Evidential Clustering: Review and some New Developments

Thierry Denœux

Université de Technologie de Compiègne Heudiasyc (UMR CNRS 7253)

https://www.hds.utc.fr/~tdenoeux

18th Int. Symp. on Advanced Intelligent Systems (ISIS 2017) Daegu, South Korea October 12, 2017

(4) (3) (4) (4) (4)

Cluster Analysis

- n objects described by
 - Attribute vectors x₁,..., x_n (attribute data) or
 - Dissimilarities (proximity data)
- Goals:
 - Discover groups in the data
 - Assess the uncertainty in group membership

- Hard clustering: no representation of uncertainty. Each object is assigned to one and only one group. Group membership is represented by binary variables u_{ik} such that $u_{ik} = 1$ if object *i* belongs to group *k* and $u_{ik} = 0$ otherwise.
- Fuzzy clustering: each object has a degree of membership $u_{ik} \in [0, 1]$ to each group, with $\sum_{k=1}^{c} u_{ik} = 1$. The u_{ik} 's can be interpreted as probabilities.

Possibilistic clustering: the u_{ik} are free to take any value in $[0, 1]^c$. Each number u_{ik} is interpreted as a degree of possibility that object *i* belongs to group *k*.

Hard and soft clustering (continued)

Rough clustering: each cluster ω_k is characterized by a lower approximation $\underline{\omega}_k$ and an upper approximation $\overline{\omega}_k$, with $\underline{\omega}_k \subseteq \overline{\omega}_k$; the membership of object *i* to cluster *k* is described by a pair $(\underline{u}_{ik}, \overline{u}_{ik}) \in \{0, 1\}^2$, with $\underline{u}_{ik} \leq \overline{u}_{ik}, \sum_{k=1}^{c} \underline{u}_{ik} \leq 1$ and $\sum_{k=1}^{c} \overline{u}_{ik} \geq 1$.

Clustering and belief functions

clustering structure	uncertainty framework
fuzzy partition	probability theory
possibilistic partition	possibility theory
rough partition	(rough) sets
?	belief functions

- As belief functions extend probabilities, possibilities and sets, could the theory of belief functions provide a more general and flexible framework for cluster analysis?
- Objectives:
 - Unify the various approaches to clustering
 - Achieve a richer and more accurate representation of uncertainty
 - New clustering algorithms and new tools to compare and combine clustering structures.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theory of belief functions: a brief introduction

Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition
- Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

Theory of belief functions: a brief introduction

2) Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition
- 3 Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Mass function

Definition

- Let Q be a question of interest, and Ω be a finite set of possible answers, one and only one of which is true.
- Evidence about Q can be represented by a mass function m from 2^{Ω} to [0, 1] such that

$$\sum_{A\subseteq\Omega}m(A)=1$$

 The subsets A of Ω such that m(A) ≠ 0 are called the focal sets of m.

 If m(Ø) = 0, m is said to be normalized (usually assumed).

Example

- Consider a road scene analysis application. Let *Q* concern the type of object in some region of the image, and Ω = {*G*, *R*, *T*, *O*, *S*}, corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
- Assume that a lidar sensor (laser telemeter) returns the information that the object is either a Tree or an Obstacle, but we there is a probability p = 0.1 that the information is not reliable (because, e.g., the sensor is out of order).
- This uncertain evidence can be represented by the following mass function m on Ω ,

$$m(\{T, O\}) = 0.9, \quad m(\Omega) = 0.1$$

Interpretation

- The meaning of the evidence is uncertain: it points to several subsets of Ω, with different degrees of support.
- Each mass *m*(*A*) is a measure of the support given exactly to *A*, and to no more specific subset.
- In particular, $m(\Omega)$ is a measure of lack of information (ignorance).
- The vacuous mass function defined by m₂(Ω) = 1 represents total lack of information (complete ignorance).

Belief and plausibility functions

Given a normalized mass function *m*, we can define

• Tshe degree of belief in *B* as

$$Bel(B) = \sum_{A \subseteq B} m(A)$$

• The degree of plausibility of B as

$$Pl(B) = 1 - Bel(\overline{B})$$

 $= \sum_{A \cap B \neq \emptyset} m(A).$

Interpretation: Bel(B) measures the total support given to B, while Pl(A) measures the lack of support given to \overline{B} .

Two-dimensional representation

- The uncertainty on a proposition *B* is represented by two numbers: *Bel*(*B*) and *Pl*(*B*), with *Bel*(*B*) ≤ *Pl*(*B*).
- The intervals [*Bel*(*B*), *Pl*(*B*)] have maximum length when *m* is the vacuous mass function. Then,

[Bel(B), Pl(B)] = [0, 1]

for all subset *B* of Ω , except \emptyset and Ω .

 The intervals [Bel(B), PI(B)] are reduced to points when the focal sets of m are singletons (m is then said to be Bayesian); then,

$$Bel(B) = Pl(B)$$

for all *B*, and *Bel* is a probability measure.

Logical/Consonant mass function

- If m has only one focal set, it is said to be logical.
- If the focal sets of *m* are nested (A₁ ⊂ A₂ ⊂ ... ⊂ A_n), *m* is said to be consonant.
- Pl is then a possibility measure, i.e.,

$$PI(A \cup B) = \max(PI(A), PI(B))$$

for all $A, B \subseteq \Omega$.

We have

$$PI(A) = \max_{\omega \in A} PI(\{\omega\}) \text{ for all } A \subseteq \Omega.$$

= 200

・ロト ・同ト ・ヨト ・ヨ

Dempster's rule

- Let m₁ and m₂ be two mass functions induced by independent pieces of evidence.
- Their orthogonal sum is the mass function $m_1 \oplus m_2$ defined by

$$(m_1\oplus m_2)(A)=\frac{1}{1-\kappa}\sum_{B\cap C=A}m_1(B)m_2(C)$$

for all $A \neq \emptyset$ and $(m_1 \oplus m_2)(\emptyset) = 0$, where

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

is the degree of conflict.

• \oplus is commutative, associative, and m_2 is its single neutral element.

Thierry	Denœux

Belief-probability transformation

- It may be useful to transform a mass function *m* into a probability distribution for approximation or decision-making.
- Plausibility-probability transformation

$$p_m(\omega) = rac{Pl(\{\omega\})}{\sum_{\omega \in \Omega} Pl(\{\omega\})}$$

Property:

 $p_{m_1\oplus m_2}=p_{m_1}\oplus p_{m_2}$

3 3 9 9 9 9

Decision

- Given a normalized mass function *m*, how to select an element or a subset of Ω?
- Several solutions: for instance, choose ω with the largest degree of belief Bel({ω}) or the largest plausibility Pl({ω}).
- Interval dominance:

- ω is dominated by ω' iff $Pl(\{\omega\}) < Bel(\{\omega'\})$
- We may select the set A* of possibilities ω that are dominated by no other possibility ω'.

Main ideas

- The theory of belief function combines sets with probabilities, by assigning basic probabilities to focal sets.
- A mass function can be seen as a generalized set or as a generalized probability distribution.
- Possibility theory is also recovered as a special case, when the focal sets are nested.
- A mass function can be transformed into
 - a probability distribution,
 - an element of Ω, or
 - a subset of Ω.

EL OQO

Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition

3 Algorithms

- EVCLUS
- Handling a large number of clusters
- Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

Evidential clustering

Credal partition

- Summarization of a credal partition
- Relational representation of a credal partition
- 3 Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

Evidential clustering

- Let O = {o₁,..., o_n} be a set of n objects and Ω = {ω₁,..., ω_c} be a set of c groups (clusters).
- Each object *o_i* belongs to at most one group.
- Evidence about the group membership of object *o_i* is represented by a mass function *m_i* on Ω:
 - for any nonempty set of clusters A ⊆ Ω, m_i(A) is the degree of support given to the proposition "o_i belongs to one of the clusters in A"
 - *m_i*(Ø) measures the support given to the proposition "*o_i* does not belong to any of the *c* groups"
- The *n*-tuple $M = (m_1, ..., m_n)$ is called a credal partition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Credal partition

	Ø	$\{\omega_1\}$	$\{\omega_2\}$	$\{\omega_1,\omega_2\}$
m_3	0	1	0	0
m_5	0	0.5	0	0.5
m_6	0	0	0	1
<i>m</i> ₁₂	0.9	0	0.1	0

→ ∃ →

ъ.

Relationship with other clustering structures

Rough clustering as a special case

- Assume that each m_i is logical, i.e., $m_i(A_i) = 1$ for some $A_i \subseteq \Omega$, $A_i \neq \emptyset$.
- We can then define the lower and upper approximations of cluster ω_k as

$$\underline{\omega}_k = \{ \mathbf{o}_i \in \mathbf{O} | \mathbf{A}_i = \{ \omega_k \} \}, \quad \overline{\omega}_k = \{ \mathbf{o}_i \in \mathbf{O} | \omega_k \in \mathbf{A}_i \}.$$

• The membership values to the lower and upper approximations of cluster ω_k are $\underline{u}_{ik} = Bel_i(\{\omega_k\})$ and $\overline{u}_{ik} = Pl_i(\{\omega_k\})$.

Evidential clustering

Credal partition

Summarization of a credal partition

- Relational representation of a credal partition
- 3 Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

(D) (A) (A) (A)

Summarization of a credal partition

	 _	
	 1-141	

From evidential to rough clustering

• For each *i*, let $A_i \subseteq \Omega$ be the set of non dominated clusters

$$\mathbf{A}_{i} = \{ \omega \in \Omega | \forall \omega' \in \Omega, \mathbf{Bel}_{i}^{*}(\{\omega'\}) \leq \mathbf{Pl}_{i}^{*}(\{\omega\}) \},\$$

where *Bel*^{*} and *Pl*^{*} are the normalized belief and plausibility functions.
Lower approximation:

$$\underline{u}_{ik} = \begin{cases} 1 & \text{if } A_i = \{\omega_k\} \\ 0 & \text{otherwise.} \end{cases}$$

• Upper approximation:

$$\overline{u}_{ik} = egin{cases} 1 & ext{if } \omega_k \in \mathcal{A}_i \ 0 & ext{otherwise.} \end{cases}$$

• The outliers can be identified separately as the objects for which $m_i(\emptyset) \ge m_i(A)$ for all $A \ne \emptyset$.

Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition
- 3 Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

Relational representation of a hard partition

- A hard partition can be represented equivalently by
 - the $n \times c$ membership matrix $U = (u_{ik})$ or
 - an $n \times n$ relation matrix $R = (r_{ij})$ representing the equivalence relation

$$r_{ij} = \begin{cases} 1 & \text{if } o_i \text{ and } o_j \text{ belong to the same group} \\ 0 & \text{otherwise.} \end{cases}$$

- The relational representation *R* is invariant under renumbering of the clusters, and is thus more suitable to compare or combine several partitions.
- What is the counterpart of matrix *R* in the case of a credal partition?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Pairwise representation

- Let $M = (m_1, \ldots, m_n)$ be a credal partition.
- For a pair of objects {*o_i*, *o_j*}, let *Q_{ij}* be the question "Do *o_i* and *o_j* belong to the same group?" defined on the frame Θ_{ij} = {*S_{ij}*, ¬*S_{ij}*}.
- Θ_{ij} is a coarsening of Ω^2 .

Given m_i and m_j on Ω , a mass function m_{ij} on Θ_{ij} can be computed as follows:

- Extend m_i and m_j to Ω^2
- Combine the extensions of *m_i* and *m_j* by the unnormalized Dempster's rule
- Sompute the restriction of the combined mass function to ⊖_{ij}

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Pairwise mass function

Mass function:

$$m_{ij}(\emptyset) = m_i(\emptyset) + m_j(\emptyset) - m_i(\emptyset)m_j(\emptyset)$$
$$m_{ij}(\{S_{ij}\}) = \sum_{k=1}^{c} m_i(\{\omega_k\})m_j(\{\omega_k\})$$
$$m_{ij}(\{\neg S_{ij}\}) = \kappa_{ij} - m_{ij}(\emptyset)$$
$$m_{ij}(\Theta_{ij}) = 1 - \kappa_{ij} - \sum_k m_i(\{\omega_k\})m_j(\{\omega_k\})$$

where κ_{ij} is the degree of conflict between m_i and m_j .

• In particular,

$$Pl_{ij}(\{S_{ij}\}) = 1 - \kappa_{ij}$$

$$Pl_{ij}(\{\neg S_{ij}\}) = 1 - m_{ij}(\emptyset) - \sum_{k} m_{i}(\{\omega_{k}\})m_{j}(\{\omega_{k}\})$$

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Relational representation of a credal partition

- Let $M = (m_1, \ldots, m_n)$ be a credal partition.
- The tuple R = (m_{ij})_{1≤i<j≤n} is called the relational representation of credal partition M.

$$M = (m_1, m_2, m_3, m_4, m_5) \longrightarrow R = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \cdot & m_{12} & m_{13} & m_{14} & m_{15} \\ 2 & \cdot & \cdot & m_{23} & m_{24} & m_{25} \\ 3 & \cdot & \cdot & \cdot & m_{34} & m_{35} \\ 4 & \cdot & \cdot & \cdot & \cdot & m_{45} \\ 5 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

3 3 9 9 9 9

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theory of belief functions: a brief introduction

2 Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition

Algorithms

- EVCLUS
- Handling a large number of clusters
- Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

Evidential clustering algorithms

Evidential c-means (ECM): (Masson and Denoeux, 2008):

- Attribute data
- HCM, FCM family
- EK-NNclus (Denoeux et al, 2015)
 - Attribute or proximity data
 - Searches for the most plausible partition of a dataset
- EVCLUS (Denoeux and Masson, 2004; Denoeux et al., 2016):
 - Attribute or proximity (possibly non metric) data
 - Multidimensional scaling approach

・ロト ・同ト ・ヨト ・ヨ

Theory of belief functions: a brief introduction

2 Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition

Algorithms

- EVCLUS
- Handling a large number of clusters
- Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

EVCLUS

Learning a Credal Partition from proximity data

- Problem: given the dissimilarity matrix $D = (d_{ij})$, how to build a "reasonable" credal partition ?
- We need a model that relates cluster membership to dissimilarities.
- Basic idea: "The more similar two objects, the more plausible it is that they belong to the same group".
- How to formalize this idea?

3 3 9 9 9 9

イロト イポト イヨト イヨト

Formalization

- Let m_i and m_j be mass functions regarding the group membership of objects o_i and o_j.
- We have seen that the plausibility that objects *o_i* and *o_j* belong to the same group is

$$\mathsf{Pl}_{ij}(\{S_{ij}\}) = \sum_{A \cap B \neq \emptyset} m_i(A)m_j(B) = 1 - \kappa_{ij}$$

where $\kappa_{ij} = \text{degree of conflict}$ between m_i and m_j .

 Problem: find a credal partition M = (m₁,..., m_n) such that larger degrees of conflict κ_{ij} correspond to larger dissimilarities d_{ij}.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))
Cost function

- Approach: minimize the discrepancy between the dissimilarities d_{ij} and the degrees of conflict κ_{ij}.
- Cost (stress) function:

$$J(M) = \sum_{i < j} (\kappa_{ij} - \varphi(d_{ij}))^2$$

where φ is an increasing function from $[0, +\infty)$ to [0, 1], for instance

$$\varphi(d) = 1 - \exp(-\gamma d^2).$$

• *J*(*M*) can be minimized efficiently using an Iterative Row-wise Quadratic Programming (IRQP) algorithm.

Thiorny	Donmuy
THEITY	Denteux

ELE NON

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Butterfly example

Credal partition

ъ.

・ ロ ト ・ 日 ト ・ 田 ト ・

Butterfly example

Shepard diagram

Thierry Denœux

Evidential clustering

-

Example with a four-class dataset (2000 objects)

Modification for large datasets

- EVCLUS requires to store the whole dissimilarity matrix: it is inapplicable to large proximity data.
- However, there is usually some redundancy in a dissimilarity matrix.
- In particular, if two objects o₁ and o₂ are very similar, then any object o₃ that is dissimilar from o₁ is usually also dissimilar from o₂.
- Because of such redundancies, it might be possible to compute the differences between degrees of conflict and dissimilarities, for only a subset of randomly sampled dissimilarities.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

New stress function

- Let $j_1(i), \ldots, j_k(i)$ be k integers sampled at random from the set $\{1, \ldots, i-1, i+1, \ldots, n\}$, for $i = 1, \ldots, n$.
- Let J_k the following stress criterion,

$$J_k(M) = \sum_{i=1}^n \sum_{r=1}^k \left(\kappa_{i,j_r(i)} - \varphi(d_{i,j_r(i)}) \right)^2.$$

- The calculation of $J_k(M)$ requires only O(nk) operations.
- If *k* can be kept constant as *n* increases, then time and space complexities are reduced from quadratic to linear.
- This modification makes EVCLUS applicable to large datasets $(\sim 10^4 10^5 \text{ objects and hundreds of classes}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example with simulated data (n = 10,000)

Image: A matrix

Outline

Theory of belief functions: a brief introduction

2 Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition

3

Algorithms

EVCLUS

Handling a large number of clusters

Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

・ロト ・同ト ・ヨト ・ヨ

Need to limit the number of focal sets

- If no restriction is imposed on the focal sets, the number of parameters to be estimated in evidential clustering grows exponentially with the number *c* of clusters, which makes it intractable unless *c* is small.
- If we allow masses to be assigned to all pairs of clusters, the number of focal sets becomes proportional to c^2 , which is manageable for moderate values of c (say, until 10), but still impractical for larger n.
- Idea: assign masses only to pairs of contiguous clusters.
- If each cluster has at most q neighbors, then the number of focal sets is proportional to c.

Example

The S_2 dataset (n = 5000) and the 15 clusters found by k-EVCLUS with k = 100

Thierry Denœux

Evidential clustering

ISIS 2017, Daegu 46 / 77

Method

- Step1: Run a clustering algorithm (e.g., ECM or EVCLUS) with focal sets of cardinalities 0, 1 and (optionally) c. A credal partition M₀ is obtained.
- Step 2: Compute the similarity between each pair of clusters (ω_j, ω_ℓ) as

$$\mathcal{S}(j,\ell) = \sum_{i=1}^{n} pl_{ij} pl_{i\ell},$$

where p_{ij} and $p_{i\ell}$ are the normalized plausibilities that object *i* belongs, respectively, to clusters *j* and ℓ . Determine the set P_K of pairs $\{\omega_j, \omega_\ell\}$ that are mutual *q* nearest neighbors.

Step 3: Run the clustering algorithm again, starting from the previous credal partition M_0 , and adding as focal sets the pairs in P_K .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Pairs of mutual neighbors with q = 1

Pairs of mutual neighbors with q = 2

Initial credal partition \mathcal{M}_0

Lower approximations and ambiguous objects for the initial credal partition,

Final credal partition (q = 1)

Lower approximations and ambiguous objects for the final credal partition

Outline

Theory of belief functions: a brief introduction

2) Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition

3 Alg

Algorithms

- EVCLUS
- Handling a large number of clusters
- Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

・ロト ・同ト ・ヨト ・ヨ

Constrained EVCLUS

- In some cases, we may have some prior knowledge about the group membership of some objects.
- Such knowledge may take the form of instance-level constraints of two kinds:
 - Must-link (ML) constraints, which specify that two objects certainly belong to the same cluster
 - Cannot-link (CL) constraints, which specify that two objects certainly belong to different clusters
- How to take into account such constraints?

3 3 9 9 9 9

イロト イポト イヨト イヨト

Modified cost-function

• To take into account ML and CL constraints, we can modify the cost function of *k*-EVCLUS as

$$J_{kC}(\mathcal{M}) = \eta \sum_{i=1}^{n} \sum_{r=1}^{k} \left(\kappa_{i,j_{r}(i)} - \delta_{i,j_{r}(i)} \right)^{2} + \frac{\xi}{2(|\mathsf{ML}| + |\mathsf{CL}|)} (J_{\mathsf{ML}} + J_{\mathsf{CL}}),$$

with

$$\begin{split} J_{\text{ML}} &= \sum_{(i,j) \in \text{ML}} Pl_{ij}(\{\neg S_{ij}\}) + 1 - Pl_{ij}(\{S_{ij}\}), \\ J_{\text{CL}} &= \sum_{(i,j) \in \text{CL}} Pl_{ij}(\{S_{ij}\}) + 1 - Pl_{ij}(\{\neg S_{ij}\}), \end{split}$$

where

- ML and CL are, respectively, the sets of ML and CL constraints.
- $PI_{ij}(\{\neg S_{ij}\})$ and $PI_{ij}(\{\neg S_{ij}\})$ are computed from pairwise mass function m_{ij}

ELE NOR

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Results

= 200

ヘロト ヘヨト ヘヨト ヘヨ

Constraint expansion

(a) A CL constraint $(o_i, o_j) \in CL$, with the *K*-neighborhoods $\mathcal{N}_K(o_i)$ and $\mathcal{N}_K(o_j)$ of o_i and o_j , respectively (K = 2). (b) The set $\mathcal{P}_K(o_i, o_j)$ of pairs of a neighbor of o_i and a neighbor of o_j . (c) The K = 2 new CL constraints.

Image: Image:

Constrained evidential clustering

Results

-

ヘロト ヘヨト ヘヨト

Outline

Theory of belief functions: a brief introduction

2 Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition
- 3 Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

(D) (A) (A) (A)

Exploiting the generality of evidential clustering

- We have seen that the concept of credal partition subsumes the main hard and soft clustering structures.
- Consequently, methods designed to evaluate or combine credal partitions can be used to evaluate or combine the results of any hard or soft clustering algorithms.
- Two such methods will be described:
 - A generalization of the Rand index to compute the distance between two credal partitions;
 - A method to combine credal partitions.

on clustering algorithin

Outline

2 Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition
- 3 Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms Credal Rand index

Combining clustering structures

Rand index

- The Rand index is a widely used measure of similarity between two hard partitions.
- It is defined as

$$\mathsf{RI} = \frac{a+b}{n(n-1)/2}$$

with

- a = number of pairs of objects that are grouped together in both partitions
- *b* = number of pairs of objects that are assigned to different clusters in both partitions.
- How to generalize the Rand Index to credal partitions?

Belief distance

- Let $R = (m_{ij})$ and $R' = (m'_{ij})$ be the relational representations of two credal partitions.
- The assess the distance between *R* and *R'*, we can average the distances between the *m_{ij}*'s and *m'_{ij}*'s.
- Belief distance between mass functions:

$$\delta_{B}(m_{ij},m_{ij}') = rac{1}{2}\sum_{A\subseteq\Theta}\mid \textit{Bel}_{ij}(A)-\textit{Bel}_{ij}'(A)\mid,$$

where Be_{ij} and Be'_{ij} are, respectively, the belief functions associated to m_{ij} and m'_{ij} .

• Property: $\delta_B(m_{ij}, m'_{ij}) \in [0, 1].$

<ロ> <日> <日> <日> <日> <日> <日> <日> <日</p>

Credal Rand index

Similarity index

We define the Credal Rand Index between two credal partitions as

$$CRI(R, R') = 1 - \frac{\sum_{i < j} \delta_B(m_{ij}, m'_{ij})}{n(n-1)/2}.$$

Properties:

- 0 < CRI(*R*, *R'*) < 1
- CRI = RI when the two partitions are hard
- Symmetry: CRI(R, R') = CRI(R', R)
- If R = R', then CRI(R, R') = 1
- 1 CRI is a metric in the space \mathcal{R} of relational representations
- The CRI can be used to compare the results of any two hard or soft clustering algorithms.

3 3 9 9 9 9

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example: Seeds data

 Seeds from three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each

• • • • • • • • • • • • • •

7 features

Clustering algorithms

algorithm	R function	R package
ECM	ecm	evclust
EVCLUS	kevclus	evclust
HCM	kmeans	stats
Hierarchical clust.	hclust	stats
(Ward distance)		
FCM	FKM	fclust
Fuzzy k-medoids	FKM.med	fclust
π -Rough k-means	RoughKMeans_PI	SoftClustering
EM	Mclust	mclust

三日 のへの

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Result: MDS configuration

Thierry Denœux

Evidential clustering

ISIS 2017, Daegu 66 / 77

Outline

Theory of belief functions: a brief introduction

2 Evidential clustering

- Credal partition
- Summarization of a credal partition
- Relational representation of a credal partition
- 3 Algorithms
 - EVCLUS
 - Handling a large number of clusters
 - Constrained evidential clustering

Comparing and combining the results of soft clustering algorithms

- Credal Rand index
- Combining clustering structures

Motivations for combining clustering structures

- Let M₁,..., M_N be an ensemble of N credal partitions generated by hard or soft (fuzzy, rough, etc.) clustering structures.
- It may be useful to combine these credal partitions:
 - to increase the chance of finding a good approximation to the true partition, or
 - to highlight invariant patterns across the clustering structures.
- Combination is easily carried out using pairwise representations.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Combination method

The combined credal partition can be defined as

$$M^* = \arg\max_{M} \operatorname{CRI}(\mathcal{R}(M), R^*),$$

where $\mathcal{R}(M)$ denotes the relational representation of M.

THE R. LEWIS CO., LANSING MICH.	-
Ibiorry	Doncouv
	Denceux

Example: seeds data

Hard clustering results

・ロト ・回ト ・ヨト

Example: seeds data

Fuzzy clustering results

Variability explained by these two components: 71.61%

Principal Component 1 Variability explained by these two components: 71.61%

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-

Example: seeds data

Combined credal partition (Dubois-Prade rule)

Combined (DP)

X1

Thierry Denœux

ISIS 2017, Daegu 72 / 77
Summary

- The Dempster-Shafer theory of belief functions provides a rich and flexible framework to represent uncertainty in clustering.
- The concept of credal partition encompasses the main existing soft clustering concepts (fuzzy, possibilistic, rough partitions).
- Efficient algorithms exist, allowing one to generate credal partitions from attribute or proximity datasets.
- These algorithms can be applied to large datasets and large numbers of clusters (by carefully selecting the focal sets).
- Concepts from the theory of belief functions make it possible to compare and combine clustering structures generated by various soft clustering algorithms.

Future research directions

Combining clustering structures in various settings

- distributed clustering,
- combination of different attributes, different algorithms,
- etc.
- Handling huge datasets (several millions of objects)
- Criteria for selecting the number of clusters
- Semi-supervised clustering
- Clustering imprecise or uncertain data
- Applications to image processing, social network analysis, process monitoring, etc.
- Etc...

・ロト ・同ト ・ヨト ・ヨ

The evclust package

evclust: Evidential Clustering

Various clustering algorithms that produce a credal partition, i.e., a set of Dempster-Shafer mass functions representing the membership of objects to clusters. The mass functions quantify the cluster-membership uncertainty of the objects. The algorithms are: Evidential c-Means (ECM), Relational Evidential c-Means (RECM), Constrained Evidential c-Means (CECM), EVCLUS and EK-NNclus.

Version:	1.0.3
Depends:	R (≥ 3.1.0)
Imports:	FNN, R.utils, limSolve, Matrix
Suggests:	<u>knitr, rmarkdown</u>
Published:	2016-09-04
Author:	Thierry Denoeux
Maintainer:	Thierry Denoeux <tdenoeux at="" utc.fr=""></tdenoeux>
License:	GPL-3
NeedsCompilation: no	
In views:	Cluster
CRAN checks:	evclust results

https://cran.r-project.org/web/packages

Thierry Denœux

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

References I

cf. https://www.hds.utc.fr/~tdenoeux

M.-H. Masson and T. Denœux.

ECM: An evidential version of the fuzzy c-means algorithm. *Pattern Recognition*, 41(4):1384-1397, 2008.

- T. Denœux and M.-H. Masson. EVCLUS: Evidential Clustering of Proximity Data. IEEE Transactions on SMC B, 34(1):95-109, 2004.
- V. Antoine, B. Quost, M.-H. Masson and T. Denoeux. CEVCLUS: Evidential clustering with instance-level constraints for relational data.

Soft Computing, 18(7):1321-1335, 2014.

T. Denœux, S. Sriboonchitta and O. Kanjanatarakul Evidential clustering of large dissimilarity data. *Knowledge-Based Systems*, 106:179–195, 2016.

References II

cf. https://www.hds.utc.fr/~tdenoeux

T. Denoeux, O. Kanjanatarakul and S. Sriboonchitta.

EK-NNclus: a clustering procedure based on the evidential K-nearest neighbor rule.

Knowledge-Based Systems, Vol. 88, pages 57-69, 2015.

T. Denoeux, S. Li and S. Sriboonchitta. Evaluating and Comparing Soft Partitions: an Approach Based on Dempster-Shafer Theory.

IEEE Transactions on Fuzzy Systems, In Press, 2017.