Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Dempster-Shafer reasoning in large partially ordered sets Applications in Machine Learning

Thierry Denœux¹, Marie-Hélène Masson²

¹Université de Technologie de Compiègne HEUDIASYC, UMR CNRS 6599 http://www.hds.utc.fr/~tdenoeux

²Université de Picardie Jules Verne HEUDIASYC, UMR CNRS 6599

Dempster-Shafer reasoning in large partially ordered sets

Thierry Denœux

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Motivation Generality of belief functions

- The theory of Belief Functions (Dempster-Shafer theory) is a rich framework for representing and reasoning with uncertainty.
- The expressive power of BF theory comes from the fact that it generalizes both set-valued (logical) and probabilistic representations of uncertainty.
- As a consequence, it allows us to express various kinds of uncertainty such as aleatory and epistemic uncertainty.

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Motivation Complexity of belief functions

- The generality and representation power of belief functions comes at a cost: a higher complexity than probabilistic reasoning.
- In the worst case, representing beliefs on a finite domain (frame of discernment) of size K requires the storage of 2^K - 1 numbers, and operations on belief functions have exponential complexity.
- The application of belief functions to problems involving very large frames of discernment poses severe difficulties.
- What do we mean by "very large frames"?

Multi-label classification

Ensemble Clustering

Problems with "very large frames" Multi-label classification

- Problems where learning instances may belong to several classes at the same time.
- For instance, in image retrieval, an image may belong to several semantic classes such as "beach", "urban", "mountain", etc.
- If Θ = {θ₁,...,θ_K} denotes the set of classes, the class label of an instance may be represented by a variable X taking values in Ω = 2^Θ.
- Expressing partial knowledge of X in the Dempster-Shafer framework may imply storing 2^{2^K} numbers.

								Université de Technologi Complègne
K	2	3	4	5	6	7	8	corc
- 0K							· · · ·	
22	16	256	65536	4.3e9	1.8e19	3.4e38	1.2e77	

Multi-label classification

Ensemble Clustering

Problems with "very large frames" Clustering

- Problem: find a partition of a set *E* of *n* objects.
- Let *p*^{*} denote the "true" partition (assumed to exist).
- Variable p* takes values in the set P(E) of partitions of E, with size s_n.
- A clustering algorithm can be seen as providing an item of evidence about p*.
- Expressing such evidence in the Dempster-Shafer framework implies working with sets of partitions.
- There are 2^{s_n} such sets.

n	3	4	5	6	7	-utc
s n	5	15	52	203	876	Compligne
2 ^{<i>s</i>}	23	32768	4.5e15	1.3e61	5.0e263	CIIIS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Multi-label classification

Approach

- Problem: How can the Dempster-Shafer framework be applied to such problems involving huge frames of discernment?
- Basic idea: exploit a special structure of the frame of discernment so as to restrict the form of belief functions, without losing too much flexibility.
- Outline of the approach:
 - Consider a partial ordering \leq of the frame Ω such that (Ω, \leq) is a lattice;
 - Observe the set of propositions as the set *I* ⊂ 2^Ω of intervals of that lattice;
 - **③** Apply the Dempster-Shafer calculus in the lattice (\mathcal{I}, \subseteq) .

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Outline

- Dempster-Shafer calculus
 - Belief representation
 - Combination
- 2 Exploiting a lattice structure
 - Lattices
 - Extension of Belief functions on lattices
 - Belief functions with lattice intervals as focal elements
- 3 Multi-label classification
 - Evidence on Set-valued Variables
 - Multi-label Classification
- 4 Ensemble Clustering
 - Lattice of Partitions
 - Ensemble Clustering

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Outline

- Dempster-Shafer calculus
 Belief representation
 - Combination
- Exploiting a lattice structure
 - Lattices
 - Extension of Belief functions on lattices
 - Belief functions with lattice intervals as focal elements
- 3 Multi-label classification
 - Evidence on Set-valued Variables
 - Multi-label Classification
- Ensemble Clustering
 - Lattice of Partitions
 - Ensemble Clustering

프 🖌 🖌 프

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Belief representation

Mass functions

 A (normalized) mass function on a finite set Ω is a function m: 2^Ω → [0, 1] such that m(Ø) = 0 and

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- The subsets A of Ω such that m(A) > 0 are called the focal elements of m.
- A mass function *m* is often used to model a piece of evidence about a variable *X*.

.

 The quantity *m*(*A*) can be interpreted as a measure of the belief that is committed exactly to the proposition *X* ∈ *A*.

★ E ► ★ E ► E E • 9 Q @

< < >> < </>

Belief representation

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Example

- A murder has been committed. There are three suspects: $\Omega = \{Peter, John, Mary\}.$
- A witness saw the murderer going away, but he is short-sighted and he only saw that it was a man. We know that the witness is drunk 20 % of the time.
- This piece of evidence can be represented by

 $m(\{Peter, John\}) = 0.8,$

$$m(\Omega) = 0.2$$

• The mass 0.2 is not committed to {*Mary*}, because the testimony does not accuse Mary at all!

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Belief representation

Belief function

• Definition:

$$bel(A) = \sum_{B \subseteq A} m(B), \forall A \subseteq \Omega.$$

Interpretation: bel(A) = total degree of justified belief in A.

• Conversely,

$$m(A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} bel(B)$$

(m is called the Möbius transform of bel).

m and *bel* are thus two equivalent representations of a belief state about a variable X. (There are others: plausibility, commonality, ...)

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Belief representation

Characterization of belief functions

- For every function *f* from 2^Ω to [0, 1] such that *f*(Ø) = 0 and *f*(Ω) = 1, the following conditions are known to be equivalent (Shafer, 1976):
 - The Möbius transform m of f is a positive;
 - 2 *f* is totally monotone, i.e., for any $k \ge 2$ and for any family A_1, \ldots, A_k in 2^{Ω} ,

$$f\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1,\ldots,k\}} (-1)^{|I|+1} f\left(\bigcap_{i \in I} A_{i}\right)$$

 A belief function can be characterized by any one of these two properties.

▶ < E > E = <>

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Combination

Dempster's rule

- Let *m*₁ and *m*₂ be two mass functions on Ω induced by two distinct items of evidence. How should they be combined?
- Dempster's rule:

$$(m_1 \oplus m_2)(A) = \begin{cases} \frac{1}{1-\kappa} \sum_{B \cap C = A} m_1(B) m_2(C) & \text{if } A \neq \emptyset \\ 0 & \text{if } A = \emptyset \end{cases}$$

with $\kappa = \sum_{B \cap C = \emptyset} m_1(B)m_2(C)$: degree of conflict.

 This rule is commutative, associative, and admits the vacuous mass function (m(Ω) = 1) as neutral element.

프 🖌 🖌 프

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Combination

Conjunctive combination

- We have $m_1(\{Peter, John\}) = 0.8, m_1(\Omega) = 0.2.$
- New piece of evidence: the murderer is blond, confidence=0.6 → m₂({John, Mary}) = 0.6, m₂(Ω) = 0.4.

	{ <i>Peter</i> , <i>John</i> }	Ω
	0.8	0.2
{John, Mary}	{John}	{John, Mary}
0.6	0.48	0.12
Ω	{ <i>Peter</i> , <i>John</i> }	Ω
0.4	0.32	0.08

프 🖌 🛪 프 🕨

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Outline

- Dempster-Shafer calculus
 - Belief representation
- Combination

2 Exploiting a lattice structure

- Lattices
- Extension of Belief functions on lattices
- Belief functions with lattice intervals as focal elements
- 3 Multi-label classification
 - Evidence on Set-valued Variables
 - Multi-label Classification
- Ensemble Clustering
 - Lattice of Partitions
 - Ensemble Clustering

프 🖌 🖌 프

Lattices Definitions

Lattices

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Let *L* be a finite set and ≤ a partial ordering on *L*. (*L*, ≤) is called a poset.

- We say that (L, ≤) is a lattice if, for every x, y ∈ L, there is a unique greatest lower bound (denoted x ∧ y) and a unique least upper bound (denoted x ∨ y).
- Operations ∧ and ∨ are called the meet and join operations, respectively.
- For finite lattices, the greatest element (denoted ⊤) and the least element (denoted ⊥) always exist.

→ Ξ → < Ξ →</p>

Lattices

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Dempster-Shafer reasoning in large partially ordered sets

Thierry Denœux

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Lattices

Lattice intervals

- Let (L, \leq) be lattice.
- A (lattice) interval of L is defined as

$$[a,b]=\{x\in L|a\leq x\leq b\}$$

for some *a* and *b* in *L*.

- Let *I* ⊆ 2^L be the set of intervals, including the empty set of *L*.
- The poset (\mathcal{I}, \subseteq) is a lattice with
 - meet = intersection;
 - joint defined by [*a*, *b*] ⊔ [*c*, *d*] = [*a* ∧ *c*, *b* ∨ *d*];
 - Ieast element = ∅_L
 - greatest element = L.

Lattices

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Dempster-Shafer reasoning in large partially ordered sets

Thierry Denœux

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Extension of Belief functions on lattices

Belief functions on lattices

- Belief functions are usually defined on the Boolean lattice $(2^{\Omega}, \subseteq)$.
- However, they can be defined on any lattice, not necessarily Boolean (Grabisch, 2009).
- Most of the above definitions and formula can be translated into this very general setting.

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Extension of Belief functions on lattices

Mass and belief functions

- Let (L, \leq) be a finite lattice.
- A (normalized) mass function on *L* is a function *L* → [0, 1] such that *m*(⊥) = 0 and

$$\sum_{x\in L}m(x)=1.$$

• Corresponding belief function:

$$bel(x) = \sum_{y \le x} m(y), \quad \forall x \in L.$$

프 🖌 🛪 프 🕨

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Extension of Belief functions on lattices

Equivalence of representations

• *m* can be recovered from *bel*:

$$m(x) = \sum_{y \leq x} \mu(y, x) bel(y),$$

where $\mu(x, y) : L^2 \to \mathbb{R}$ is the Möbius function, which is uniquely defined for each poset (L, \leq) .

 A belief function is totally monotone, but the converse is not true in general.

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Extension of Belief functions on lattices

Dempster's rule

• Dempster's rule can be defined as in the Boolean case:

$$(m_1 \oplus m_2)(x) = \begin{cases} \frac{1}{1-\kappa} \sum_{y \wedge z=x} m_1(y)m_2(z) & \text{if } x \neq \bot \\ 0 & \text{if } x = \bot \end{cases}$$

with
$$\kappa = \sum_{y \wedge z = \perp} m_1(y) m_2(z)$$
.

3

프 🔺 🔸

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Belief functions with lattice intervals as focal elements

Belief functions in (\mathcal{I}, \subseteq)

- Let Ω be the domain of a variable X, with $|\Omega| = K$.
- If Ω has a lattice structure for some partial ordering ≤, then uncertain knowledge about X may be encoded as a belief function on the lattice (I, ⊆) of intervals of (Ω, ≤).
- As the cardinality of *I* is at most proportional to K², all the operations of Demspter-Shafer theory can be performed in polynomial time (instead of exponential when working in (2^Ω, ⊆)).

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Outline

- Dempster-Shafer calculus
 - Belief representation
 - Combination
- 2 Exploiting a lattice structure
 - Lattices
 - Extension of Belief functions on lattices
 - Belief functions with lattice intervals as focal elements
- 3 Multi-label classification
 - Evidence on Set-valued Variables
 - Multi-label Classification
- Ensemble Clustering
 - Lattice of Partitions
 - Ensemble Clustering

프 🖌 🖌 프

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Evidence on Set-valued Variables

Disjunctive vs conjunctive variables

- Let Θ be a finite domain. A variable *X* may take
 - One and only one value in ⊖: disjunctive variable (usual case);
 - Several values in Θ simultaneously: conjunctive variable.
- For instance, ⊖ may be a set of faults, and X the faults actually occurring at a given time (under the assumption that multiple faults can occur).
- The Dempster-Shafer framework is usually applied to express partial knowledge about disjunctive variables.
- How to extend it to conjunctive variables?

크 > < 크 >

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Evidence on Set-valued Variables

Proposed framework

- X takes values in $\Omega = 2^{\Theta}$.
- Standard approach: define belief functions on (2^Ω, ⊆) (intractable).
- Proposed approach: exploit the lattice structure induced by the ordering ⊆ in Ω and apply the above general framework.
- The intervals of the lattice (Ω, ⊆) are sets of subsets of Θ of the form:

$$[A, B] = \{C \subseteq \Theta | A \subseteq C \subseteq B\}$$

for some subsets A and B of Θ .

Thierry Denœux

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Evidence on Set-valued Variables

Interpretation

- A certain piece of information X ∈ [A, B] tell us that the unknown set X surely contains all elements of A, and possibly contains elements of B.
- An uncertain piece of information about the unknown set X can be modeled by a mass function with focal elements of the form [A_i, B_i], i = 1,..., n.

- Let $\Theta = \{a, b, c, d\}$ be a set of faults.
- Item of evidence 1: a is surely present and {b, c} may also be present, with confidence 0.7. This is represented by

$$m_1([\{a\}, \{a, b, c\}]) = 0.7, \quad m_1([\emptyset_{\Theta}, \Theta]) = 0.3$$

• Item of evidence 2: *c* is present and *a*, *b* may also be present, with confidence 0.8. This is represented by

 $m_2([\{c\}, \{a, b, c\}]) = 0.8, \quad m_2([\emptyset_{\Theta}, \Theta]) = 0.2$

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Evidence on Set-valued Variables

Example Combination

Conjunctive combination

	[{ <i>a</i> }, { <i>a</i> , <i>b</i> , <i>c</i> }]	$[\emptyset_{\Theta}, \Theta]$
	0.7	0.3
[{C}, {a, b, c}]	[{a,c}, {a,b,c}]	[{c}, {a, b, c}]
0.8	0.48	0.12
$[\emptyset_{\Theta}, \Theta]$	[{ <i>a</i> }, { <i>a</i> , <i>b</i> , <i>c</i> }]	$[\emptyset_{\Theta}, \Theta]$
0.2	0.32	0.08

 Based on this evidence, what is our belief that fault a is present?

$$bel([\{a\},\Theta]) = 0.48 + 0.32 + 0.08 = 0.88$$

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Multi-label Classification

Multi-label classification Example (Trohidis et al. 2008)

- Problem: Predict the emotions generated by a song.
- 593 songs were annotated by experts according to the emotions they generate.
- The emotions were: amazed-surprise, happy-pleased, relaxing-calm, quiet-still, sad-lonely and angry-fearful. Each emotion corresponds to a class.
- Each song was
 - described by 72 features;
 - labeled with one or several emotions (classes).
- The dataset was split in a training set of 391 instances and a test set of 202 instances.
- How to learn a classifier from such data?

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Multi-label Classification

Multi-label classification

 In multi-label classification problems, data are usually to have the following form:

$$\mathcal{L} = \{(\mathbf{x}_1, A_1), \ldots, (\mathbf{x}_n, A_n)\}$$

where

- $\mathbf{x}_i \in \mathbb{R}^d$ is a feature vector for instance *i*
- *A_i* is the set of classes that apply to instance *i*.
- When data are labeled by one or several experts, this format does not allow us to express uncertainty on class labels due to doubt or disagreement between experts.

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Multi-label Classification

Multi-label classification

• More general form considered here:

$$\mathcal{L} = \{ (\mathbf{x}_1, [A_1, B_1]), \dots, (\mathbf{x}_n, [A_n, B_n]) \}$$

where

- *A_i* is the set of classes that certainly apply to instance *i*;
- *B_i* is the set of classes that possibly apply to that instance.
- In a multi-expert context, A_i may be the set of classes assigned to instance *i* by all experts, and B_i the set of classes assigned by some experts.

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Multi-label Classification

Multi-label evidential *k*-NN rule Construction of mass functions

- Generalization of the evidential *k*-NN rule (Denœux, 1995).
- Let N_k(x) be the set of k nearest neighbors of a new instance x, according to some distance measure d.
- Let x_i ∈ N_k(x) with label [A_i, B_i]. This item of evidence can be described by the following mass function in (I, ⊆):

$$\begin{aligned} m_i([\mathbf{A}_i, \mathbf{B}_i]) &= \varphi \left[d(\mathbf{x}, \mathbf{x}_i) \right], \\ m_i([\emptyset_{\Theta}, \Theta]) &= 1 - \varphi \left[d(\mathbf{x}, \mathbf{x}_i) \right], \end{aligned}$$

where φ is a decreasing function from $[0, +\infty)$ to [0, 1] such that $\lim_{d\to +\infty} \varphi(d) = 0$.

The k mass functions are combined using Dempster's rules utc

$$m = \bigoplus_{\mathbf{x}_i \in \mathcal{N}_k(\mathbf{x})} m_i$$

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Multi-label Classification

Multi-label evidential k-NN rule

- Let \widehat{Y} be the predicted label set for instance **x**.
- To decide whether to include each class θ ∈ Θ or not, we compute
 - the degree of belief *bel*([{θ}, Θ]) that the true label set Y contains θ, and
 - the degree of belief $bel([\emptyset, \overline{\{\theta\}}])$ that it does not contain θ .
- We then define \widehat{Y} as

$$\widehat{Y} = \{ heta \in \Theta \mid \textit{bel}([\{ heta\}, \Theta]) \geq \textit{bel}([\emptyset, \overline{\{ heta\}}]) \}.$$

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Multi-label Classification

Emotions data Results

Thierry Denœux

4 王

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Multi-label Classification

Results on other data sets

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Outline

- Dempster-Shafer calculus
 - Belief representation
 - Combination
- 2 Exploiting a lattice structure
 - Lattices
 - Extension of Belief functions on lattices
 - Belief functions with lattice intervals as focal elements
- 3 Multi-label classification
 - Evidence on Set-valued Variables
 - Multi-label Classification
 - Ensemble Clustering
 - Lattice of Partitions
 - Ensemble Clustering

프 🖌 🖌 프

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Lattice of Partitions

Partitions of a finite set Ordering relation

- In clustering, the frame of discernment is the set of all partitions of a finite set *E*, denoted *P*(*E*).
- This set can be partially ordered using the following relation:
- A partition *p* is said to be finer than a partition *p'* (or, equivalently *p'* is coarser than *p*) if the clusters of *p* can be obtained by splitting those of *p'*; we write *p* ≤ *p'*.
- The poset $(\mathcal{P}(E), \preceq)$ is a lattice.

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Lattice of Partitions

Example: lattice of partitions of a four-element set

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

Ensemble clustering

- Ensemble clustering aims at combining the outputs of several clustering algorithms ("clusterers") to form a single clustering structure (crisp or fuzzy partition, hierarchy).
- This problem can be addressed using evidential reasoning by assuming that:
 - There exists a "true" partition *p**;
 - Each clusterer provides evidence about *p**;
 - The evidence from multiple clusterers can be combined to draw plausible conclusions about *p**.
- To implement this scheme, we need to manipulate Dempster-Shafer mass functions, the focal elements of which are sets of partitions.
- This is feasable by restricting ourselves to intervals of the circle lattice (P(E), ≤).

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

- Compute *r* partitions *p*₁,..., *p_r* with large numbers of clusters using, e.g., the FCM algorithm.
- For each partition p_k , compute a validity index α_k .
- The evidence from clusterer *k* can be represented as a mass function

$$\begin{cases} m_k([p_k, p_E]) = \alpha_k \\ m_k([p_0, p_E]) = 1 - \alpha_k \end{cases}$$

The r mass functions are combined using Dempster's rule:

$$m = m_1 \oplus \ldots \oplus m_r$$

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

- Let *p_{ij}* denote the partition with (*n* − 1) clusters, in which objects *i* and *j* are clustered together.
- The interval [*p_{ij}*, *p_E*] is the set of all partitions in which objects *i* and *j* are clustered together.
- The degree of belief in the hypothesis that *i* and *j* belong to the same cluster is then:

$$\textit{Bel}_{ij} = \textit{bel}([\textit{p}_{ij}, \textit{p}_E]) = \sum_{[\underline{p}_k, \overline{p}_k] \subseteq [\textit{p}_{ij}, \textit{p}_E]} \textit{m}([\underline{p}_k, \overline{p}_k])$$

Matrix Bel = (Bel_{ij}) can be considered as a new similarity matrix and can be processed by, e.g., a hierarchical clustering algorithm.

(七日)) (日日)

Ensemble Clustering

Results Individual partitions

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Dempster-Shafer reasoning in large partially ordered sets

Thierry Denœux

Ensemble Clustering

Results Synthesis Exploiting a lattice structure

Multi-label classification

A D > A B
 A

Ensemble Clustering

Thierry Denœux

문 ▶ 문

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

Distributed clustering 8D5K data (Strehl and Gosh, 2002)

Gaussian data, 8 features, 5 clusters

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

Distributed clustering 8D5K data (Strehl and Gosh, 2002)

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

Distributed clustering 8D5K data (Strehl and Gosh, 2002)

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

Distributed clustering

- Here, each clusterer provides a partition p_k that tends to be coarser than the true partition p_k.
- The output from clusterer *k* can be represented as a mass function

$$\begin{cases} m_k([p_0, p_k]) = \alpha_k \\ m_k([p_0, p_E]) = 1 - \alpha_k. \end{cases}$$

• As before, the mass functions are combined and synthesized in the form of a similarity matrix.

Exploiting a lattice structure

Multi-label classification

Ensemble Clustering

Ensemble Clustering

Distributed clustering Consensus

ъ

Exploiting a lattice structure

Multi-label classification

< < >> < </>

- 신문 () - 신문

Ensemble Clustering

Ensemble Clustering

Conclusion

- The exponential complexity of operations in the theory of belief functions has long been prevented its application to very large frames of discernment.
- When the frame of discernment has a lattice structure, it is possible to restrict the set of events to intervals in that lattice.
- This approach drastically reduces the complexity of the Dempster-Shafer calculus and makes it possible to define and manipulate belief functions in very large frames.
- This approach opens the way to the application of Dempster-Shafer theory to computationally demanding Machine Learning tasks such as multi-label classification and ensemble clustering.

References cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux, Z. Younes and F. Abdallah.

Representing uncertainty on set-valued variables using belief functions

Artificial Intelligence, To appear, 2010. doi:10.1016/j.artint.2010.02.002

M.-H. Masson and T. Denœux. Belief Functions and Cluster Ensembles. In C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 323-334, 2009. Springer-Verlag.

