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Motivation

Generality of belief functions

@ The theory of Belief Functions (Dempster-Shafer theory) is
a rich framework for representing and reasoning with
uncertainty.

@ The expressive power of BF theory comes from the fact
that it generalizes both set-valued (logical) and
probabilistic representations of uncertainty.

@ As a consequence, it allows us to express various kinds of
uncertainty such as aleatory and epistemic uncertainty.
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Motivation

Complexity of belief functions

@ The generality and representation power of belief functions
comes at a cost: a higher complexity than probabilistic
reasoning.

@ In the worst case, representing beliefs on a finite domain
(frame of discernment) of size K requires the storage of
2K — 1 numbers, and operations on belief functions have
exponential complexity.

@ The application of belief functions to problems involving
very large frames of discernment poses severe difficulties.

@ What do we mean by “very large frames”? @ eeeeeeeee
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Problems with “very large frames”

Multi-label classification

@ Problems where learning instances may belong to several
classes at the same time.

@ For instance, in image retrieval, an image may belong to
several semantic classes such as “beach”, “urban”,
“mountain”, etc.

e If © ={04,...,0k} denotes the set of classes, the class
label of an instance may be represented by a variable X
taking values in Q = 2°.

@ Expressing partial knowledge of X in the Dempster-Shafer
framework may imply storing 22" numbers. Z=ute

Compiégne.

K 2 3 4 5 6 7 8 @
22" 16 256 65536 4.3¢9 1.8e19 3.4e38 1.2e77
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Problems with “very large frames”

Clustering

@ Problem: find a partition of a set E of n objects.

@ Let p* denote the “true” partition (assumed to exist).

@ Variable p* takes values in the set P(E) of partitions of E,
with size s,.

@ A clustering algorithm can be seen as providing an item of
evidence about p*.

@ Expressing such evidence in the Dempster-Shafer
framework implies working with sets of partitions.

@ There are 2% such sets.

n 3 4 5 6 7 = utc__

Compiégne.

Sn 5 15 52 203 876
2% 23 32768 4.5e15 1.3e61 5.0e263
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Approach

@ Problem: How can the Dempster-Shafer framework be
applied to such problems involving huge frames of
discernment?

@ Basic idea: exploit a special structure of the frame of
discernment so as to restrict the form of belief functions,
without losing too much flexibility.

@ Outline of the approach:

@ Consider a partial ordering < of the frame Q such that
(2, <) is a lattice;
@ Define the set of propositions as the set Z c 2% of intervals

of that lattice; = 2L
© Apply the Dempster-Shafer calculus in the lattice (Z, C). @

Thierry Denceux
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Dempster-Shafer calculus

Outline

@ Dempster-Shafer calculus
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Dempster-Shafer calculus

0000

Belief representation

Mass functions

Definition

@ A (normalized) mass function on a finite set Q2 is a function
m: 22 — [0, 1] such that m(}) = 0 and

> m(A)=1.

ACQ

@ The subsets A of Q such that m(A) > 0 are called the focal
elements of m.

@ A mass function mis often used to model a piece of
evidence about a variable X.

Compiégne

@ The quantity m(A) can be interpreted as a measure of the oo

belief that is committed exactly to the proposition X € A. @
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Dempster-Shafer calculus
[o] lele}

Belief representation

Example

@ A murder has been committed. There are three suspects:
Q = {Peter, John, Mary}.

@ A witness saw the murderer going away, but he is
short-sighted and he only saw that it was a man. We know
that the witness is drunk 20 % of the time.

@ This piece of evidence can be represented by

m({Peter, John}) = 0.8,

m(Q)=0.2
@ The mass 0.2 is not committed to {Mary}, because the k=S
testimony does not accuse Mary at all! @
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Dempster-Shafer calculus
[e]e] le}

Belief representation

Belief function

@ Definition:
bel(A) =Y m(B),vAC Q.
BCA
@ Interpretation: bel(A) = total degree of justified belief in A.
@ Conversely,

m(A) = > (-1)"\Blpel(B)

BCA

(mis called the Mdébius transform of bel).
@ m and bel are thus two equivalent representations of a  ==utc

chchchchchchchch

belief state about a variable X. (There are others:
plausibility, commonality, ...)
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Dempster-Shafer calculus
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Belief representation

Characterization of belief functions

@ For every function f from 2 to [0, 1] such that f(}) = 0 and
f(©2) =1, the following conditions are known to be
equivalent (Shafer, 1976):

@ The Mébius transform m of f is a positive;
@ s totally monotone, i.e., for any k > 2 and for any family
A1,...,Ak in 29,

k
i=1 DAIC{1,..., k} iel
/Utc

@ A belief function can be characterized by any one of these

two propertles. @
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Dempster-Shafer calculus
L 1)

Combination

Dempster’s rule

@ Let my and m» be two mass functions on Q induced by two
distinct items of evidence. How should they be combined?

@ Dempster’s rule:

11? ZBOC:A my (B)mg(C) if A 75 0

(m & me)(A) = {o if A=

with £ = > g c_g M1 (B)mo(C): degree of conflict.
@ This rule is commutative, associative, and admits the
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Dempster-Shafer calculus
oe

Combination

Conjunctive combination

Example

@ We have my({Peter, John}) = 0.8, m(Q2) =0.2.

@ New piece of evidence: the murderer is blond,
confidence=0.6 — mo({John, Mary}) = 0.6, m»(Q2) = 0.4.

{Peter, John} Q
0.8 0.2
{John, Mary} {John} {John, Mary}
0.6 0.48 0.12
Q {Peter, John} Q
0.4 0.32 0.08 =
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Exploiting a lattice structure

Outline

@ Exploiting a lattice structure
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Exploiting a lattice structure
[ JeJele]

Lattices

Lattices

Definitions

@ Let L be afinite set and < a partial ordering on L. (L, <) is
called a poset.

@ We say that (L, <) is a lattice if, for every x, y € L, there is
a unique greatest lower bound (denoted x A y) and a
unique least upper bound (denoted x V y).

@ Operations A and V are called the meet and join
operations, respectively.

@ For finite lattices, the greatest element (denoted T) and the
least element (denoted 1) always exist. = utc__

.........
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Exploiting a lattice structure
0@00

Lattices

Example

o= utc




Exploiting a lattice structure
[e]e] o]

Lattices

Lattice intervals

@ Let (L, <) be lattice.
@ A (lattice) interval of L is defined as

[a,b]={xella<x<b}

for some aand bin L.

@ Let 7 C 2L be the set of intervals, including the empty set
of L.
@ The poset (Z, C) is a lattice with

@ meet = intersection;
e jointdefined by [a,b] LI [c,d] =[aAc,bV d]; Sute

Compiégne.

o least element = (),
e greatest element = L. @
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Exploiting a lattice structure
[e]e]e] ]

Lattices

Example

{x,y} {x,z} {y.t} {z,t}

U e

\/ R IR R
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Exploiting a lattice structure
[ JeJele]

Extension of Belief functions on lattices

Belief functions on lattices

@ Belief functions are usually defined on the Boolean lattice
(292, 0).

@ However, they can be defined on any lattice, not
necessarily Boolean (Grabisch, 2009).

@ Most of the above definitions and formula can be
translated into this very general setting.
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Exploiting a lattice structure
[e] Tele]

Extension of Belief functions on lattices

Mass and belief functions

@ Let (L, <) be afinite lattice.

@ A (normalized) mass function on L is a function L — [0, 1]
such that m(L) = 0 and

D m(x)=1.
xeL

@ Corresponding belief function:

bel(x) =Y m(y), VxelL

y<x

Compiégne
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Exploiting a lattice structure
[e]e] o]

Extension of Belief functions on lattices

Equivalence of representations

@ m can be recovered from bel:

m(x) = uly. x)bel(y),

y<x

where u(x,y) : L?> — R is the Mébius function, which is
uniquely defined for each poset (L, <).

@ A belief function is totally monotone, but the converse is
not true in general.
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Exploiting a lattice structure
[e]e]e] ]

Extension of Belief functions on lattices

Dempster’s rule

@ Dempster’s rule can be defined as in the Boolean case:

1— Zy/\z X ( )m2( ) if x # L

(my © m)(x) = 0 e

with s =3_, . mi(y)me(2).
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Exploiting a lattice structure
[ ]

Belief functions with lattice intervals as focal elements

Belief functions in (Z, C)

@ Let Q be the domain of a variable X, with || = K.

@ If Q has a lattice structure for some partial ordering <, then
uncertain knowledge about X may be encoded as a belief
function on the lattice (Z, C) of intervals of (2, <).

@ As the cardinality of Z is at most proportional to K2, all the
operations of Demspter-Shafer theory can be performed in
polynomial time (instead of exponential when working in
(2%,9)).
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Multi-label classification

Outline

© Multi-label classification
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Multi-label classification
0000

Evidence on Set-valued Variables

Disjunctive vs conjunctive variables

@ Let © be a finite domain. A variable X may take
@ One and only one value in ©: disjunctive variable (usual
case);
@ Several values in © simultaneously: conjunctive variable.
@ For instance, © may be a set of faults, and X the faults
actually occurring at a given time (under the assumption
that multiple faults can occur).
@ The Dempster-Shafer framework is usually applied to
express partial knowledge about disjunctive variables.

@ How to extend it to conjunctive variables? = U

Dempster-Shafer reasoning in large partially ordered sets Thierry Denceux



Multi-label classification
(o] Jelele]

Evidence on Set-valued Variables

Proposed framework

@ X takes values in Q = 2°.

@ Standard approach: define belief functions on (29, C)
(intractable).

@ Proposed approach: exploit the lattice structure induced by
the ordering C in Q and apply the above general

framework.
@ The intervals of the lattice (2, C) are sets of subsets of ©
of the form:
[A,B|]={CCOACCCB} [
for some subsets A and B of ©. @
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Multi-label classification
[e]e] Tele]

Evidence on Set-valued Variables

Interpretation

@ A certain piece of information X € [A, B] tell us that the
unknown set X surely contains all elements of A, and
possibly contains elements of B.

@ An uncertain piece of information about the unknown set X
can be modeled by a mass function with focal elements of
the form [A;, Bi],i=1,...,n.
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Multi-label classification
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Evidence on Set-valued Variables

Example

@ Let© ={a,b,c,d} be a set of faults.

@ Item of evidence 1: ais surely present and {b, ¢} may also
be present, with confidence 0.7. This is represented by

mi([{a},{a b,c}]) =0.7, m([le,©]) =0.3

@ Item of evidence 2: cis present and a, b may also be
present, with confidence 0.8. This is represented by

mz([{c},{a b,c}]) =08, my([le,O]) =0.2
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Multi-label classification
0000e

Evidence on Set-valued Variables

Example

Combination

@ Conjunctive combination

[{3}7 {av b7 C}] [®@7 @]
0.7 0.3
[{c},{a,b,c}] | [{a,c},{a b,c}] | [{c},{a b,c}]
0.8 0.48 0.12
[@@’ @] [{a}v {a? b? C}] [®@7 @]
0.2 0.32 0.08
@ Based on this evidence, what is our belief that fault a is

present?

Compiégne

bel([{a},©]) = 0.48 +0.32 + 0.08 = 0.88 @
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Multi-label classification
0000000

Multi-label Classification

Multi-label classification
Example (Trohidis et al. 2008)

@ Problem: Predict the emotions generated by a song.

@ 593 songs were annotated by experts according to the
emotions they generate.

@ The emotions were: amazed-surprise, happy-pleased,
relaxing-calm, quiet-still, sad-lonely and angry-fearful.
Each emotion corresponds to a class.

@ Each song was

e described by 72 features;
o labeled with one or several emotions (classes).

@ The dataset was split in a training set of 391 instances and-ic

nnnnnnnnnn

a test set of 202 instances.
@ How to learn a classifier from such data? @
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Multi-label classification
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Multi-label Classification

Multi-label classification

Learning data

@ In multi-label classification problems, data are usually to
have the following form:

L={(X1,A1),...,(Xn,An)}

where
e X; € R% is a feature vector for instance i
e A; is the set of classes that apply to instance i.
@ When data are labeled by one or several experts, this
format does not allow us to express uncertainty on class __
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Multi-label classification
[e]e] lelele]e]

Multi-label Classification

Multi-label classification

Imprecise labels

@ More general form considered here:

L= {(xh [A1 , B1]), RN (Xn, [Ana Bn])}

where
e A;is the set of classes that certainly apply to instance i;
e B;is the set of classes that possibly apply to that instance.
@ In a multi-expert context, A; may be the set of classes
assigned to instance i by all experts, and B; the set of
classes assigned by some experts. = utc |

.........
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Multi-label classification
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Multi-label Classification

Multi-label evidential k-NN rule

Construction of mass functions

@ Generalization of the evidential k-NN rule (Denceux,1995).

@ Let NVk(x) be the set of k nearest neighbors of a new
instance x, according to some distance measure d.

@ Let x; € Ni(x) with label [A;, Bj]. This item of evidence can
be described by the following mass function in (Z, C):

mi([Ai, B) = ¢[d(x,x;)],
mi([0e,©]) = 1—¢[dx,x)],
where ¢ is a decreasing function from [0, +o0) to [0, 1]

such that limy_, ;o ¢(d) = 0.
@ The k mass functions are combined using Dempster’s rule;- ;.

nnnnnnnnnn

SR
X; €Nk (X)
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Multi-label classification
0000e00

Multi-label Classification

Multi-label evidential k-NN rule

Decision

e Let Y be the predicted label set for instance x.

@ To decide whether to include each class 6 € © or not, we
compute

o the degree of belief bel([{0}, ©]) that the true label set Y
contains ¢, and o
o the degree of belief bel([0, {6}]) that it does not contain 6.

@ We then define Y as

Y = {0 € 0] bel([{6},0]) > bel([0, {6}])}.
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Multi-label classification
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Multi-label Classification

Emotions data

Results
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o= utc
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Multi-label Classification

Results on other data sets

Multi-label classification
000000e

Scene
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Ensemble Clustering
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e Ensemble Clustering
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Ensemble Clustering
[ o]

Lattice of Partitions

Partitions of a finite set

Ordering relation

@ In clustering, the frame of discernment is the set of all
partitions of a finite set E, denoted P(E).

@ This set can be partially ordered using the following
relation:

@ A partition p is said to be finer than a partition p’ (or,
equivalently p’ is coarser than p) if the clusters of p can be
obtained by splitting those of p’; we write p < p'.

@ The poset (P(E), <) is a lattice.
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Ensemble Clustering
oe

Lattice of Partitions

Example: lattice of partitions of a four-element set

1234
14/23 1/234 124/3 13/24 123/4 134/2 12/34
1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

W

1/2/3/4
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Ensemble Clustering
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Ensemble Clustering

Ensemble clustering

@ Ensemble clustering aims at combining the outputs of
several clustering algorithms (“clusterers”) to form a single
clustering structure (crisp or fuzzy partition, hierarchy).

@ This problem can be addressed using evidential reasoning
by assuming that:

e There exists a “true” partition p*;

e Each clusterer provides evidence about p*;

e The evidence from multiple clusterers can be combined to
draw plausible conclusions about p*.

@ To implement this scheme, we need to manipulate
Dempster-Shafer mass functions, the focal elements of
which are sets of partitions. = u

@ This is feasable by restricting ourselves to intervals of the@
lattice (P(E), =).
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Ensemble Clustering
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Ensemble Clustering

Method

Mass construction and combination

@ Compute r partitions py, ..., pr with large numbers of
clusters using, e.g., the FCM algorithm.

@ For each partition px, compute a validity index a.

@ The evidence from clusterer k can be represented as a
mass function

{ m([pk, PE]) = o
mk([po, Pe]) = 1 — .

@ The r mass functions are combined using Dempster’s rule:

Compiégne

m=mao...om @
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Ensemble Clustering
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Ensemble Clustering

Method

Exploitation of the results

@ Let p; denote the partition with (n — 1) clusters, in which
objects i and j are clustered together.

@ The interval [pj, pe] is the set of all partitions in which
objects i and j are clustered together.

@ The degree of belief in the hypothesis that / and j belong to
the same cluster is then:

Belj = bel(lpj,pel) = Y m(lp,. Pl)
[P, Pk [Pj:PE]

@ Matrix Bel = (Bel;) can be considered as a new similarity==—utc__

matrix and can be processed by, e.g., a hierarchical
clustering algorithm.
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Ensemble Clustering
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Ensemble Clustering

Results

Individual partitions

6 clusters (a=0.228) 7 clusters (0=0.276) 8 clusters (0=0.258)

°
-
N
©
°
-
N
©
°
-
N
©

9 clusters (a=0.282) 10 clusters (¢=0.291) 11 clusters (a=0.320)
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Ensemble Clustering
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Ensemble Clustering

Results
Synthesis
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Ensemble Clustering
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Ensemble Clustering

Distributed clustering
8D5K data (Strehl and Gosh, 2002)

Gaussian data, 8 features, 5 clusters

(0=0.0095)

0.8
0.6
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0.2

-0.2

-0.4
-1
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Ensemble Clustering
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Ensemble Clustering

Distributed clustering
8D5K data (Strehl and Gosh, 2002)

(2=0.0047)
B

-0.8

o= utc
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Ensemble Clustering
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Ensemble Clustering

Distributed clustering
8D5K data (Strehl and Gosh, 2002)

(2=0.0062)
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0.4

0.2

-0.2
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Ensemble Clustering
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Ensemble Clustering

Distributed clustering
Method

@ Here, each clusterer provides a partition py that tends to
be coarser than the true partition py.

@ The output from clusterer k can be represented as a mass
function

Mk ([po, PE]) = 1 — ax.

@ As before, the mass functions are combined and
synthesized in the form of a similarity matrix.

{ Mk ([Po, Pk]) =
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Ensemble Clustering
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Ensemble Clustering

Distributed clustering

Consensus
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Ensemble Clustering
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Ensemble Clustering

Conclusion

@ The exponential complexity of operations in the theory of
belief functions has long been prevented its application to
very large frames of discernment.

@ When the frame of discernment has a lattice structure, it is
possible to restrict the set of events to intervals in that
lattice.

@ This approach drastically reduces the complexity of the
Dempster-Shafer calculus and makes it possible to define
and manipulate belief functions in very large frames.

@ This approach opens the way to the application of
Dempster-Shafer theory to computationally demanding = U

Machine Learning tasks such as multi-label classification @
and ensemble clustering.
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