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Classification and clustering
Classical framework

We consider a collection L of n objects.
Each object is assumed to belong to one of K groups
(classes).
Each object is described by

An attribute vector x ∈ Rp (attribute data), or
Its similarity to all other objects (proximity data).

The class membership of objects may be:
Completely known, described by class labels (supervised
learning);
Completely unknown (unsupervised learning);
Known for some objects, and unknown for others
(semi-supervised learning).
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Classification and clustering
Problems

Problem 1: predict the class membership of objects drawn
from the same population as L (classification).
Problem 2: Estimate parameters of the population from
which L is drawn (mixture model estimation).
Problem 3: Determine the class membership of objects in
L (clustering);

supervised unsupervised semi-supervised
Problem 1 x x
Problem 2 x x x
Problem 3 x x
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Motivations

In real situations, we may have only partial knowledge of
class labels: intermediate situation between supervised
and unsupervised learning→ partially supervised learning.
The class membership of objects can usually be predicted
with some remaining uncertainty: the outputs from
classification and clustering algorithms should reflect this
uncertainty.
The theory of belief functions is suitable for representing
uncertain and imprecise class information:

as input to classification and mixture model estimation
algorithms;
as output of classification and clustering algorithms.
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Mass function

Let X be a variable taking values in a finite set Ω (frame of
discernment).
Mass function: m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1.

Every A of Ω such that m(A) > 0 is a focal set of m.
Interpretation: m represents

An item of evidence regarding the value of X .
A state of knowledge (belief state) induced by this item of
evidence.
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Full notation

mΩ
Ag,t{X}[EC]

denotes the mass function
Representing the beliefs of agent Ag;
At time t ;
Regarding variable X ;
Expressed on frame Ω;
Based on evidential corpus EC.
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Special cases

m may be seen as:
A family of weighted sets {(Ai ,m(Ai )), i = 1, . . . , r}.
A generalized probability distribution (masses are
distributed in 2Ω instead of Ω).

Special cases:
r = 1: categorical mass function (∼ set). We denote by mA
the categorical mass function with focal set A.
|Ai | = 1, i = 1, . . . , r : Bayesian mass function (∼ probability
distribution).
A1 ⊂ . . . ⊂ Ar : consonant mass function (∼ possibility
distribution).
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Belief and plausibility functions

Belief function:

bel(A) =
∑
B⊆A
B 6⊆A

m(B) =
∑
∅6=B⊆A

m(B), ∀A ⊆ Ω

(degree of belief (support) in hypothesis "X ∈ A")
Plausibility function:

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω

(upper bound on the degree of belief that could be
assigned to A after taking into account new information)
bel ≤ pl .
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Relations between m, bel et pl

Relations:

bel(A) = pl(Ω)− pl(A), ∀A ⊆ Ω

m(A) =

{∑
∅6=B⊆A(−1)|A|−|B|bel(B), A 6= ∅

1− bel(Ω) A = ∅

m, bel et pl are thus three equivalent representations of a
same piece of information.
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Dempster’s rule

Definition (Dempster’s rule of combination)

∀A ⊆ Ω, (m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C).

Properties:
Commutativity, associativity.
Neutral element: vacuous mΩ such that mΩ(Ω) = 1
(represents total ignorance).
(m1 ∩©m2)(∅) ≥ 0: degree of conflict.

Justified axiomatically.
Other rules exist (disjunctive rule, cautious rule, etc...).
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Discounting

Discounting allows us to take into account meta-knowledge
about the reliability of a source of information.
Let

m be a mass function provided by a source of information.
α ∈ [0,1] be the plausibility that the source is not reliable.

Discounting m with discount rate α yields the following
mass function:

αm = (1− α)m + αmΩ.

Properties: 0m = m and 1m = mΩ.
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Pignistic transformation

Assume that our knowledge about X is represented by a
mass function m, and we have to choose one element of Ω.
Several strategies:

1 Select the element with greatest plausibility.
2 Select the element with greatest pignistic probability:

Betp(ω) =
∑

{A⊆Ω|ω∈A}

m(A)

|A|
.

(m assumed to be normal)
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Problem

Let Ω denote the set of classes, et L the learning set

L = {ei = (xi ,mi), i = 1, . . . ,n}

where
xi is the attribute vector for object oi , and
mi = mΩ{yi} is a mass function on the class yi of object oi .

Special cases:
mi ({ωk}) = 1: precise labeling;
mi (A) = 1 for A ⊆ Ω: imprecise (set-valued) labeling;
mi is a Bayesian mass function: probabilistic labeling;
mi is a consonant mass function: possibilistic labeling, etc...

Problem: Build a mass function mΩ{y}[x,L] regarding the
class y of a new object o described by x.
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Solution
(Denoeux, 1995)

Each example ei = (xi ,mi) in L is an item of evidence
regarding y .
The reliability of this information decreases with the
distance between x and xi . It should be discounted with a
discount rate

αi = φ (d(x,xi)) ,

where φ is a decreasing function from R+ to [0,1]:

m{y}[x,ei ] = αi mi .

The n mass functions should then be combined
conjunctively:

m{y}[x ,L] = m{y}[x,ei ] ∩© . . . ∩©m{y}[x,en].
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Implementation

Take into account only the k nearest neighbors of x dans L
→ evidential k -NN rule (generalizes the voting k -NN rule).
Definition of φ: for instance,

φ(d) = β exp(−γd2).

Determination of hyperparameters β and γ heuristically or
by minimizing an error function (Zouhal and Denoeux,
1997).
Summarize L as r prototypes learnt by minimizing an error
function→ RBF-like neural network approach (Denoeux,
2000).
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Example: EEG data

500 EEG signals encoded as 64-D patterns, 50 % negative
(delta waves), 5 experts.
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Results on EEG data
(Denoeux and Zouhal, 2001)

K = 2 classes, d = 64
data labeled by 5 experts
Possibilistic labels computed from distribution of expert
labels using a probability-possibility transformation.
n = 200 learning patterns, 300 test patterns

k k -NN w K -NN TBM TBM
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27
11 0.29 0.30 0.29 0.26
13 0.31 0.30 0.31 0.26
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Mixture model

The feature vectors and class labels are assumed to be
drawn from a joint probability distribution:

P(Y = k) = πk , k = 1, . . . ,K ,

f (x|Y = k) = f (x ,θk ), k = 1, . . . ,K .

Let ψ = (π1, . . . , πK ,θ1, . . . ,θK ).
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Data

We consider a realization of an iid random sample from
(X,Y ) of size n:

(x1, y1), . . . , (xn, yn).

The class labels are assumed to be imperfectly observed
and partially specified by mass functions. The learning set
has the following form:

L = {(x1,m1), . . . , (xn,mn)}.

Problem 2: estimate ψ using L.
Remark: this problem encompasses supervised,
unsupervised and semi-supervised learning as special
cases.
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Generalized likelihood criterion
(Côme et al., 2009)

Approach:
ψ̂ = arg max

ψ
plΨ(ψ|L).

Theorem
The logarithm of the conditional plausibility of ψ given L is
given by

ln
(

plΨ(ψL)
)

=
N∑

i=1

ln

(
K∑

k=1

plikπk f (xi ;θk )

)
+ ν,

where plik = pl(yi = k) and ν is a constant.
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Generalized EM algorithm
(Côme et al., 2009)

An EM algorithm (with guaranteed convergence) can be
derived to maximize the previous criterion.
This algorithm becomes identical to the classical EM
algorithm in the case of completely unsupervised or
semi-supervised data.
The complexity of this algorithm is identical to that of the
classical EM algorithm.
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Experimental settings

Simulated and real data sets.
Each example i was assumed to be labelled by an expert
who provides his/her most likely label ŷi and a measure of
doubt pi .
This information is represented by a simple mass function:

mi({ŷi}) = 1− pi

mi(Ω) = pi .

Simulations: pi drawn randomly form a Beta distribution,
true label changed to any other label with probability pi .
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Credal partition

n objects described by attribute vectors x1, . . . ,xn.
Assumption: each object belongs to one of K classes in
Ω = {ω1, ..., ωK},
Goal: express our beliefs regarding the class membership
of objects, in the form of mass functions m1, . . . ,mn on Ω.
Resulting structure = Credal partition, generalizes hard,
fuzzy and possibilistic partitions
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Example

A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 0 0 0 0 0
{ω1} 0 0 0 0.2 0
{ω2} 0 1 0 0.4 0
{ω1, ω2} 0.7 0 0 0 0
{ω3} 0 0 0.2 0.4 0
{ω1, ω3} 0 0 0.5 0 0
{ω2, ω3} 0 0 0 0 0

Ω 0.3 0 0.3 0 1
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Special cases

Each mi is a certain bba→ crisp partition of Ω.
Each mi is a Bayesian bba→ fuzzy partition of Ω

uik = mi({ωk}), ∀i , k

Each mi is a consonant bba→ possibilistic partition of Ω

uik = plΩ
i ({ωk})
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Algorithms

EVCLUS (Denoeux and Masson, 2004):
proximity (possibly non metric) data,
multidimensional scaling approach.

Evidential c-means (ECM): (Masson and Denoeux, 2008):
attribute data,
alternate optimization of an FCM-like cost function.
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Basic ideas

Let vk be the prototype associated to class ωk
(k = 1, . . . ,K ).
Let Aj a non empty subset of Ω (a set of classes).
We associate to Aj a prototype v̄j defined as the center of
mass of the vk for all ωk ∈ Aj .
Basic ideas:

for each non empty Aj ∈ Ω, mij = mi (Aj ) should be high if xi
is close to v̄j .
The distance to the empty set is defined as a fixed value δ.
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Optimization problem

Minimize

JECM(M,V ) =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ij d

2
ij +

n∑
i=1

δ2mβ
i∅,

subject to ∑
{j/Aj⊆Ω,Aj 6=∅}

mij + mi∅ = 1 ∀i = 1,n,
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Results
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4-class data set
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4-class data set
Hard credal partition
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4-class data set
Lower approximation
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4-class data set
Upper approximation
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Brain data

Magnetic resonance imaging of pathological brain, 2 sets
of parameters.
Image 1 shows normal tissue (bright) and ventricals +
cerebrospinal fluid (dark). Image 2 shows pathology
(bright).

(a) (b)
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Brain data
Results in gray level space
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Brain data
Lower and upper approximations

(b) (c)(a)
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Conclusion

The theory of belief functions extends both set theory and
probability theory:

It allows for the representation of imprecision and
uncertainty.
It is more general than possibility theory.

Belief functions may be used to represent imprecise and/or
uncertain knowledge of class labels→ soft labels.
Many classification and clustering algorithms can be
adapted to

handle such class labels (partially supervised learning)
generate them from data (credal partition)
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