).

@ Interval dominance:

Belf{a)}) Pl({l(,o}) Belf{w' ) Pl{w’})

T T

e wis dominated by w’ iff PI({w}) < Bel({w'})
o We may select the set A* of possibilities w that are dominated by no other
possibility w’.

Thierry Denceux Evidential clustering ISIS 2017, Daegu 16/77



.
Main ideas

@ The theory of belief function combines sets with probabilities, by
assigning basic probabilities to focal sets.

@ A mass function can be seen as a generalized set or as a generalized
probability distribution.
@ Possibility theory is also recovered as a special case, when the focal sets
are nested.
@ A mass function can be transformed into
@ a probability distribution,
@ an element of Q, or
@ a subset of Q.
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Outline

@ Evidential clustering
@ Credal partition
@ Summarization of a credal partition
@ Relational representation of a credal partition
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Outline

@ Evidential clustering
@ Credal partition
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Evidential clustering

@ Let O={o04,...,0,} be a set of nobjects and Q = {wy,...,wc} be a set
of ¢ groups (clusters).
@ Each object o; belongs to at most one group.

@ Evidence about the group membership of object o; is represented by a
mass function m; on Q:
o for any nonempty set of clusters A C Q, m;(A) is the degree of support given
to the proposition “o; belongs to one of the clusters in A”
o m;(0) measures the support given to the proposition “o; does not belong to
any of the ¢ groups”

@ The n-tuple M = (my, ..., mp) is called a credal partition.
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Example

Butterfly data
21 12
1 Credal partition
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Relationship with other clustering structures

More general

4

N

Credal partition

Fuzzy partition

Possibilistic partition

m; Bayesian

Less general

Thierry Denceux

m; consonant

Hard partition | m; certain

Evidential clustering

Rough partition

m, logical
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Rough clustering as a special case

@ Assume that each mj is logical, i.e., m;(A;) = 1 for some A; C Q, A; # 0.
@ We can then define the lower and upper approximations of cluster wy as

wi = {0 € OJA; = {wk}}, @k ={0i € Olwk € Aj}.

@ The membership values to the lower and upper approximations of cluster
wg are Uy = Be/,-({wk}) and Uy = P/,-({wk}).

mfw)=1  m(wy, 0=l m({wh)=1

Lower ‘ ' Upper

apprOX|mat|ons apprommahons
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Evidential clustering Summarization of a credal partition
Outline

@ Evidential clustering

@ Summarization of a credal partition
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Evidential clustering Summarization of a credal partition

Summarization of a credal partition

More complex

/

plausibility-proba.
transformation

| Credal partition |

plausibility
of singletons
\

Fuzzy partition

Possibilistic partition

maximum
probability

Less complex
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maximum
plausibility

Hard partition

Evidential clustering

interval dominance
or maximum mass

Rough partition
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Summarization of a credal partition
From evidential to rough clustering

@ For each i, let A; C Q be the set of non dominated clusters
A ={we QW' € Q,Belf({w'}) < PlF({w})},

where Bel and P/ are the normalized belief and plausibility functions.
@ Lower approximation:

0 otherwise.

1 ifA =
Uik:{ A4 = i}

@ Upper approximation:

1 iteen
® =0 otherwise.

@ The outliers can be identified separately as the objects for which
m;(0) > m;(A) for all A # 0.
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Evidential clustering Relational representation of a credal partition
Outline

@ Evidential clustering

@ Relational representation of a credal partition
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Relational representation of a credal partition
Relational representation of a hard partition

@ A hard partition can be represented equivalently by

o the n x ¢ membership matrix U = (ui) or
e an n x n relation matrix R = (r;) representing the equivalence relation

~__J1 ifojand o; belong to the same group
"7 10 otherwise.

@ The relational representation R is invariant under renumbering of the
clusters, and is thus more suitable to compare or combine several
partitions.

@ What is the counterpart of matrix R in the case of a credal partition?
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Relational representation of a credal partition
Pairwise representation

o LetM=(m,..

., my) be a credal partition.

@ For a pair of objects {0;, 0;}, let Q; be the question “Do o; and o; belong
to the same group?” defined on the frame ©; = {S;;, ~Sj}.

@ O is a coarsening of Q2.

Q
gx w0, | 0| 0w,
W, /
, &1

W5

Wy

Thierry Denceux

Given m; and m; on §, a mass function m; on
©j; can be computed as follows:

@ Extend m; and m; to Q?

© Combine the extensions of m; and m; by
the unnormalized Dempster’s rule

© Compute the restriction of the combined
mass function to ©;
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Relational representation of a credal partition
Pairwise mass function

@ Mass function:

m;(0) = '(0) + my(0) — mi(0)m; ()
m;({Sj}) Zm, {wi)m;({wr})

k=1
m;({=Sj}) = rj — my(0)

my(©) =1— i — Y _ mi{wr})m({w})
k
where xj; is the degree of conflict between m; and m;.

@ In particular,

Pli({Sj}) =1 — &j
Pli({=S5}) =1 = my(0) = > mi({wx ) m;({w})
k
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Relational representation of a credal partition
Relational representation of a credal partition

@ Let M = (my,...,my) be a credal partition.

@ The tuple R = (mj)1<i<j<n is called the relational representation of credal
partition M.

1 M2 M3 Ms Mys
2 Mz Mog  Mps
M = (my, ma, ms, mg, ms) — R = 3
: M34  Mgs
4 © o Mgs
5
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Outline

© Aigorithms
@ EVCLUS
@ Handling a large number of clusters
@ Constrained evidential clustering
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Evidential clustering algorithms

@ Evidential c-means (ECM): (Masson and Denoeux, 2008):
o Attribute data
e HCM, FCM family

@ EK-NNclus (Denoeux et al, 2015)

o Attribute or proximity data
e Searches for the most plausible partition of a dataset

@ EVCLUS (Denoeux and Masson, 2004; Denoeux et al., 2016):

o Attribute or proximity (possibly non metric) data
e Multidimensional scaling approach
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Outline

© Aigorithms
e EVCLUS

Thierry Denceux Evidential clustering

ISIS 2017, Daegu

34/77



Learning a Credal Partition from proximity data

@ Problem: given the dissimilarity matrix D = (dj), how to build a
“reasonable” credal partition ?

@ We need a model that relates cluster membership to dissimilarities.

@ Basic idea: “The more similar two objects, the more plausible it is that
they belong to the same group”.

@ How to formalize this idea?
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Algorithms EVCLUS

Formalization

@ Let m; and m; be mass functions regarding the group membership of
objects o; and o;.

@ We have seen that the plausibility that objects o; and o; belong to the
same group is

P = > m(Am(B) =1~ r
ANB£()

where x; = degree of conflict between m; and m;.

@ Problem: find a credal partition M = (my, ..., mp) such that larger
degrees of conflict x; correspond to larger dissimilarities dj.

Thierry Denceux Evidential clustering ISIS 2017, Daegu
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Cost function

@ Approach: minimize the discrepancy between the dissimilarities dj; and
the degrees of conflict x;.

@ Cost (stress) function:

JM) =" (k5 — p(dy))?

i<j
where ¢ is an increasing function from [0, +c0) to [0, 1], for instance
p(d) =1 — exp(—~d?).

@ J(M) can be minimized efficiently using an lterative Row-wise Quadratic
Programming (IRQP) algorithm.
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Butterfly example

Credal partition

Butterfly data
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Algorithms EVCLUS

Butterfly example
Shepard diagram
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Algorithms EVCLUS

Example with a four-class dataset (2000 objects)

X[, 2]

[ 2]
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Modification for large datasets

@ EVCLUS requires to store the whole dissimilarity matrix: it is inapplicable
to large proximity data.

@ However, there is usually some redundancy in a dissimilarity matrix.

@ In particular, if two objects 0, and 0. are very similar, then any object 03
that is dissimilar from o4 is usually also dissimilar from o..

@ Because of such redundancies, it might be possible to compute the
differences between degrees of conflict and dissimilarities, for only a
subset of randomly sampled dissimilarities.

Thierry Denceux Evidential clustering ISIS 2017, Daegu 41/77



New stress function

@ Letji(),...,jk(/) be k integers sampled at random from the set
{1,...,i—=1,i+1,... . n}fori=1... n

@ Let Ji the following stress criterion,

n k

Z Z Rije (i) 7//(’)))2 :

i=1 r=1

@ The calculation of Jx(M) requires only O(nk) operations.

@ If k can be kept constant as n increases, then time and space
complexities are reduced from quadratic to linear.

@ This modification makes EVCLUS applicable to large datasets
(~ 10* — 10° objects and hundreds of classes).
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Example with simulated data (n = 10, 000)
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Algorithms Handling a large number of clusters

© Aigorithms

@ Handling a large number of clusters
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Handling a large number of clusters
Need to limit the number of focal sets

@ If no restriction is imposed on the focal sets, the number of parameters to
be estimated in evidential clustering grows exponentially with the number
c of clusters, which makes it intractable unless c¢ is small.

@ If we allow masses to be assigned to all pairs of clusters, the number of
focal sets becomes proportional to ¢?, which is manageable for moderate
values of ¢ (say, until 10), but still impractical for larger n.

@ Idea: assign masses only to pairs of contiguous clusters.

@ If each cluster has at most g neighbors, then the number of focal sets is
proportional to c.
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Algorithms Handling a large number of clusters

Example

X2
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The S, dataset (n = 5000) and the 15 clusters found by k-EVCLUS with
k=100
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Algorithms Handling a large number of clusters

Step1: Run a clustering algorithm (e.g., ECM or EVCLUS) with focal
sets of cardinalities 0, 1 and (optionally) c. A credal partition M
is obtained.

Step 2: Compute the similarity between each pair of clusters (wj,w¢) as
n
83, €)= _ plipl,
i=1

where pl; and pl;, are the normalized plausibilities that object /
belongs, respectively, to clusters j and ¢. Determine the set Py
of pairs {wj,w,} that are mutual g nearest neighbors.

Step 3: Run the clustering algorithm again, starting from the previous
credal partition My, and adding as focal sets the pairs in Px.
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Algorithms Handling a large number of clusters

Pairs of mutual neighbors with g = 1

X2
6e+05 8e+05 1e+06
| |

4e+05
|

2e+05
|

VY v

< X + > o

—_a a1 OONOUIRWN =

[:: =R
apON=O

0e+00
!

Thierry Denceux

4e+05 6e+05 8e+05

X

Evidential clustering

1e+06

ISIS 2017, Daegu

48/77



Handling a large number of clusters
Pairs of mutual neighbors with g = 2
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Algorithms Handling a large number of clusters

Initial credal partition My
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Handling a large number of clusters
Final credal partition (g = 1)
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Lower approximations and ambiguous objects for the final credal partition
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Algorithms Constrained evidential clustering
Outline

© Aigorithms

@ Constrained evidential clustering

Thierry Denceux Evidential clustering ISIS 2017, Daegu 52/77



Constrained evidential clustering
Constrained EVCLUS

@ In some cases, we may have some prior knowledge about the group
membership of some objects.
@ Such knowledge may take the form of instance-level constraints of two
kinds:
@ Must-link (ML) constraints, which specify that two objects certainly belong to

the same cluster
@ Cannot-link (CL) constraints, which specify that two objects certainly belong

to different clusters
@ How to take into account such constraints?
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Constrained evidential clustering
Modified cost-function

@ To take into account ML and CL constraints, we can modify the cost
function of k-EVCLUS as

n k
2 £
Jeo(M) =0 > (i) = Gijn)” + (ML oLy e+ Je):
i=1 r=1
with
due= D PL{=S;}) +1 - Pl({S;}),
(i.f)eEML
Joo =Y PL({S;}) +1— Pl({-~S}),
(i,j)eCL
where

e ML and CL are, respectively, the sets of ML and CL constraints.
o Plj({—=S;}) and Pl;({—S;}) are computed from pairwise mass function m
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Algorithms Constrained evidential clustering

Results

Banana data

Letter data
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Constrained evidential clustering
Constraint expansion

(a) A CL constraint (o;, 0j) € CL, with the K-neighborhoods Nk (0;) and
Nk(0)) of o; and o, respectively (K = 2). (b) The set Pk(0;, 0;) of pairs of a
neighbor of o; and a neighbor of o;. (c) The K = 2 new CL constraints.
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Letter data
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Comparing and combining the results of soft clustering algorithms
Outline

@ Comparing and combining the results of soft clustering algorithms
@ Credal Rand index
@ Combining clustering structures
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Exploiting the generality of evidential clustering

@ We have seen that the concept of credal partition subsumes the main
hard and soft clustering structures.

@ Consequently, methods designed to evaluate or combine credal partitions
can be used to evaluate or combine the results of any hard or soft
clustering algorithms.

@ Two such methods will be described:

@ A generalization of the Rand index to compute the distance between two
credal partitions;
@ A method to combine credal partitions.
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Comparing and combining the results of soft clustering algorithms Credal Rand index
Outline

e Comparing and combining the results of soft clustering algorithms
@ Credal Rand index

Thierry Denceux Evidential clustering ISIS 2017, Daegu 60/77



Comparing and combining the results of soft clustering algorithms Credal Rand index
Rand index

@ The Rand index is a widely used measure of similarity between two hard
partitions.

@ ltis defined as
Rl a+b

 n(n—1)/2
with
e a = number of pairs of objects that are grouped together in both partitions

@ b = number of pairs of objects that are assigned to different clusters in both
partitions.

@ How to generalize the Rand Index to credal partitions?
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. .
Belief distance

@ Let R = (my) and R’ = (m;) be the relational representations of two
credal partitions.

@ The assess the distance between R and R’, we can average the
distances between the my’s and mj’s.

@ Belief distance between mass functions:

Sp(my, mj) = > Z | Belj(A) — Belj(A) |,
ACO

where Bel; and Bel,’j are, respectively, the belief functions associated to
m; and mjl

@ Property: dg(mj, mj) € [0, 1].
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Similarity index

@ We define the Credal Rand Index between two credal partitions as

B > i< 08(my, mj)

CRI(R,R') = 1 T2

@ Properties:
@ 0<CRI(R,R) <1
@ CRI = Rl when the two partitions are hard
e Symmetry: CRI(R, R') = CRI(R', R)
e If R=R',then CRI(R,R) =1
e 1 — CRlis a metric in the space R of relational representations
@ The CRI can be used to compare the results of any two hard or soft
clustering algorithms.
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Example: Seeds data

Comp.1

@ Seeds from three different

varieties of wheat: Kama,
3 Rosa and Canadian, 70
elements each

@ 7 features

Comp.4

Evidential clustering ISIS 2017, Daegu 64/77



. .
Clustering algorithms

algorithm R function R package
ECM ecm evclust
EVCLUS kevclus evclust

HCM kmeans stats

Hierarchical clust. hclust stats
(Ward distance)

FCM FKM fclust
Fuzzy k-medoids FKM.med fclust
m-Rough k-means RoughKMeans_PI SoftClustering

EM Mclust mclust
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Result: MDS configuration

fuzzy
o
P
o |
o
o
2
x
©
o
o‘ —
[
< evidential
S rough
T T T T
-0.2 0.0 0.2 0.4

axis 1
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Comparing and combining the results of soft clustering algorithms Combining clustering structures
Outline

e Comparing and combining the results of soft clustering algorithms

@ Combining clustering structures
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Combining clustering structures
Motivations for combining clustering structures

@ Let My, ..., My be an ensemble of N credal partitions generated by hard
or soft (fuzzy, rough, etc.) clustering structures.

@ It may be useful to combine these credal partitions:

e to increase the chance of finding a good approximation to the true partition,
or
e to highlight invariant patterns across the clustering structures.

@ Combination is easily carried out using pairwise representations.
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N
Combination method

Credal Pairwise
partitions representations

M; =——> R, Combined credal
M, =—> R, partition

—
M, —> R,
The combined credal partition can be defined as
M* = arg max CRI(R(M), R*),
where R(M) denotes the relational representation of M.
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Hard clustering results

HCM Hierarchical Ward

X2

-1

-2
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Fuzzy clustering results

FCM FKM.med
N~ o~
~ o~
g 7 g 7
Q Q
c c
o o
g g
3 7 § 7
3 = ¢ % s w % °°
g < g o oo e ° o %
g T 2 7 ® o O
= = L] e
a a °
o o 0%° o
o o~ o & °
I ) ° L]
) °
° L]
T T T T T T T T
-4 -2 0 2 -4 -2 0 2
Principal Component 1 Principal Component 1
Variability explained by these two components: 71.61% Variability explained by these two components: 71.61%
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Combined credal partition (Dubois-Prade rule)

Combined (DP)

X2

X1
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Summary

@ The Dempster-Shafer theory of belief functions provides a rich and
flexible framework to represent uncertainty in clustering.

@ The concept of credal partition encompasses the main existing soft
clustering concepts (fuzzy, possibilistic, rough partitions).

@ Efficient algorithms exist, allowing one to generate credal partitions from
attribute or proximity datasets.

@ These algorithms can be applied to large datasets and large numbers of
clusters (by carefully selecting the focal sets).

@ Concepts from the theory of belief functions make it possible to compare
and combine clustering structures generated by various soft clustering
algorithms.
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Future research directions

@ Combining clustering structures in various settings

o distributed clustering,
e combination of different attributes, different algorithms,
@ etc.

@ Handling huge datasets (several millions of objects)
@ Criteria for selecting the number of clusters

@ Semi-supervised clustering

@ Clustering imprecise or uncertain data

@ Applications to image processing, social network analysis, process
monitoring, etc.

o Etc...
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The evclust package

evclust: Evidential Clustering

Various clustering algorithms that produce a credal partition, i.e., a set of Dempster-Shafer mass functions
representing the membership of objects to clusters. The mass functions quantify the cluster-membership uncertainty
of the objects. The algorithms are: Evidential c-Means (ECM), Relational Evidential c-Means (RECM),

Constrained Evidential c-Means (CECM), EVCLUS and EK-NNclus.

Version: 103

Depends: R (=3.1.0)

Imports: ENN, R.utils, limSolve, Matrix
Suggests: knitr, rmarkdown

Published: 2016-09-04

Author: Thierry Denoeux

Maintainer: Thierry Denoeux <tdenoeux at utc.fr>
License: GPL-3

NeedsCompilation: no

In views: Cluster

CRAN checks: evclust results

https://cran.r-project.org/web/packages
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