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Motivation
Generality of belief functions

The theory of Belief Functions (Dempster-Shafer theory) is
a rich framework for representing and reasoning with
uncertainty.
The expressive power of BF theory comes from the fact
that it generalizes both set-valued (logical) and
probabilistic representations of uncertainty.
As a consequence, it allows us to express various kinds of
uncertainty such as aleatory and epistemic uncertainty.
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Motivation
Complexity of belief functions

The generality and representation power of belief functions
comes at a cost: a higher complexity than probabilistic
reasoning.
In the worst case, representing beliefs on a finite domain
(frame of discernment) of size K requires the storage of
2K − 1 numbers, and operations on belief functions have
exponential complexity.
The application of belief functions to problems involving
very large frames of discernment poses severe difficulties.
What do we mean by “very large frames”?
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Problems with “very large frames”
Multi-label classification

Problems where learning instances may belong to several
classes at the same time.
For instance, in image retrieval, an image may belong to
several semantic classes such as “beach”, “urban”,
“mountain”, etc.
If Θ = {θ1, . . . , θK} denotes the set of classes, the class
label of an instance may be represented by a variable X
taking values in Ω = 2Θ.
Expressing partial knowledge of X in the Dempster-Shafer
framework may imply storing 22K

numbers.

K 2 3 4 5 6 7 8
22K

16 256 65536 4.3e9 1.8e19 3.4e38 1.2e77
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Problems with “very large frames”
Clustering

Problem: find a partition of a set E of n objects.
Let p∗ denote the “true” partition (assumed to exist).
Variable p∗ takes values in the set P(E) of partitions of E ,
with size sn.
A clustering algorithm can be seen as providing an item of
evidence about p∗.
Expressing such evidence in the Dempster-Shafer
framework implies working with sets of partitions.
There are 2sn such sets.

n 3 4 5 6 7
sn 5 15 52 203 876
2sn 23 32768 4.5e15 1.3e61 5.0e263
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Approach

Problem: How can the Dempster-Shafer framework be
applied to such problems involving huge frames of
discernment?
Basic idea: exploit a special structure of the frame of
discernment so as to restrict the form of belief functions,
without losing too much flexibility.
Outline of the approach:

1 Consider a partial ordering ≤ of the frame Ω such that
(Ω,≤) is a lattice;

2 Define the set of propositions as the set I ⊂ 2Ω of intervals
of that lattice;

3 Apply the Dempster-Shafer calculus in the lattice (I,⊆).
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Belief representation

Mass functions
Definition

A (normalized) mass function on a finite set Ω is a function
m : 2Ω → [0,1] such that m(∅) = 0 and∑

A⊆Ω

m(A) = 1.

The subsets A of Ω such that m(A) > 0 are called the focal
elements of m.
A mass function m is often used to model a piece of
evidence about a variable X .
The quantity m(A) can be interpreted as a measure of the
belief that is committed exactly to the proposition X ∈ A.
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Belief representation

Example

A murder has been committed. There are three suspects:
Ω = {Peter , John,Mary}.
A witness saw the murderer going away, but he is
short-sighted and he only saw that it was a man. We know
that the witness is drunk 20 % of the time.
This piece of evidence can be represented by

m({Peter , John}) = 0.8,

m(Ω) = 0.2

The mass 0.2 is not committed to {Mary}, because the
testimony does not accuse Mary at all!

Dempster-Shafer reasoning in large partially ordered sets Thierry Denœux



Dempster-Shafer calculus Exploiting a lattice structure Multi-label classification Ensemble Clustering

Belief representation

Belief function

Definition:
bel(A) =

∑
B⊆A

m(B), ∀A ⊆ Ω.

Interpretation: bel(A) = total degree of justified belief in A.
Conversely,

m(A) =
∑
B⊆A

(−1)|A\B|bel(B)

(m is called the Möbius transform of bel).
m and bel are thus two equivalent representations of a
belief state about a variable X . (There are others:
plausibility, commonality, ...)
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Belief representation

Characterization of belief functions

For every function f from 2Ω to [0,1] such that f (∅) = 0 and
f (Ω) = 1, the following conditions are known to be
equivalent (Shafer, 1976):

1 The Möbius transform m of f is a positive;
2 f is totally monotone, i.e., for any k ≥ 2 and for any family

A1, . . . ,Ak in 2Ω,

f

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1f

(⋂
i∈I

Ai

)
.

A belief function can be characterized by any one of these
two properties.
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Combination

Dempster’s rule

Let m1 and m2 be two mass functions on Ω induced by two
distinct items of evidence. How should they be combined?
Dempster’s rule:

(m1 ⊕m2)(A) =

{
1

1−κ
∑

B∩C=A m1(B)m2(C) if A 6= ∅
0 if A = ∅

with κ =
∑

B∩C=∅m1(B)m2(C): degree of conflict.
This rule is commutative, associative, and admits the
vacuous mass function (m(Ω) = 1) as neutral element.
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Combination

Conjunctive combination
Example

We have m1({Peter , John}) = 0.8, m1(Ω) = 0.2.
New piece of evidence: the murderer is blond,
confidence=0.6→ m2({John,Mary}) = 0.6, m2(Ω) = 0.4.

{Peter , John} Ω
0.8 0.2

{John,Mary} {John} {John,Mary}
0.6 0.48 0.12
Ω {Peter , John} Ω

0.4 0.32 0.08
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Lattices

Lattices
Definitions

Let L be a finite set and ≤ a partial ordering on L. (L,≤) is
called a poset.
We say that (L,≤) is a lattice if, for every x , y ∈ L, there is
a unique greatest lower bound (denoted x ∧ y ) and a
unique least upper bound (denoted x ∨ y ).
Operations ∧ and ∨ are called the meet and join
operations, respectively.
For finite lattices, the greatest element (denoted >) and the
least element (denoted ⊥) always exist.
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Lattices

Example

x

y z

t
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Lattices

Lattice intervals

Let (L,≤) be lattice.
A (lattice) interval of L is defined as

[a,b] = {x ∈ L|a ≤ x ≤ b}

for some a and b in L.
Let I ⊆ 2L be the set of intervals, including the empty set
of L.
The poset (I,⊆) is a lattice with

meet = intersection;
joint defined by [a,b] t [c,d ] = [a ∧ c,b ∨ d ];
least element = ∅L
greatest element = L.
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Lattices

Example

x

y z

t

∅

{x} {y} {z} {t}

{x,y} {x,z} {y,t} {z,t}

Ω
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Extension of Belief functions on lattices

Belief functions on lattices

Belief functions are usually defined on the Boolean lattice
(2Ω,⊆).
However, they can be defined on any lattice, not
necessarily Boolean (Grabisch, 2009).
Most of the above definitions and formula can be
translated into this very general setting.
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Extension of Belief functions on lattices

Mass and belief functions

Let (L,≤) be a finite lattice.
A (normalized) mass function on L is a function L→ [0,1]
such that m(⊥) = 0 and∑

x∈L

m(x) = 1.

Corresponding belief function:

bel(x) =
∑
y≤x

m(y), ∀x ∈ L.
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Extension of Belief functions on lattices

Equivalence of representations

m can be recovered from bel :

m(x) =
∑
y≤x

µ(y , x)bel(y),

where µ(x , y) : L2 → R is the Möbius function, which is
uniquely defined for each poset (L,≤).
A belief function is totally monotone, but the converse is
not true in general.
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Extension of Belief functions on lattices

Dempster’s rule

Dempster’s rule can be defined as in the Boolean case:

(m1 ⊕m2)(x) =

{
1

1−κ
∑

y∧z=x m1(y)m2(z) if x 6= ⊥
0 if x = ⊥

with κ =
∑

y∧z=⊥m1(y)m2(z).
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Belief functions with lattice intervals as focal elements

Belief functions in (I,⊆)

Let Ω be the domain of a variable X , with |Ω| = K .
If Ω has a lattice structure for some partial ordering ≤, then
uncertain knowledge about X may be encoded as a belief
function on the lattice (I,⊆) of intervals of (Ω,≤).
As the cardinality of I is at most proportional to K 2, all the
operations of Demspter-Shafer theory can be performed in
polynomial time (instead of exponential when working in
(2Ω,⊆)).
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Evidence on Set-valued Variables

Disjunctive vs conjunctive variables

Let Θ be a finite domain. A variable X may take
One and only one value in Θ: disjunctive variable (usual
case);
Several values in Θ simultaneously: conjunctive variable.

For instance, Θ may be a set of faults, and X the faults
actually occurring at a given time (under the assumption
that multiple faults can occur).
The Dempster-Shafer framework is usually applied to
express partial knowledge about disjunctive variables.
How to extend it to conjunctive variables?
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Evidence on Set-valued Variables

Proposed framework

X takes values in Ω = 2Θ.
Standard approach: define belief functions on (2Ω,⊆)
(intractable).
Proposed approach: exploit the lattice structure induced by
the ordering ⊆ in Ω and apply the above general
framework.
The intervals of the lattice (Ω,⊆) are sets of subsets of Θ
of the form:

[A,B] = {C ⊆ Θ|A ⊆ C ⊆ B}

for some subsets A and B of Θ.
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Evidence on Set-valued Variables

Interpretation

A certain piece of information X ∈ [A,B] tell us that the
unknown set X surely contains all elements of A, and
possibly contains elements of B.
An uncertain piece of information about the unknown set X
can be modeled by a mass function with focal elements of
the form [Ai ,Bi ], i = 1, . . . ,n.

Dempster-Shafer reasoning in large partially ordered sets Thierry Denœux



Dempster-Shafer calculus Exploiting a lattice structure Multi-label classification Ensemble Clustering

Evidence on Set-valued Variables

Example

Let Θ = {a,b, c,d} be a set of faults.
Item of evidence 1: a is surely present and {b, c} may also
be present, with confidence 0.7. This is represented by

m1([{a}, {a,b, c}]) = 0.7, m1([∅Θ,Θ]) = 0.3

Item of evidence 2: c is present and a,b may also be
present, with confidence 0.8. This is represented by

m2([{c}, {a,b, c}]) = 0.8, m2([∅Θ,Θ]) = 0.2
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Evidence on Set-valued Variables

Example
Combination

Conjunctive combination

[{a}, {a,b, c}] [∅Θ,Θ]
0.7 0.3

[{c}, {a,b, c}] [{a, c}, {a,b, c}] [{c}, {a,b, c}]
0.8 0.48 0.12

[∅Θ,Θ] [{a}, {a,b, c}] [∅Θ,Θ]
0.2 0.32 0.08

Based on this evidence, what is our belief that fault a is
present?

bel([{a},Θ]) = 0.48 + 0.32 + 0.08 = 0.88
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Multi-label Classification

Multi-label classification
Example (Trohidis et al. 2008)

Problem: Predict the emotions generated by a song.
593 songs were annotated by experts according to the
emotions they generate.
The emotions were: amazed-surprise, happy-pleased,
relaxing-calm, quiet-still, sad-lonely and angry-fearful.
Each emotion corresponds to a class.
Each song was

described by 72 features;
labeled with one or several emotions (classes).

The dataset was split in a training set of 391 instances and
a test set of 202 instances.
How to learn a classifier from such data?
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Multi-label Classification

Multi-label classification
Learning data

In multi-label classification problems, data are usually to
have the following form:

L = {(x1,A1), . . . , (xn,An)}

where
xi ∈ Rd is a feature vector for instance i
Ai is the set of classes that apply to instance i .

When data are labeled by one or several experts, this
format does not allow us to express uncertainty on class
labels due to doubt or disagreement between experts.
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Multi-label Classification

Multi-label classification
Imprecise labels

More general form considered here:

L = {(x1, [A1,B1]), . . . , (xn, [An,Bn])}

where
Ai is the set of classes that certainly apply to instance i ;
Bi is the set of classes that possibly apply to that instance.

In a multi-expert context, Ai may be the set of classes
assigned to instance i by all experts, and Bi the set of
classes assigned by some experts.

Dempster-Shafer reasoning in large partially ordered sets Thierry Denœux



Dempster-Shafer calculus Exploiting a lattice structure Multi-label classification Ensemble Clustering

Multi-label Classification

Multi-label evidential k -NN rule
Construction of mass functions

Generalization of the evidential k -NN rule (Denœux,1995).
Let Nk (x) be the set of k nearest neighbors of a new
instance x, according to some distance measure d .
Let xi ∈ Nk (x) with label [Ai ,Bi ]. This item of evidence can
be described by the following mass function in (I,⊆):

mi([Ai ,Bi ]) = ϕ [d(x,xi)] ,

mi([∅Θ,Θ]) = 1− ϕ [d(x,xi)] ,

where ϕ is a decreasing function from [0,+∞) to [0,1]
such that limd→+∞ ϕ(d) = 0.
The k mass functions are combined using Dempster’s rule:

m =
⊕

xi∈Nk (x)

mi
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Multi-label Classification

Multi-label evidential k -NN rule
Decision

Let Ŷ be the predicted label set for instance x.
To decide whether to include each class θ ∈ Θ or not, we
compute

the degree of belief bel([{θ},Θ]) that the true label set Y
contains θ, and
the degree of belief bel([∅, {θ}]) that it does not contain θ.

We then define Ŷ as

Ŷ = {θ ∈ Θ | bel([{θ},Θ]) ≥ bel([∅, {θ}])}.
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Multi-label Classification

Emotions data
Results

Acc = 1
n
∑n

i=1
|Yi∩Ŷi |
|Yi∪Ŷi |
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Multi-label Classification

Results on other data sets
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Lattice of Partitions

Partitions of a finite set
Ordering relation

In clustering, the frame of discernment is the set of all
partitions of a finite set E , denoted P(E).
This set can be partially ordered using the following
relation:
A partition p is said to be finer than a partition p′ (or,
equivalently p′ is coarser than p) if the clusters of p can be
obtained by splitting those of p′; we write p � p′.
The poset (P(E),�) is a lattice.
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Lattice of Partitions

Example: lattice of partitions of a four-element set

1/2/3/4

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

14/23 13/241/234 124/3 123/4 134/2 12/34

1234
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Ensemble Clustering

Ensemble clustering

Ensemble clustering aims at combining the outputs of
several clustering algorithms (“clusterers”) to form a single
clustering structure (crisp or fuzzy partition, hierarchy).
This problem can be addressed using evidential reasoning
by assuming that:

There exists a “true” partition p∗;
Each clusterer provides evidence about p∗;
The evidence from multiple clusterers can be combined to
draw plausible conclusions about p∗.

To implement this scheme, we need to manipulate
Dempster-Shafer mass functions, the focal elements of
which are sets of partitions.
This is feasable by restricting ourselves to intervals of the
lattice (P(E),�).
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Ensemble Clustering

Method
Mass construction and combination

Compute r partitions p1, . . . ,pr with large numbers of
clusters using, e.g., the FCM algorithm.
For each partition pk , compute a validity index αk .
The evidence from clusterer k can be represented as a
mass function {

mk ([pk ,pE ]) = αk
mk ([p0,pE ]) = 1− αk .

The r mass functions are combined using Dempster’s rule:

m = m1 ⊕ . . .⊕mr
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Ensemble Clustering

Method
Exploitation of the results

Let pij denote the partition with (n − 1) clusters, in which
objects i and j are clustered together.
The interval [pij ,pE ] is the set of all partitions in which
objects i and j are clustered together.
The degree of belief in the hypothesis that i and j belong to
the same cluster is then:

Belij = bel([pij ,pE ]) =
∑

[p
k
,pk ]⊆[pij ,pE ]

m([p
k
,pk ])

Matrix Bel = (Belij) can be considered as a new similarity
matrix and can be processed by, e.g., a hierarchical
clustering algorithm.
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Ensemble Clustering

Results
Individual partitions

0 1 2 3

0

1

2

3

6 clusters (α=0.228)

x
1

x 2

0 1 2 3

0

1

2

3

7 clusters (α=0.276)

x
1

x 2
0 1 2 3

0

1

2

3

8 clusters (α=0.258)

x
1

x 2

0 1 2 3

0

1

2

3

9 clusters (α=0.282)

x
1

x 2

0 1 2 3

0

1

2

3

10 clusters (α=0.291)

x
1

x 2

0 1 2 3

0

1

2

3

11 clusters (α=0.320)

x
1

x 2

Dempster-Shafer reasoning in large partially ordered sets Thierry Denœux



Dempster-Shafer calculus Exploiting a lattice structure Multi-label classification Ensemble Clustering

Ensemble Clustering

Results
Synthesis
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Ensemble Clustering

Distributed clustering
8D5K data (Strehl and Gosh, 2002)

Gaussian data, 8 features, 5 clusters
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)
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Distributed clustering
8D5K data (Strehl and Gosh, 2002)

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
4

x 8

(α=0.0062)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

PC1

P
C

2

Dempster-Shafer reasoning in large partially ordered sets Thierry Denœux



Dempster-Shafer calculus Exploiting a lattice structure Multi-label classification Ensemble Clustering

Ensemble Clustering

Distributed clustering
Method

Here, each clusterer provides a partition pk that tends to
be coarser than the true partition pk .
The output from clusterer k can be represented as a mass
function {

mk ([p0,pk ]) = αk
mk ([p0,pE ]) = 1− αk .

As before, the mass functions are combined and
synthesized in the form of a similarity matrix.
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Distributed clustering
Consensus

0

5

10

15

si
m

ila
rit

ie
s

objects −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

PC1

P
C

2

Dempster-Shafer reasoning in large partially ordered sets Thierry Denœux



Dempster-Shafer calculus Exploiting a lattice structure Multi-label classification Ensemble Clustering

Ensemble Clustering

Conclusion

The exponential complexity of operations in the theory of
belief functions has long been prevented its application to
very large frames of discernment.
When the frame of discernment has a lattice structure, it is
possible to restrict the set of events to intervals in that
lattice.
This approach drastically reduces the complexity of the
Dempster-Shafer calculus and makes it possible to define
and manipulate belief functions in very large frames.
This approach opens the way to the application of
Dempster-Shafer theory to computationally demanding
Machine Learning tasks such as multi-label classification
and ensemble clustering.
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