Handling imprecise and uncertain class labels in classification and clustering

Thierry Denœux¹

¹Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599)

COST Action IC 0702 Working group C, Mallorca, March 16, 2009

< B

Classification and clustering Classical framework

- We consider a collection \mathcal{L} of *n* objects.
- Each object is assumed to belong to one of *K* groups (classes).
- Each object is described by
 - An attribute vector $\mathbf{x} \in \mathbb{R}^{p}$ (attribute data), or
 - Its similarity to all other objects (proximity data).
- The class membership of objects may be:
 - Completely known, described by class labels (supervised learning);
 - Completely unknown (unsupervised learning);
 - Known for some objects, and unknown for others (semi-supervised learning).

Classification and clustering Problems

- Problem 1: predict the class membership of objects drawn from the same population as *L* (classification).
- Problem 2: Estimate parameters of the population from which \mathcal{L} is drawn (mixture model estimation).
- Problem 3: Determine the class membership of objects in *L* (clustering);

Problem 1xxProblem 2xxxx	
Problem 2 x x x	
	Uto
Problem 3 x x	CNTS

Motivations

- In real situations, we may have only partial knowledge of class labels: intermediate situation between supervised and unsupervised learning → partially supervised learning.
- The class membership of objects can usually be predicted with some remaining uncertainty: the outputs from classification and clustering algorithms should reflect this uncertainty.
- The theory of belief functions is suitable for representing uncertain and imprecise class information:
 - as input to classification and mixture model estimation algorithms;
 - as output of classification and clustering algorithms.

▲ 同 ▶ ▲ 臣 ▶

Outline

- Theory of belief functions
- Classification: the evidential k-NN rule
 - Principle
 - Implementation
 - Example
- Mixture model estimation using soft labels
 - Problem statement
 - Method
 - Simulation results
- Clustering: evidential c-means
 - Problem
 - Evidential c-means
 - Example

★ Ξ → ★ Ξ →

Mass function

- Let X be a variable taking values in a finite set Ω (frame of discernment).
- Mass function: $m: 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- Every A of Ω such that m(A) > 0 is a focal set of m.
- Interpretation: *m* represents
 - An item of evidence regarding the value of X.
 - A state of knowledge (belief state) induced by this item of evidence.

6/48

글 🕨 🖌 글

 $\mathsf{m}^{\Omega}_{Ag,t}{X}[EC]$

denotes the mass function

- Representing the beliefs of agent Ag;
- At time *t*;
- Regarding variable X;
- Expressed on frame Ω;
- Based on evidential corpus EC.

3

- m may be seen as:
 - A family of weighted sets $\{(A_i, m(A_i)), i = 1, ..., r\}$.
 - A generalized probability distribution (masses are distributed in 2^Ω instead of Ω).
- Special cases:
 - r = 1: categorical mass function (~ set). We denote by m_A the categorical mass function with focal set A.
 - |*A_i*| = 1, *i* = 1,...,*r*: Bayesian mass function (∼ probability distribution).
 - A₁ ⊂ ... ⊂ A_r: consonant mass function (~ possibility distribution).

イロト イポト イヨト イヨ

Belief and plausibility functions

Belief function:

$$bel(A) = \sum_{\substack{B \subseteq A \\ B \not\subseteq \overline{A}}} m(B) = \sum_{\emptyset
eq B \subseteq A} m(B), \quad \forall A \subseteq \Omega$$

(degree of belief (support) in hypothesis " $X \in A$ ")

Plausibility function:

$$pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

(upper bound on the degree of belief that could be assigned to *A* after taking into account new information)

9/48

→ Ξ → < Ξ →</p>

Relations between *m*, *bel* et *pl*

Relations:

$$bel(A) = pl(\Omega) - pl(\overline{A}), \quad \forall A \subseteq \Omega$$
$$m(A) = \begin{cases} \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} bel(B), & A \neq \emptyset \\ 1 - bel(\Omega) & A = \emptyset \end{cases}$$

m, *bel* et *pl* are thus three equivalent representations of a same piece of information.

10/48

- 王

Dempster's rule

Definition (Dempster's rule of combination)

$$\forall A \subseteq \Omega, \quad (m_1 \bigcirc m_2)(A) = \sum_{B \cap C = A} m_1(B)m_2(C).$$

- Properties:
 - Commutativity, associativity.
 - Neutral element: vacuous m_Ω such that m_Ω(Ω) = 1 (represents total ignorance).
 - $(m_1 \odot m_2)(\emptyset) \ge 0$: degree of conflict.
- Justified axiomatically.
- Other rules exist (disjunctive rule, cautious rule, etc...).

• Discounting allows us to take into account meta-knowledge about the reliability of a source of information.

Let

- *m* be a mass function provided by a source of information.
- $\alpha \in [0, 1]$ be the plausibility that the source is not reliable.
- Discounting *m* with discount rate *α* yields the following mass function:

$$^{\alpha}\mathbf{m} = (\mathbf{1} - \alpha)\mathbf{m} + \alpha \mathbf{m}_{\Omega}.$$

• Properties: ${}^{0}m = m$ and ${}^{1}m = m_{\Omega}$.

프 🖌 🛪 프 🕨

31= 990

Pignistic transformation

- Assume that our knowledge about X is represented by a mass function m, and we have to choose one element of Ω.
- Several strategies:

Select the element with greatest pignistic probability:

$$\textit{Betp}(\omega) = \sum_{\{A \subseteq \Omega | \omega \in A\}} rac{\textit{m}(\textit{A})}{|\textit{A}|}.$$

(m assumed to be normal)

13/48

포네크

Principle mplementation Example

Outline

Theory of belief functions

- Classification: the evidential k-NN rule
 - Principle
 - Implementation
 - Example
- 3 Mixture model estimation using soft labels
 - Problem statement
 - Method
 - Simulation results
- Clustering: evidential c-means
 - Problem
 - Evidential c-means
 - Example

→ E → < E →</p>

Principle Implementation Example

• Let Ω denote the set of classes, et \mathcal{L} the learning set

$$\mathcal{L} = \{ \boldsymbol{e}_i = (\boldsymbol{x}_i, m_i), i = 1, \dots, n \}$$

where

• **x**_i is the attribute vector for object o_i, and

• $m_i = m^{\Omega} \{y_i\}$ is a mass function on the class y_i of object o_i .

Special cases:

- $m_i(\{\omega_k\}) = 1$: precise labeling;
- $m_i(A) = 1$ for $A \subseteq \Omega$: imprecise (set-valued) labeling;
- *m_i* is a Bayesian mass function: probabilistic labeling;
- *m_i* is a consonant mass function: possibilistic labeling, etc.
- Problem: Build a mass function m^Ω{y}[x, L] regarding the class y of a new object o described by x.

Principle Implementation Example

Solution (Denoeux, 1995)

- Each example $e_i = (\mathbf{x}_i, m_i)$ in \mathcal{L} is an item of evidence regarding y.
- The reliability of this information decreases with the distance between x and x_i. It should be discounted with a discount rate

$$\alpha_i = \phi\left(d(\mathbf{x}, \mathbf{x}_i)\right),\,$$

where ϕ is a decreasing function from \mathbb{R}^+ to [0, 1]:

$$m\{y\}[\mathbf{x}, \mathbf{e}_i] = {}^{\alpha_i}m_i.$$

• The *n* mass functions should then be combined conjunctively:

$$m\{y\}[\mathbf{x},\mathcal{L}]=m\{y\}[\mathbf{x},\mathbf{e}_i]\odot\ldots\odot m\{y\}[\mathbf{x},\mathbf{e}_n].$$

Principle Implementation Example

Implementation

- Take into account only the *k* nearest neighbors of **x** dans \mathcal{L} \rightarrow evidential *k*-NN rule (generalizes the voting *k*-NN rule).
- Definition of ϕ : for instance,

$$\phi(d) = \beta \exp(-\gamma d^2).$$

- Determination of hyperparameters β and γ heuristically or by minimizing an error function (Zouhal and Denoeux, 1997).
- Summarize \mathcal{L} as *r* prototypes learnt by minimizing an error function \rightarrow RBF-like neural network approach (Denoeux, 2000).

ヨ▶ ▲ヨ▶ ヨヨ のへへ

Principle Implementation Example

Example: EEG data

500 EEG signals encoded as 64-D patterns, 50 % negative (delta waves), 5 experts.

Thierry Denœux

Principle Implementation Example

Results on EEG data (Denoeux and Zouhal, 2001)

- *K* = 2 classes, *d* = 64
- data labeled by 5 experts
- Possibilistic labels computed from distribution of expert labels using a probability-possibility transformation.
- *n* = 200 learning patterns, 300 test patterns

k	<i>k</i> -NN	w K-NN	TBM	TBM	
			(crisp labels)	(uncert. labels)	
9	0.30	0.30	0.31	0.27	
11	0.29	0.30	0.29	0.26	UIC
13	0.31	0.30	0.31	0.26	CNIS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Problem statement Method Simulation results

Outline

- Theory of belief functions
- 2 Classification: the evidential *k*-NN rule
 - Principle
 - Implementation
 - Example

Mixture model estimation using soft labels

- Problem statement
- Method
- Simulation results
- Clustering: evidential c-means
 - Problem
 - Evidential c-means
 - Example

Problem statement Method Simulation results

Mixture model

 The feature vectors and class labels are assumed to be drawn from a joint probability distribution:

$$P(Y=k)=\pi_k, \quad k=1,\ldots,K,$$

 $f(\mathbf{x}|Y=k) = f(x, \theta_k), \quad k = 1, \dots, K.$

• Let $\psi = (\pi_1, \ldots, \pi_K, \theta_1, \ldots, \theta_K).$

Problem statement Method Simulation results

• We consider a realization of an iid random sample from (**X**, *Y*) of size *n*:

$$(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n).$$

 The class labels are assumed to be imperfectly observed and partially specified by mass functions. The learning set has the following form:

$$\mathcal{L} = \{ (\mathbf{x}_1, m_1), \ldots, (\mathbf{x}_n, m_n) \}.$$

- Problem 2: estimate ψ using \mathcal{L} .
- Remark: this problem encompasses supervised, unsupervised and semi-supervised learning as special cases.

Problem statement Method Simulation results

Generalized likelihood criterion (Côme et al., 2009)

Approach:

$$\hat{\psi} = rg\max_{\psi}
ho l^{oldsymbol{\Psi}}(\psi|\mathcal{L}).$$

Theorem

The logarithm of the conditional plausibility of ψ given ${\mathcal L}$ is given by

$$\ln\left(\rho l^{\Psi}(\psi \mathcal{L})\right) = \sum_{i=1}^{N} \ln\left(\sum_{k=1}^{K} \rho l_{ik} \pi_{k} f(\mathbf{x}_{i}; \boldsymbol{\theta}_{k})\right) + \nu_{ik}$$

where $pl_{ik} = pl(y_i = k)$ and ν is a constant.

・ロト < 同ト < 目ト < 目ト < 目と のQQ

utc

Problem statement Method Simulation results

Generalized EM algorithm (Côme et al., 2009)

- An EM algorithm (with guaranteed convergence) can be derived to maximize the previous criterion.
- This algorithm becomes identical to the classical EM algorithm in the case of completely unsupervised or semi-supervised data.
- The complexity of this algorithm is identical to that of the classical EM algorithm.

24/48

★ Ξ → ★ Ξ →

Problem statement Method Simulation results

Experimental settings

- Simulated and real data sets.
- Each example *i* was assumed to be labelled by an expert who provides his/her most likely label ŷ_i and a measure of doubt p_i.
- This information is represented by a simple mass function:

$$m_i(\{\widehat{y}_i\}) = 1 - p_i$$

$$m_i(\Omega) = p_i.$$

 Simulations: *p_i* drawn randomly form a Beta distribution, true label changed to any other label with probability *p_i*.

Problem statement Method Simulation results

Results Iris data

Problem statement Method Simulation results

Results Wine data

Thierry Denœux Handling imprecise and uncertain class labels

Problem Evidential *c*-means Example

Outline

- Theory of belief functions
- 2 Classification: the evidential k-NN rule
 - Principle
 - Implementation
 - Example
- Mixture model estimation using soft labels
 - Problem statement
 - Method
 - Simulation results
- 4 Clustering: evidential c-means
 - Problem
 - Evidential c-means
 - Example

(4) E > (4) E > (

Problem Evidential *c*-means Example

Credal partition

- *n* objects described by attribute vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$.
- Assumption: each object belongs to one of *K* classes in $\Omega = \{\omega_1, ..., \omega_K\},\$
- Goal: express our beliefs regarding the class membership of objects, in the form of mass functions *m*₁,..., *m_n* on Ω.
- Resulting structure = Credal partition, generalizes hard, fuzzy and possibilistic partitions

ヨト イヨト

Problem Evidential *c*-means Example

Example

Α	$m_1(A)$	$m_2(A)$	$m_3(A)$	$m_4(A)$	$m_5(A)$
Ø	0	0	0	0	0
$\{\omega_1\}$	0	0	0	0.2	0
$\{\omega_2\}$	0	1	0	0.4	0
$\{\omega_1, \omega_2\}$	0.7	0	0	0	0
$\{\omega_3\}$	0	0	0.2	0.4	0
$\{\omega_1,\omega_3\}$	0	0	0.5	0	0
$\{\omega_2, \omega_3\}$	0	0	0	0	0
Ω	0.3	0	0.3	0	1

Problem Evidential *c*-means Example

Special cases

- Each m_i is a *certain bba* \rightarrow crisp partition of Ω .
- Each m_i is a *Bayesian bba* \rightarrow fuzzy partition of Ω

$$u_{ik} = m_i(\{\omega_k\}), \quad \forall i, k$$

• Each m_i is a consonant bba \rightarrow possibilistic partition of Ω

$$u_{ik} = pl_i^{\Omega}(\{\omega_k\})$$

Problem Evidential *c*-means Example

- EVCLUS (Denoeux and Masson, 2004):
 - proximity (possibly non metric) data,
 - multidimensional scaling approach.
- Evidential *c*-means (ECM): (Masson and Denoeux, 2008):
 - attribute data,
 - alternate optimization of an FCM-like cost function.

프 🖌 🖌 프

Problem Evidential *c*-means Example

Basic ideas

- Let \mathbf{v}_k be the prototype associated to class ω_k (k = 1, ..., K).
- Let A_i a non empty subset of Ω (a set of classes).
- Basic ideas:

 - The distance to the empty set is defined as a fixed value δ

Problem Evidential *c*-means Example

Optimization problem

Minimize

$$J_{ ext{ECM}}(M,V) = \sum_{i=1}^n \sum_{\{j/A_j
eq \emptyset, A_j \subseteq \Omega\}} |A_j|^{lpha} m_{ij}^{eta} d_{ij}^2 + \sum_{i=1}^n \delta^2 m_{i\emptyset}^{eta},$$

subject to

$$\sum_{\{j/A_j\subseteq\Omega,A_j\neq\emptyset\}}m_{ij}+m_{i\emptyset}=1\quad\forall i=1,n,$$

34/48

< 🗇

Problem Evidential *c*-means Example

Butterfly dataset

35/48

utc

Problem Evidential *c*-means Example

Butterfly dataset Results

Problem Evidential *c*-means Example

4-class data set

Thierry Denœux Handling imprecise and uncertain class labels

Example

4-class data set Hard credal partition

Thierry Denœux

Handling imprecise and uncertain class labels

Problem Evidential *c*-means Example

4-class data set Lower approximation

Thierry Denœux Handling imprecise and uncertain class labels

Problem Evidential *c*-means Example

4-class data set Upper approximation

Thierry Denœux Handling imprecise and uncertain class labels

Problem Evidential *c*-means Example

Brain data

- Magnetic resonance imaging of pathological brain, 2 sets of parameters.
- Image 1 shows normal tissue (bright) and ventricals + cerebrospinal fluid (dark). Image 2 shows pathology (bright).

Thierry Denœux

Problem Evidential *c*-means Example

Brain data Results in gray level space

Example

Brain data Lower and upper approximations

(b)

(c)

ъ

ъ

- The theory of belief functions extends both set theory and probability theory:
 - It allows for the representation of imprecision and uncertainty.
 - It is more general than possibility theory.
- Belief functions may be used to represent imprecise and/or uncertain knowledge of class labels → soft labels.
- Many classification and clustering algorithms can be adapted to
 - handle such class labels (partially supervised learning)
 - generate them from data (credal partition)

→ Ξ → < Ξ →</p>

T. Denœux.

A k-nearest neighbor classification rule based on Dempster-Shafer theory.

IEEE Transactions on Systems, Man and Cybernetics, 25(05):804-813, 1995.

L. M. Zouhal and T. Denoeux.

An evidence-theoretic k-NN rule with parameter optimization.

IEEE Transactions on Systems, Man and Cybernetics C, 28(2):263-271,1998.

A neural network classifier based on Dempster-Shafer theory. *IEEE Transactions on Systems, Man and Cybernetics A*, 30(2), 131-150, 2000.

T. Denoeux and M. Masson.

EVCLUS: Evidential Clustering of Proximity Data.

IEEE Transactions on Systems, Man and Cybernetics B, (34)1, 95-109, 2004.

References III cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux and P. Smets.

Classification using Belief Functions: the Relationship between the Case-based and Model-based Approaches.

IEEE Transactions on Systems, Man and Cybernetics B, 36(6), 1395-1406, 2006.

M.-H. Masson and T. Denoeux.

ECM: An evidential version of the fuzzy c-means algorithm.

Pattern Recognition, 41(4), 1384-1397, 2008.

References

References IV cf. http://www.hds.utc.fr/~tdenoeux

E. Côme, L. Oukhellou, T. Denoeux and P. Aknin.

Learning from partially supervised data using mixture models and belief functions.

Pattern Recognition, 42(3), 334-348, 2009.

