Clustering of relational data

Thierry Denœux

tdenoeux@utc.fr

University of Compiègne, France

Introduction

- Clustering methods
 - Finding groups in data
 - Generated structure: Hierarchy; hard, fuzzy, possibilistic partition
- Data type
 - Attribute data: objects described by attributes (features)
 - Proximity (Relational) data: pairwise dissimilarities between objects

Proximity Data

Let \mathcal{P} be a collection of n objects $\{o_i\}_{i=1}^n$. The observations consist in pairwise dissimilarities between objects:

Tutorial FUSION 2002 - T. Denœux - p.3/22

Origin of Proximity Data

Distances computed from attribute data: allow to

- handle heterogeneous data: quantitative, qualitative, structured, symbolic, etc.
- incorporate prior knowlege in the distance function
- Intrinsically present in many domains: psychology, economics, biochemistry (structural comparison between protein sequences), web mining (clustering of web sites, etc.), etc.

Problem statement

- *n* objects described by dissimilarity matrix $D = (d_{ij})$.
- Assumption: each object belongs to one of cclasses in $\Omega = \{\omega_1, ..., \omega_c\},\$
- Goal: express our beliefs regarding the class-membership of objects, in the form of belief functions on Ω.
- Resulting structure = Credal partition, generalizes hard, fuzzy and possibilistic partitions

Credal Partition

- Partial knowledge concerning class membership of o_i represented by a bba $m_i^{\Omega} : 2^{\Omega} \to [0, 1]$.
- Credal partition: $M^{\Omega} \triangleq (m_1^{\Omega}, \dots, m_n^{\Omega})$
- Credal *c*-partition: each class is plausible for at least one object

 $\forall \omega \in \Omega, \exists i \in \{1, \dots, n\}, pl_i(\{\omega\}) > 0$

Credal Partition: example

A	$m_1(A)$	$m_2(A)$	$m_3(A)$	$m_4(A)$	$m_5(A)$
Ø	0	0	0	0	0
$\{\omega_1\}$	0	0	0	0.2	0
$\{\omega_2\}$	0	1	0	0.4	0
$\{\omega_1,\omega_2\}$	0.7	0	0	0	0
$\{\omega_3\}$	0	0	0.2	0.4	0
$\{\omega_1,\omega_3\}$	0	0	0.5	0	0
$\{\omega_2,\omega_3\}$	0	0	0	0	0
Ω	0.3	0	0.3	0	1

Special cases

- Each m_i^{Ω} is a certain bba \rightarrow crisp partition of Ω .
- Each m_i^{Ω} is a Bayesian bba \rightarrow fuzzy partition of Ω

$$u_{ik} = m_i^{\Omega}(\{\omega_k\}), \quad \forall i, k$$

- Each m_i^{Ω} is a consonant bba \rightarrow possibilistic partition of Ω

$$u_{ik} = pl_i^{\Omega}(\{\omega_k\})$$

Learning a Credal Partition from data

- Problem: given a dissimilarity matrix $D = (d_{ij})$, how to build a "reasonable" credal partition ?
- Notion of cluster: objects within a cluster are assumed to be more similar among themselves than with objects from other clusters.
- Compatibility Principle: "The more similar two objects, the more plausible it is that they belong to the same class"

Formalization (1)

• Let S_{ij} be the event "objects *i* and *j* belong to the same class".

 $S_{ij} \triangleq \{(\omega_1, \omega_1), (\omega_2, \omega_2), \dots, (\omega_c, \omega_c)\} \subset \Omega^2$

• Computation of $pl_{i\times j}^{\Omega^2}(S_{ij})$ in the TBM: vacuously extend m_i and m_j to Ω^2 , and combine using Dempster's rule:

$$m_{i\times j}^{\Omega^2} = m_i^{\Omega\uparrow\Omega^2} \bigcirc m_j^{\Omega\uparrow\Omega^2}$$

Formalization(2)

$$pl_{i\times j}^{\Omega^{2}}(S) = \sum_{\{A \times B \subseteq \Omega^{2} \mid (A \times B) \cap S \neq \emptyset\}} m_{i\times j}(A \times B)$$
$$= \sum_{A \cap B \neq \emptyset} m_{i}(A) \cdot m_{j}(B)$$
$$= 1 - \sum_{A \cap B = \emptyset} m_{i}(A) \cdot m_{j}(B)$$
$$= 1 - K_{ij}$$

where $K_{ij} = \text{degree of conflict}$ between m_i and m_j .

Compatibility criterion

Let $M^{\Omega} = (m_1^{\Omega}, \dots, m_n^{\Omega})$ be a credal *c*-partition of Ω . *M* is compatible with dissimilarity matrix $D = (d_{ij})$ iff:

For any 2 pairs of objects (o_i, o_j) and $(o_{i'}, o_{j'})$

$$d_{ij} > d_{i'j'} \Rightarrow K_{ij} \ge K_{i'j'}$$

The EVCLUS method

- Approach: minimize the discrepancy between the dissimilarities d_{ij} and the degrees of conflict K_{ij}, up to a monotonic transformation (similar to Muldimensional Scaling).
- Example of stress function (Sammon):

$$I(M, a, b) \triangleq \sum_{i < j} \frac{(aK_{ij} + b - d_{ij})^2}{d_{ij}}$$

 Minimization of I with respect to M and a, b by gradient descent.

Reducing the complexity

- Problem: large number of parameters $(n(2^c 1)$ parameters for n(n 1)/2 dissimilarities).
- Solutions:
 - Reduce the focal elements to $\{\omega_i\}_{i=1}^c$, \emptyset , and Ω .
 - Add constraints to the problem: penalize "uninformative", "complex" credal partitions

$$I' = I + \lambda \sum_{i=1}^{n} H(m_i)$$

where H=generalized entropy measure.

Entropy measure

Possible choice for the entropy function (Pal and Bezdek):

$$H(m_i) = \sum_{A \in \mathcal{F}(m_i) \setminus \{\emptyset\}} m_i(A) \log_2\left(\frac{|A|}{m_i(A)}\right) + m_i(\emptyset) \log_2\left(\frac{|\Omega|}{m_i(\emptyset)}\right)$$

H favors the allocation of the mass to a small number of focal elements with low cardinality.

Butterfly example

+ object #1 similar to all other objects ("inlier")

Butterfly example: dissimilarity matrix

Tutorial FUSION 2002 - T. Denœux - p.17/22

Butterfly example: Credal partition

Butterfly example: Plausibilities

Plausibilities of ω_1 and ω_2

Butterfly example: comparison

Tutorial FUSION 2002 - T. Denœux - p.20/22

Experiments with real data

- Cat cortex data: 65 objects (cortical areas),
 ordinal dissimilarities (connection strenghs expressed on an ordinal scale), "true" partition in 4 clusters (4 functional regions of the cortex)
- Protein data set: 213 proteins, dissimilarities derived from structural comparison, 'true'' partition in 4 clusters (4 classes of globins)
- sensory data: 13 objects, subjective assessments of dissimilarity by several experts, fusion of credal partitions.

Conclusion

- EVCLUS: a new clustering method for relational data, based on belief functions.
- The concept of credal partition extends those of hard or fuzzy partitions, greater flexibility
- Advantages of the method
 - Detection and representation of atypical observations (in/out-liers),
 - Robustness to non metric data
 - Fusion of credal partitions, and combination with prior knowledge.