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Cluster Analysis

n objects described by
Attribute vectors x1, . . . , xn (attribute
data) or
Dissimilarities (proximity data)

Goals:
1 Discover groups in the data
2 Assess the uncertainty in group

membership
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Hard and soft clustering

Hard clustering: no representation of uncertainty. Each object is assigned to
one and only one group. Group membership is represented by
binary variables uik such that uik = 1 if object i belongs to group
k and uik = 0 otherwise.

Fuzzy clustering: each object has a degree of membership uik ∈ [0,1] to each
group, with

∑c
k=1 uik = 1. The uik ’s can be interpreted as

probabilities.
Possibilistic clustering: the uik are free to take any value in [0,1]c . Each

number uik is interpreted as a degree of possibility that object i
belongs to group k .
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Hard and soft clustering (continued)

Rough clustering: each cluster ωk is characterized by a lower approximation
ωk and an upper approximation ωk , with ωk ⊆ ωk ; the
membership of object i to cluster k is described by a pair
(uik ,uik ) ∈ {0,1}2, with uik ≤ uik ,

∑c
k=1 uik ≤ 1 and∑c

k=1 uik ≥ 1.
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Clustering and belief functions

clustering structure uncertainty framework
fuzzy partition probability theory

possibilistic partition possibility theory
rough partition (rough) sets

? belief functions

As belief functions extend probabilities, possibilities and sets, could the
theory of belief functions provide a more general and flexible framework
for cluster analysis?
Objectives:

Unify the various approaches to clustering
Achieve a richer and more accurate representation of uncertainty
New clustering algorithms and new tools to compare and combine clustering
structures.
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1 Theory of belief functions: a brief introduction

2 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition
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Handling a large number of clusters
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4 Comparing and combining the results of soft clustering algorithms
Credal Rand index
Combining clustering structures
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Theory of belief functions: a brief introduction
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Theory of belief functions: a brief introduction

Mass function
Definition

Let Q be a question of interest, and Ω be a finite set of possible answers,
one and only one of which is true.
Evidence about Q can be represented by a mass function m from 2Ω to
[0,1] such that ∑

A⊆Ω

m(A) = 1

Ω	

A1	

A2	

A3	

A4	

The subsets A of Ω such that
m(A) 6= 0 are called the focal sets
of m.
If m(∅) = 0, m is said to be
normalized (usually assumed).

Thierry Denœux Evidential clustering ISIS 2017, Daegu 8 / 77



Theory of belief functions: a brief introduction

Example

Consider a road scene analysis application. Let Q concern the type of
object in some region of the image, and Ω = {G,R,T ,O,S},
corresponding to the possibilities Grass, Road, Tree/Bush, Obstacle, Sky
Assume that a lidar sensor (laser telemeter) returns the information that
the object is either a Tree or an Obstacle, but we there is a probability
p = 0.1 that the information is not reliable (because, e.g., the sensor is
out of order).
This uncertain evidence can be represented by the following mass
function m on Ω,

m({T ,O}) = 0.9, m(Ω) = 0.1
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Theory of belief functions: a brief introduction

Mass function
Interpretation

The meaning of the evidence is uncertain: it points to several subsets of
Ω, with different degrees of support.
Each mass m(A) is a measure of the support given exactly to A, and to
no more specific subset.
In particular, m(Ω) is a measure of lack of information (ignorance).
The vacuous mass function defined by m?(Ω) = 1 represents total lack of
information (complete ignorance).
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Theory of belief functions: a brief introduction

Belief and plausibility functions

Ω	
B	

A1	

A2	

A3	

A4	

Given a normalized mass function m,
we can define

Tshe degree of belief in B as

Bel(B) =
∑
A⊆B

m(A)

The degree of plausibility of B as

Pl(B) = 1− Bel(B)

=
∑

A∩B 6=∅

m(A).

Interpretation: Bel(B) measures the total support given to B, while Pl(A)
measures the lack of support given to B.
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Theory of belief functions: a brief introduction

Two-dimensional representation

The uncertainty on a proposition B is represented by two numbers:
Bel(B) and Pl(B), with Bel(B) ≤ Pl(B).
The intervals [Bel(B),Pl(B)] have maximum length when m is the
vacuous mass function. Then,

[Bel(B),Pl(B)] = [0,1]

for all subset B of Ω, except ∅ and Ω.
The intervals [Bel(B),Pl(B)] are reduced to points when the focal sets of
m are singletons (m is then said to be Bayesian); then,

Bel(B) = Pl(B)

for all B, and Bel is a probability measure.
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Theory of belief functions: a brief introduction

Logical/Consonant mass function

If m has only one focal set, it is said to be logical.
If the focal sets of m are nested (A1 ⊂ A2 ⊂ . . . ⊂ An ), m is said to be
consonant.
Pl is then a possibility measure, i.e.,

Pl(A ∪ B) = max(Pl(A),Pl(B))

for all A,B ⊆ Ω.
We have

Pl(A) = max
ω∈A

Pl({ω}) for all A ⊆ Ω.
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Theory of belief functions: a brief introduction

Dempster’s rule

Let m1 and m2 be two mass functions induced by independent pieces of
evidence.
Their orthogonal sum is the mass function m1 ⊕m2 defined by

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C)

for all A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C)

is the degree of conflict.
⊕ is commutative, associative, and m? is its single neutral element.
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Theory of belief functions: a brief introduction

Belief-probability transformation

It may be useful to transform a mass function m into a probability
distribution for approximation or decision-making.
Plausibility-probability transformation

pm(ω) =
Pl({ω})∑

ω∈Ω Pl({ω})

Property:
pm1⊕m2 = pm1 ⊕ pm2
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Theory of belief functions: a brief introduction

Decision

Given a normalized mass function m, how to select an element or a
subset of Ω?
Several solutions: for instance, choose ω with the largest degree of belief
Bel({ω}) or the largest plausibility Pl({ω}).
Interval dominance:

Bel({ω})	 Pl({ω})	 Bel({ω�})	 Pl({ω�})	

ω is dominated by ω′ iff Pl({ω}) < Bel({ω′})
We may select the set A∗ of possibilities ω that are dominated by no other
possibility ω′.
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Theory of belief functions: a brief introduction

Main ideas

The theory of belief function combines sets with probabilities, by
assigning basic probabilities to focal sets.
A mass function can be seen as a generalized set or as a generalized
probability distribution.
Possibility theory is also recovered as a special case, when the focal sets
are nested.
A mass function can be transformed into

a probability distribution,
an element of Ω, or
a subset of Ω.
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Evidential clustering
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Evidential clustering Credal partition

Outline

1 Theory of belief functions: a brief introduction

2 Evidential clustering
Credal partition
Summarization of a credal partition
Relational representation of a credal partition

3 Algorithms
EVCLUS
Handling a large number of clusters
Constrained evidential clustering

4 Comparing and combining the results of soft clustering algorithms
Credal Rand index
Combining clustering structures

Thierry Denœux Evidential clustering ISIS 2017, Daegu 19 / 77



Evidential clustering Credal partition

Evidential clustering

Let O = {o1, . . . ,on} be a set of n objects and Ω = {ω1, . . . , ωc} be a set
of c groups (clusters).
Each object oi belongs to at most one group.
Evidence about the group membership of object oi is represented by a
mass function mi on Ω:

for any nonempty set of clusters A ⊆ Ω, mi (A) is the degree of support given
to the proposition “oi belongs to one of the clusters in A”
mi (∅) measures the support given to the proposition “oi does not belong to
any of the c groups”

The n-tuple M = (m1, . . . ,mn) is called a credal partition.
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Evidential clustering Credal partition

Example

−5 0 5 10

−2
0

2
4

6
8
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Butterfly data

x1

x 2

1
2
3
4

5 6 7
8
9
10

11

12

Credal partition

∅ {ω1} {ω2} {ω1, ω2}
m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Evidential clustering Credal partition

Relationship with other clustering structures

Hard	par''on	

Fuzzy	par''on	 Possibilis'c	par''on	 Rough	par''on	

Credal	par''on	

mi	certain	

mi	Bayesian	 mi	consonant	 mi	logical	

More	general	

Less	general	
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Evidential clustering Credal partition

Rough clustering as a special case

Assume that each mi is logical, i.e., mi (Ai ) = 1 for some Ai ⊆ Ω, Ai 6= ∅.
We can then define the lower and upper approximations of cluster ωk as

ωk = {oi ∈ O|Ai = {ωk}} , ωk = {oi ∈ O|ωk ∈ Ai}.

The membership values to the lower and upper approximations of cluster
ωk are uik = Beli ({ωk}) and uik = Pli ({ωk}).

m({ω1})=1( m({ω1, ω2})=1( m({ω2})=1(

Lower(
approxima4ons(

Upper(
approxima4ons(

ω1
L( ω2

L( ω2
U(ω1

U(
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Evidential clustering Summarization of a credal partition
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Evidential clustering Summarization of a credal partition

Summarization of a credal partition

Hard	par''on	

Fuzzy	par''on	 Possibilis'c	par''on	 Rough	par''on	

Credal	par''on	
More	complex	

Less	complex	

interval	dominance	
or	maximum	mass	plausibility		

of	singletons	

maximum	
plausibility	maximum	

probability	

plausibility-proba.		
transforma'on	
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Evidential clustering Summarization of a credal partition

From evidential to rough clustering

For each i , let Ai ⊆ Ω be the set of non dominated clusters

Ai = {ω ∈ Ω|∀ω′ ∈ Ω,Bel∗i ({ω′}) ≤ Pl∗i ({ω})},

where Bel∗i and Pl∗i are the normalized belief and plausibility functions.
Lower approximation:

uik =

{
1 if Ai = {ωk}
0 otherwise.

Upper approximation:

uik =

{
1 if ωk ∈ Ai

0 otherwise.

The outliers can be identified separately as the objects for which
mi (∅) ≥ mi (A) for all A 6= ∅.
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Evidential clustering Relational representation of a credal partition
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Evidential clustering Relational representation of a credal partition

Relational representation of a hard partition

A hard partition can be represented equivalently by
the n × c membership matrix U = (uik ) or
an n × n relation matrix R = (rij ) representing the equivalence relation

rij =

{
1 if oi and oj belong to the same group
0 otherwise.

The relational representation R is invariant under renumbering of the
clusters, and is thus more suitable to compare or combine several
partitions.
What is the counterpart of matrix R in the case of a credal partition?
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Evidential clustering Relational representation of a credal partition

Pairwise representation

Let M = (m1, . . . ,mn) be a credal partition.
For a pair of objects {oi ,oj}, let Qij be the question “Do oi and oj belong
to the same group?” defined on the frame Θij = {Sij ,¬Sij}.
Θij is a coarsening of Ω2.

ω1	 ω2	 ω3	 ω4	

ω1	

ω2	

ω3	

ω4	

Ω	

Ω	

Sij	

Given mi and mj on Ω, a mass function mij on
Θij can be computed as follows:

1 Extend mi and mj to Ω2

2 Combine the extensions of mi and mj by
the unnormalized Dempster’s rule

3 Compute the restriction of the combined
mass function to Θij
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Evidential clustering Relational representation of a credal partition

Pairwise mass function

Mass function:

mij (∅) = mi (∅) + mj (∅)−mi (∅)mj (∅)

mij ({Sij}) =
c∑

k=1

mi ({ωk})mj ({ωk})

mij ({¬Sij}) = κij −mij (∅)

mij (Θij ) = 1− κij −
∑

k

mi ({ωk})mj ({ωk})

where κij is the degree of conflict between mi and mj .
In particular,

Plij ({Sij}) = 1− κij

Plij ({¬Sij}) = 1−mij (∅)−
∑

k

mi ({ωk})mj ({ωk})

Return to CEVCLUS
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Evidential clustering Relational representation of a credal partition

Relational representation of a credal partition

Let M = (m1, . . . ,mn) be a credal partition.
The tuple R = (mij )1≤i<j≤n is called the relational representation of credal
partition M.

M = (m1,m2,m3,m4,m5) −→ R =


1 2 3 4 5

1 · m12 m13 m14 m15
2 · · m23 m24 m25
3 · · · m34 m35
4 · · · · m45
5 · · · · ·


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Algorithms
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Algorithms

Evidential clustering algorithms

1 Evidential c-means (ECM): (Masson and Denoeux, 2008):
Attribute data
HCM, FCM family

2 EK-NNclus (Denoeux et al, 2015)
Attribute or proximity data
Searches for the most plausible partition of a dataset

3 EVCLUS (Denoeux and Masson, 2004; Denoeux et al., 2016):
Attribute or proximity (possibly non metric) data
Multidimensional scaling approach
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Algorithms EVCLUS
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Algorithms EVCLUS

Learning a Credal Partition from proximity data

Problem: given the dissimilarity matrix D = (dij ), how to build a
“reasonable” credal partition ?
We need a model that relates cluster membership to dissimilarities.
Basic idea: “The more similar two objects, the more plausible it is that
they belong to the same group”.
How to formalize this idea?
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Algorithms EVCLUS

Formalization

Let mi and mj be mass functions regarding the group membership of
objects oi and oj .
We have seen that the plausibility that objects oi and oj belong to the
same group is

Plij ({Sij}) =
∑

A∩B 6=∅

mi (A)mj (B) = 1− κij

where κij = degree of conflict between mi and mj .
Problem: find a credal partition M = (m1, . . . ,mn) such that larger
degrees of conflict κij correspond to larger dissimilarities dij .
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Algorithms EVCLUS

Cost function

Approach: minimize the discrepancy between the dissimilarities dij and
the degrees of conflict κij .
Cost (stress) function:

J(M) =
∑
i<j

(κij − ϕ(dij ))2

where ϕ is an increasing function from [0,+∞) to [0,1], for instance

ϕ(d) = 1− exp(−γd2).

J(M) can be minimized efficiently using an Iterative Row-wise Quadratic
Programming (IRQP) algorithm.
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Algorithms EVCLUS

Butterfly example
Credal partition
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Algorithms EVCLUS

Butterfly example
Shepard diagram
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Algorithms EVCLUS

Example with a four-class dataset (2000 objects)
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Algorithms EVCLUS

Modification for large datasets

EVCLUS requires to store the whole dissimilarity matrix: it is inapplicable
to large proximity data.
However, there is usually some redundancy in a dissimilarity matrix.
In particular, if two objects o1 and o2 are very similar, then any object o3
that is dissimilar from o1 is usually also dissimilar from o2.
Because of such redundancies, it might be possible to compute the
differences between degrees of conflict and dissimilarities, for only a
subset of randomly sampled dissimilarities.
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Algorithms EVCLUS

New stress function

Let j1(i), . . . , jk (i) be k integers sampled at random from the set
{1, . . . , i − 1, i + 1, . . . ,n}, for i = 1, . . . ,n.
Let Jk the following stress criterion,

Jk (M) =
n∑

i=1

k∑
r=1

(
κi,jr (i) − ϕ(di,jr (i))

)2
.

The calculation of Jk (M) requires only O(nk) operations.
If k can be kept constant as n increases, then time and space
complexities are reduced from quadratic to linear.
This modification makes EVCLUS applicable to large datasets
(∼ 104 − 105 objects and hundreds of classes).
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Algorithms EVCLUS

Example with simulated data (n = 10,000)
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Algorithms Handling a large number of clusters
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Algorithms Handling a large number of clusters

Need to limit the number of focal sets

If no restriction is imposed on the focal sets, the number of parameters to
be estimated in evidential clustering grows exponentially with the number
c of clusters, which makes it intractable unless c is small.
If we allow masses to be assigned to all pairs of clusters, the number of
focal sets becomes proportional to c2, which is manageable for moderate
values of c (say, until 10), but still impractical for larger n.
Idea: assign masses only to pairs of contiguous clusters.
If each cluster has at most q neighbors, then the number of focal sets is
proportional to c.
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Algorithms Handling a large number of clusters

Example
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k = 100
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Algorithms Handling a large number of clusters

Method

Step1: Run a clustering algorithm (e.g., ECM or EVCLUS) with focal
sets of cardinalities 0, 1 and (optionally) c. A credal partition M0
is obtained.

Step 2: Compute the similarity between each pair of clusters (ωj , ω`) as

S(j , `) =
n∑

i=1

plijpli`,

where plij and pli` are the normalized plausibilities that object i
belongs, respectively, to clusters j and `. Determine the set PK
of pairs {ωj , ω`} that are mutual q nearest neighbors.

Step 3: Run the clustering algorithm again, starting from the previous
credal partition M0, and adding as focal sets the pairs in PK .
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Algorithms Handling a large number of clusters

Pairs of mutual neighbors with q = 1
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Algorithms Handling a large number of clusters

Pairs of mutual neighbors with q = 2
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Algorithms Handling a large number of clusters

Initial credal partitionM0
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Algorithms Handling a large number of clusters

Final credal partition (q = 1)
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Thierry Denœux Evidential clustering ISIS 2017, Daegu 51 / 77



Algorithms Constrained evidential clustering
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Algorithms Constrained evidential clustering

Constrained EVCLUS

In some cases, we may have some prior knowledge about the group
membership of some objects.
Such knowledge may take the form of instance-level constraints of two
kinds:

1 Must-link (ML) constraints, which specify that two objects certainly belong to
the same cluster

2 Cannot-link (CL) constraints, which specify that two objects certainly belong
to different clusters

How to take into account such constraints?

Thierry Denœux Evidential clustering ISIS 2017, Daegu 53 / 77



Algorithms Constrained evidential clustering

Modified cost-function

To take into account ML and CL constraints, we can modify the cost
function of k -EVCLUS as

JkC(M) = η

n∑
i=1

k∑
r=1

(
κi,jr (i) − δi,jr (i)

)2
+

ξ

2(|ML|+ |CL|)
(JML + JCL),

with

JML =
∑

(i,j)∈ML

Plij ({¬Sij}) + 1− Plij ({Sij}),

JCL =
∑

(i,j)∈CL

Plij ({Sij}) + 1− Plij ({¬Sij}),

where
ML and CL are, respectively, the sets of ML and CL constraints.
Plij ({¬Sij}) and Plij ({¬Sij}) are computed from pairwise mass function mij

Go back to pairwise mass functions
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Algorithms Constrained evidential clustering

Results
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Algorithms Constrained evidential clustering

Constraint expansion

(a) A CL constraint (oi ,oj ) ∈ CL, with the K -neighborhoods NK (oi ) and
NK (oj ) of oi and oj , respectively (K = 2). (b) The set PK (oi ,oj ) of pairs of a
neighbor of oi and a neighbor of oj . (c) The K = 2 new CL constraints.
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Algorithms Constrained evidential clustering

Results
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Comparing and combining the results of soft clustering algorithms

Exploiting the generality of evidential clustering

We have seen that the concept of credal partition subsumes the main
hard and soft clustering structures.
Consequently, methods designed to evaluate or combine credal partitions
can be used to evaluate or combine the results of any hard or soft
clustering algorithms.
Two such methods will be described:

1 A generalization of the Rand index to compute the distance between two
credal partitions;

2 A method to combine credal partitions.
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Comparing and combining the results of soft clustering algorithms Credal Rand index

Rand index

The Rand index is a widely used measure of similarity between two hard
partitions.
It is defined as

RI =
a + b

n(n − 1)/2

with
a = number of pairs of objects that are grouped together in both partitions
b = number of pairs of objects that are assigned to different clusters in both
partitions.

How to generalize the Rand Index to credal partitions?
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Comparing and combining the results of soft clustering algorithms Credal Rand index

Belief distance

Let R = (mij ) and R′ = (m′ij ) be the relational representations of two
credal partitions.
The assess the distance between R and R′, we can average the
distances between the mij ’s and m′ij ’s.
Belief distance between mass functions:

δB(mij ,m′ij ) =
1
2

∑
A⊆Θ

| Belij (A)− Bel ′ij (A) |,

where Belij and Bel ′ij are, respectively, the belief functions associated to
mij and m′ij .
Property: δB(mij ,m′ij ) ∈ [0,1].
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Comparing and combining the results of soft clustering algorithms Credal Rand index

Similarity index

We define the Credal Rand Index between two credal partitions as

CRI(R,R′) = 1−
∑

i<j δB(mij ,m′ij )
n(n − 1)/2

.

Properties:
0 ≤ CRI(R,R′) ≤ 1
CRI = RI when the two partitions are hard
Symmetry: CRI(R,R′) = CRI(R′,R)
If R = R′, then CRI(R,R′) = 1
1− CRI is a metric in the space R of relational representations

The CRI can be used to compare the results of any two hard or soft
clustering algorithms.
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Comparing and combining the results of soft clustering algorithms Credal Rand index

Example: Seeds data
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Comparing and combining the results of soft clustering algorithms Credal Rand index

Clustering algorithms

algorithm R function R package
ECM ecm evclust

EVCLUS kevclus evclust
HCM kmeans stats

Hierarchical clust. hclust stats
(Ward distance)

FCM FKM fclust
Fuzzy k -medoids FKM.med fclust
π-Rough k -means RoughKMeans_PI SoftClustering

EM Mclust mclust
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Comparing and combining the results of soft clustering algorithms Credal Rand index

Result: MDS configuration
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Motivations for combining clustering structures

Let M1, . . . ,MN be an ensemble of N credal partitions generated by hard
or soft (fuzzy, rough, etc.) clustering structures.
It may be useful to combine these credal partitions:

to increase the chance of finding a good approximation to the true partition,
or
to highlight invariant patterns across the clustering structures.

Combination is easily carried out using pairwise representations.
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Combination method

M1	

M2	

…
	

Mk	

R1	
R2	

…
	

Rk	

combina/on	 R*	 M*	

Credal		
par//ons	

Pairwise	
representa/ons	

Combined	credal		
par//on	

The combined credal partition can be defined as

M∗ = arg max
M

CRI(R(M),R∗),

where R(M) denotes the relational representation of M.
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Example: seeds data
Hard clustering results
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Example: seeds data
Fuzzy clustering results
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Comparing and combining the results of soft clustering algorithms Combining clustering structures

Example: seeds data
Combined credal partition (Dubois-Prade rule)
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Conclusions

Summary

The Dempster-Shafer theory of belief functions provides a rich and
flexible framework to represent uncertainty in clustering.
The concept of credal partition encompasses the main existing soft
clustering concepts (fuzzy, possibilistic, rough partitions).
Efficient algorithms exist, allowing one to generate credal partitions from
attribute or proximity datasets.
These algorithms can be applied to large datasets and large numbers of
clusters (by carefully selecting the focal sets).
Concepts from the theory of belief functions make it possible to compare
and combine clustering structures generated by various soft clustering
algorithms.
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Conclusions

Future research directions

Combining clustering structures in various settings
distributed clustering,
combination of different attributes, different algorithms,
etc.

Handling huge datasets (several millions of objects)
Criteria for selecting the number of clusters
Semi-supervised clustering
Clustering imprecise or uncertain data
Applications to image processing, social network analysis, process
monitoring, etc.
Etc...
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Conclusions

The evclust package

https://cran.r-project.org/web/packages
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